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Abstract 

Fuzzy numbers is presented as a.n alternative to probabilistic methods for the manage­
ment of uncertainty in system dynamic models. Fuzzy numbers are particularly suitable to 
represent vagueness a.nd qualitative values. Fuzzy numbers are used during simulation, but 
due to interactiveness among variables there is a need for global optimization methods. Some 
examples that illustrates the use of fuzzy numbers, both directly a.nd as a means to represent 
qualitative values, are shown. 
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1 Introduction. 

This paper describes the need for and presents an implementation of a qualitative approach to-the 
description, simulation, and analysis of complex, dynamic systems. The approach is based upon the 
fuzzy set theory and fuzzy numbers, which constitute an alternative to probability distributions, 
commonly used to represent uncertainties associated with dynamic systems. 

Our implementation serves as a foundation for fuzzy extensions of system dynamics simulation 
languages and software. Such extensions can be implemented by overloading variables, parameters, 
operators, tables and other special functions and also the associated graphical symbols (Fishwick 
et al~ 1991). In this paper, we do not consider explicit 1lSe offu:~:zy relatiollS, as discussed by 
Wenstll!p (Wenstll!p, 1976, 1979), but limit our discussion to expressions characterized by fuzzy 

.,..parameters, operators and fnnctions. 
Having documented the need to utilize fuzzy numbers in system dynamics simulations, we 

discuss the issues of implementation- in particular issues associated with the interaction of-variables 
caused by nonlinearities. We provide a few simple examples. An outline of further research 
concludes our discussion. . · 

2 Fuzzy numbers in simulations. Why? 

We need qualitative techniques because we are often unable or unwilling to describe system struc­
ture, state, and behavior with exact numerical precision. Our need to circumvent numerical repre­
sentations originates from two sources: Our conceptions are often uncertain and commonly vague. 
If, for example, we have partitioned all states that the system can take, into disjunct sets, but not 
determined the set membership of the current state, then we are uncertain. If the system assumes 
the laws of probability, then we may represent our uncertainties in the form of probability distri­
butions. If, on the other hand, we can or will not identify a set of disjoint sets of system states, 
then we are left to express ourselves vaguely - typically linguistically - such as about 5, somewhere 
between 10 and 15, or in the middle. 
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Moreover, numerical details often obscure significant behavior patterns and obstruct our identi­
fication and understanding of the dominating structural subcomponents underlying these patterns. 
In particular, this is true for the common cases of shifting equilibria and loop polarities in nonlinear 
systems. Consequently, we need qualitative methods to abstract from insignificant details and help 
us focus on the structural components underlying the significant dynamic characteristics, showing 
up in the time- and state-space of these systems. 

In system dynamics, qualitativ.e analyses, based upon stock-and flow, feedback loop, time- and 
state-space diagrams are quite common. The dynamic qualities of various nonlinear systems have 
been documented more rigorously in the literature. Based upon various combinations of graphical 
analysis (Aracil et al. 1992), (Davidsen 1992), (Toro et.al. 1992), empirical experiments (Sterman 
1988), (Mosekilde et al. 1988), deterministic analysis (Aracil 1981 a,b, 1984, 1986; et al. 1984, 
1988, 1989, 1991), (Toro et al. 1988 a,b), (Richardson 1984, 1986), simulations experiments where 
initial conditions are being perturbed (Mosekilde et al. 1983, 1985, 1988), (Rasmussen et al. 1985), 
(Sturis et al. 1988), statistical search in the parameter space (Toro et al. 1992b ); and piecewise 
linear analysis (Toro et al. 1992a), the dynamics of equilibria, i.e. stability criteria, dominant 
feedback loop polarities; bifurcations, and aspects of chaos and self-organization have been studied 
extensively. An overview over quantitative methods for system dynamics models is given by Aracil 
and Toro (Aracil et al. 1991). The theories offuzzy sets and fuzzy numbers have not been utilized 
in any of these studies. 

Fuzzy sets theory and fuzzy numbers enable us to represent vague expressions symbolically. 
As noted by Fishwick (Fishwick 1991), those theories encompass probability distributions as a 
special case and unify features with respect to uncertainty in simulation. In fact, by using fuzzy 
numbers, we avoid the normalization required when applying probabilities. Moreover, it enables 
us to represent various levels of uncertainty or confidence by the use of alpha-cuts, to which we 
will return. 

Fuzzy set and number theory allows us to consider a linguistic expression as an aggregate 
(lumped) repr~entation of a reality that can be portrayed in great~r detail using .exact numerical 
representations (Zeigler, 1976). To ensure model integrity, the aggregation must constitute a ho­
momorphic mapping so as to preserve the relationship between the input and the output trajectory 
of the model (Kuipers, 1986). . 

A fuzzy number can represent qualitative or linguistic values, say the size of the national deficit, 
characterized as large,· moderate, or small. We represent each flizz·y number in terms of a series 
of alpha-cuts that can be interpreted as confidence intervals. Pairs of real numbers represent the 
upper and lower bounds of such alpha-cuts, two numbers per alpha-cut per time-step. When we 
operate on fuzzy numbers, the equations of the model are int~rpreted in terms of fuzzy (interval) 
arithmetic operating on various combinations of these bounds. In fuzzy simulations, we must 
consider specifically interaction between variables that cause an. over-extension of the confidence 
intervals when using standard fuzzy arithmetic. In this paper, we document techniques developed 
to ensure a proper simulation of fuzzy models. 

Fuzzy dynamic models share some of the behavior characteristics of real models - in particular 
stochastic models subject to Monte-Carlo simulation. Their dynamic behavior is determined in 
much the same way by the underlying systems structure, i.e. by feedback, nonlinearities, and lags 
that contribute to the proliferation of uncertainty and vagueness throughout each model. The long 
range purpose of our research is to study, document and interpret the dynamic characteristics of 
fuzzy models in terms of real systems. 

3 Fuzzy numbers in simulations .. How? 

In this section we des~ribe how fuzzy numbers can be utilized in simulation. A fuzzy number is a 
concept based on the idea of fuzzy sets introduced by Zadeh (Zadeh, 1965). In order to understand 
the nature of fuzzy numbers we will need some definitions. 
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Figure 1: A fuzzy number. 

A fuzzy set is a set with graded membership. A membership function J.'A : U - [0, 1] defines 
the membership grades. of the elements of some universe U in the fuzzy set A. If I' A (::c) = 1 then 
is ::c a full member of A, if J.'A(::c) = 0 then is z not a member ofA. 

An a-cut of a fuzzy set A is the classical set Aa = {::ciJJA(::c) 2t a}, a is a number in [0, 1]. 
A convez fuzzy set A is a fuzzy set on a continuous universe such that for all a, Aa is a convex 

classical set. 
A fuzzy number is a convex fuzzy set with U = R. 
The support of fuzzy number A is .the interval Us, us] where 

Is= inf{ziJJA(::c) >0} and us= sup{::ciJJA(::c) > 0} 

The core of a fuzzy number A is the interval Uc,uc] where 

lc = inf{ziJJA(::c) = 1} and uc = sup{::ciJJA(::c) = 1} 

The definitions are illustarted in figure 1. 
A fuzzy arithmetic has been developed for fuzzy numbers, see f. ex. Kauf~nann and Gupta's book 

(Kaufmann et al. 1991). Fuzzy arithmetic can be viewed as a generalization ofMoore'sint«:lr:v.al 
arithmetic (Moore, 1966). For each a the a-cut of a fuzzy number is an interval. If, furthermore, 
C = f(A, B) is the fuzzy number resulting from performing a fuzzy arithmetic operation f on 
fuzzy numbers A and B, then for each a E [0, 1], the result Ca would be the result of the interval 
arithmetic operation f on Aa and Ba. This implies that for practical computation with fuzzy 
numbers, the numbers are represented by a finite set of a-cuts, and operations are performed by 
applying interval arithmetic to each a-level. 

The interval arithmetic versions of the standard arithmetic operations are as follows: 

[a, b] + [c, d] = [a+ c,b+ d] 
[a, b]- [c, d] = [a- d,b-c] 

[a, b] * [c, d] = [a* c, b * d], U = R+ 
[a, b]/[c, d] = [a/d, b/c], U = R+ 

Fuzzy numbers usually represent ignorance with respect to the exact value of some variable. 
If there is some kind of interactiveness between the values of variables, this may lead to too wide 
intervals after the application of interval arithmetic. A typical example is A- A which one expects 
to have the value 0. However, the result of applying interval arithmetic is [a,- au, au- a,], when 
A. = [a,, au]. There may also be more subtle interactiveness between variables that may lead to 
over-pessimistic intervals. 

System dynamics simulation models typically involve a large number offunctions 3;I1d operations 
on variables that are not mutually independent. If we ignore these interdependencies, the resulting 
values of such functions and ooeratiooa become too wide. 
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Figure 2: The distance between two fuzzy numbers. 

Another feature of dynamic models is that functions in general are non-monotonic. l'his also 
prohibits the use of interval arithmetic, and search for other methods are needed. 

The problem of computing a-cuts for a variable X = /(X1 , X2, ... , Xn) can be formulated as 

Xa = [inf /(xl, x2, ... , x,.), sup /(xl, x2, ... , Xn)], X; E X;,a 

This means that we have two global optimization problems, which in general have no particular 
structure, and thus leads to no particular solution strategy. The strategy chosen by us in our first 
experiments is simple, but error sensitive when used on function with steep gradients. It consists 
of two steps, first compute f on all vertices of the n-dimensional box that our bounds· describe, 
then select a large number of uniformly distributed random points inside the box, and compute f 
for each of these. Select the largest of the computed values as the upper bound of X a, and the 
smallest as the lower bound of Xa. An overview of global optimization methods can be found in 
f. ex. (Gillet al. 1981). 

One of the main purposes of this work is to facilitate qualitative simulation. The relationship 
between qualitative values and fuzzy numbers is based on the ideas on possibility theory by Zadeh 
(Zadeh, 1978, 1979). The idea is that variables are allowed to have a finite set of qualitative values, 
such as {VERY HIGH, HIGH, MEDIUM, LOW, VERY LOW}. To each of the qualitative.values 
we have assigned a fuzzy number, which is then used for simulation. 

The resulting fuzzy numbers may be transformed back to qualitative values by using the quali­
tative value closest to the computed. A suitable choice for distance between numbers is the distance 
given in (Kaufmann et al. 1991, pp 100-109). Let X1(a) and Xu(a) be the lower and upper bounds 
of Xa respectively. Then, the distance between two fuzzy numbers X andY is 

d(X, Y) = 11 

(IX1(a)- Yi(a)l + IXu(a) .:._ Yu(a)l)da 

The shaded area in figure 2 represents the distance between to fuzzy numbers X and Y. The doubly 
shaded area counts twice. Examples of qualitative simulation will be given in the examples section. 

The work of Fishwick (Fishwick, 1991) is similar to what we have presented here. He distin­
guishes between 3 methodologies; Monte Carlo-simulation, uncorrelated simulation and correlated 
simulation. The first is based on the knowledge of probability distributions. Uncorrelated simula­
tion is simulation where fuzzy arithmetic is used straight forward, which often leads over-pessimistic 
fuzzy numbers. In correlated simulation he assumes knowledge about which values of the initial 
parameters that correspond to each other. Sometimes this may be a too strong assumption. 

SYSTEM DYNAMICS '93 517 



1 

0 uc us R 

Figure 3: A trapezoidal fuzzy number. 

The method we have presented is something in between the correlated and uncorrelated method. 
The global optimization strategy ensures no over-estimation of intervals at each-times step. The 
method, however, does not assume correlation between the values of parameters between each time 
step. This assumption, however, would often be reasonable. 

4 Examples. 

The examples presented here are all simple population models, illustrating typical results that we 
can expect from simulations with fuzzy numbers. The fuzzy numbers used initially are all so called 
trapezoidal fuzzy numbers, examplified in figure 3. These can be represented by the quadruple 
(ls,lc,uc,us) which are named the lower support, lower core, upper core, and upper support values 
respectively. The first example has the following equations: 

IIIT(Population) = (80000,90000,100000,100000), 
Fertility= (0,0,0.02,0.04), 
llortaiity = (0.02,0.04,0~06,0.08), 
Births = Population • Fertility, 
Deaths = Population • Mortality, 
Population = Population - Deaths + Births 

The simulation in 100 steps leads to the result given in figure 4. The curves indicate how 
the upper support, upper core, lower core, and lower support! values develop. We observe that 
the upper support grows exponentially. This happens when fertility takes its upper support value 
and mortality its lower support value. The other curves, however, approaches 0, and we may, for 
instance, conclude that the population most likely will die out. 

The second example is an example with qualitative values. Assume both Fertility and Mortality 
is a number in the interval [0,0.1]. Assume further that this interval can be split into the following 
qualitative values: 

VERY LOW = (0.00,0.00,0.01,0.02) 
LOW = (0.00,0.01,0.02,0.03) 
RATHER LOW = (0.01,0.02,0.03,0.04) 
SOMEWHAT LOW = (0.02,0.03,0.04,0.05) 
SLIGHTLY BELOW MIDDLE = (0.03,0.04,0.05,0.06) 
SLIGHTLY ABOVE MIDDLE = (0.04,0.05,0.06,0.07) 
SOMEWHAT HIGH= (0.05,0.06,0.07,0.08) 

_ RATHER HIGH= (0.06,0.07,0.08,0.09) 
BIG& = (0. 07 ,0. 08,0. 09 ,0.10) 
VERY HIGH= (0.08,0.09,0.10,0.10) 
MIDDLE = (0.03,0.04,0.06,0.07) 
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Figure 4: The development of a· population. 

BELOW MIDDLE = (0.00,0.00,0.04,0.05) 
ABOVE MIDDLE= (0.05,0.06,0.10,0.10): 
UJKJOVI = (0.00,0.00,0.10,0.10) 

The equations used involved increasing stress with increasing population: 

IIIT(Population) = 90000, 
BaaicFertility = SLIGHTLY ABOVE MIDDLE, 
BasicMortality = SOMEWHAT LOW, 
lormalPopulation = 100000, 
Stress = (Population I lormalPopulation)**2, 
Fertility = BasicFertility I Stress, 
Mortality = BasicMortality * Stress, 
Births = Fertility * Population, 
Deaths = Mortality * Population, 
Population = Population + Births - Deaths 

The simulation leads to the result given in figure 5. 
If we now split the possible values.of Population, say [0,200000], into a set of fuzzy numbers in 

the same way as for Fertility and Mortality. Then we get a very good match with the qualitative 
value SLIGHTLY ABOVE MIDDLE. . . 

The third example is one where Stress is a non-monotonic function depending· on Population. 
High and low populations lead to high stress. The equations are: 

IIIT(Population) = (20000,30000,30000,40000) 
MinStressPopulation = 50000, 
lormalPopulation = 100000, 
LowestStress = 0.95, 
BasicFertility = (0.04,0.05,0.06,0.07), 
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Figure 5: The development of a population. 

BasicMortality = (0.02,0.03,0.04,0.05), 
BasicStress = ABS(Population- MinStressPopulation) I 

lormalPopulation, 
Stress = BasicStress •• 2 + LovestStress, 
Fertility = BasicFertility I Stress, 
Mortality = BasicMortality • Stress, 
Births = Fertility • Population, 
Deaths = Mortality • Population, 
Population = Population + Births - Deaths 

100 

The result is given in figure 6. The population seems to stabilize somewhere around 100000, but 
may also die out. 

5 Conclusion. 

We have discussed the use of fuzzy numbers to represent uncertainty in system dynamics models. 
The method gives us a simple framework for simulation when the initial data is only vaguely defined, 
and it does also represent a good alternative to qualitative simulation with symbolic methods. 

The weakness of the model as it is explained here, is the lack of correlation of parameters 
between time steps. This should be fixed. Furthermore, at another level, one should investigate 
the dynamic properties of fuzzy dynamic systems. Possibly, this kind of work can, together with 
artificial intelligence techniques, support the process of characterizing dynamic models. 
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