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ABSTRACT

This paper describes some of the central, non-procedural aspects of sen81t1—
vity analysis in system dynamics.

Pirst section focuses on the objectives of sensitivity analysis in this par~
ticular field of modeling.

The second section concentrates on the types of model change involved, with
emphasis on changes in model structure and parameters.

The third section discusses the interpretation of model response to changes.
The central questions are how the sensitivity is judged and by whom.

The final section discusses the parts in the modeling process entailing sen-
sitivity testing.

Overall the paper asserts a more comprehensive role for sensitivity analysis
than seems to be commonly accepted among model builders and model users, The
subjectivity and individuality of sensitivity analysis is also emphasized.
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INTRODUCTION

Sensitivity analysis constitutes an element of most formal modeling pro-
cesses. However, as each field of modeling has its distinct gnd characteris-
tic features, so has the sensitivity analysis that accompanies it. It is the
purpose of'this paper to describe some of the central issues related to sen-—
sitivity analysis in system dynamics. o

To portray-the complete role of sensitivity analysis in system dynamics
I will define sensitivity analysis as "the study of model responses to model
changes." It is, compared to other modeling fields, a rather broad definition.
This definition should be kept in mind when reading the papei.

Sensitivity analysis is a primary concern in system dynamics model buil-
ding and review. One reason being the nature of the problems analyzed in this
field of modeling; problems which necessitate the incorporation of relation-
ships and parameters for which little empirical data are available. Quantifying
the system elements is often quite difficult. Consequently, any model evalu-
ation must include a consideration of the arbitrariness of repregentation.
Another related reason is the complexity of the problems being modeled. The
models of the problems are often equally hard to understand. Sensitivity
analysis has proved to be a useful tool in generating insight in these models.

A complete description of the subject would roughly distinguish between:

1. Objectives in sensitivity analysis.

2. Types of model change in sensitivity analysis.

3. The interpretation of model response to changes.

4. How to most efficiently conduct the sensitivity analysis;

This paper focuses on issues relating to the first three aspects. The
fourth aspect is discussed by J.A. Sharp (1976), W. Thissen (1976), and to

some extent by A.K. Graham (1976).

THE OBJECTIVES

A sensitivity analysis should always be related to the purpose of the
model under investigation. In this respect it is important to keep in mind
not only the explicit goals of the model, but also the goals inherent in the
types of modeling which the -specific model represents.

) The explicit purpose usually stated by a system dynamics model is to
explain the causes of an undesirable behaviour mode, and to identify policy
variables aimed at eliminsting the undesirable behaviour. Implicit in system
dynamics as a discipline, however, are also the objectives of finding the
simplest recognizablel structure capable of explaining the initial dynamic .
hypothesis and to identify those areas of a problem where further research
is necessary and critical. The following description of the objectives in sen=

sitivity analysis is based upon a recognition of both the explicit and im-

" plicit goals of system dyhamics models,

To test the effect of uncertainties 1in

parameter values

Uncertainties in a system dynamics model's parameter values may affect
its response and thereby the conclusions derived from the model. As system
dynamics models tend to :

1. include parameters for which no observations exist;

2. analyze such a long time-span that the model parameters vary over
a much larger interval than observed in the real wvorld,

uncertainties in model parameters are characteristic features of the models.

Typically, their values will be known within a range, but not precisely.

1. If a model is simplified to the extent that it is difficult to recopnize
the basic real-world mechanisms at work within the system, its function as

a comaunication tool may be destroyed, Such a simplification is normally
not the goal. :
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Testing these uncertainties within this range in order to evaluste the impact of
variations on model conclusions, constitute an important part of sensitivity
analysis in system dynamics, v

The sensitivity testing itself mey be a three-stage process. As system
dynamics models normally will be insensitive2 to variations in most model pa-
rameters provided that the variations are kept within a realistic range, the
sensitivity testing should first sort out the parameters that the model is
sensitive to.Secondly, the sensitive pérameters should be varied within their
estimated3 range of variation in ordér to sée if they change the overall model
behaviour. If some of them do change the behaviour, more effort should be put
in estimating théem. Another alternative may be to reformulate the model to

reduce the model's sensitivity. In the latter case, sensitivity analysis should

be applied for the third time in order to evaluate the success of the reformulation.

A.K. Graham (1976). has described the reformulation problem in more detail.
To generate insight

When talking about a system dynamics model as an‘insigh@-generating mo=
del, we are actually talking about two types of insight., First, a mathematical
one which relates structure to behaviour. Secondly, we are talking about in-
sight in the real word. Sensitivity analysis has proved to be an important
and efficient tool to gain both types of insight. In the following, the role
and objectives of theAsensitivity analysis in gaining these two types of in-~

sight, will be described separately and in the order they are mentioned above.

2. This aspect will be discussed in more detail in a later section, "The parameter
change”. .

3. For a description of estimation of parameter values in system dynamics
modeling, see A.K. Graham (1976). :

.—’{38_

Model insight

To attain insight into a model, that is to attain an understanding of
the relation between model structure/model parameters on the one hand and
model behaviour on the other, is a primary concern in system dynamics., This
insight forms a basis for understanding the causal mechanisms underlying the
problem being ﬁodeled and to identify policies to deal with the problgg.

A system dynaﬁica model is usually so complex that very few, if any,
would have a clear.understanding of it, unless the model were exposed to an
extensive sensitivity testing. Some understanding is of course obtained from
the testing‘of uncertainties in parameter values. In this case, however, the
variations were restricted to values that the parameters could realistically
assume, In a context of model understanding, the model should be tested over
an unusually wide range of values. Only such a wide range can reveal the in-
herent d&namics of the model. Furthermore, the focus of the sensitivity ana-
lysis should be on alterations in model structure as well as in the parameter
values., Changes in structure often imply to cut one {or more) feedback loop(s)
in order to find which parts of the structure that contribute to the different
behaviour modes - of the model. There is, however, & possible fallacy in this
procedure which may be worth while to mention. To cut a loop to see its effect

on model behiaviour could actually lesd to the wrong conclusions. Because the

' possible difference in behaviour which may result does not necessarily con-—

tribute to that specific loop, but rather to the loop's interaction with some
other loops.,
‘The objective of model insight in system dynamics implies a number of
more detailed objectives:
1, To find which behaviour modes the model can generate.
2. To identify the model changes which drive tha model from one beha—
viour model to another, This identification helps to sort out the
‘parameters and structural relationships whose precise values are of

critical importance for model behaviour, thereby establishing which
aspects a more comprehensive study should focus on, Furthermore, the
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modeler discovers where to allocate limited research resources, Fi-
nally, such identification helps to locate appropriate levers for
an efficient and robust policy.

3. 'To identify the active and dormant parts of the model structure,

*  ‘This procedure establishes a basis for finding the simplest recog-
nizable structure which can generate the initial dynamic hypothesis.,
fo find such a simple model structure is often a goal in system
dynamics modeling, because it will indicate the most fundamental
processes at work within the system. Moreover, as a forum for dis-
cussing the problem under study, a simple model is preferable.

4, To evaluate whether the dynamic behaviour in models with exogenous
inputs is generated by external or internal forces, If the beha-
viour is determined by exogenous forces alone, something is wrong
with the model because system dynamics models are by nature substan-
tially self-driven. Either the conceptualization of the problem or
the selection of a system dynamics model to analyze the problem is
faulty.

The ultimate objective of model understanding is to provide a basis for

comparing the formal model with our perception of the real world.
Model confidence and real world insight

The underlying idea of employing formal models is that they may help us
understand the real world. The better a model matches the real world system
it is meant to portray, the more of the previously mentioned model under-—
standing can be transferred to the real world system. How then, can we achieve
sufficient confidence in the formal model to say that the model insight also
has given us real world insight? -

One way to deal with the confidence problem is to subject the model to
& comprehensive sensitivity testing. This testing should be a confrontation
between the real world on the one hand and the philosophy uuderlying the
model as well as the conceptualization andvthe representation of the probiem
under study on the other.

In system dynamics modeling the testing will typically focus on changes

in the following three aspects of a model:

1. System boundaries,

- Tho -

2. interaction variables, and

3. values of parameters.

The test conditions should deliberately be set so that the system ope~
ratés under eitreme situations. In these situations it is often easier to
reveal wheﬁhgr the model's behaviour is plausible or not.

The result of the comprehensive sensitivity testihg helps to answer the
following questions related to model confidence:

1. Are the behaviour modes produced by the model realistic?

2. Does the model's sensitivity (or robustness) accord with humen know- .
ledge of the real world system?

3. Is the model (in)sensitive to the same perturbations as the real
system? . . -

If the answers are &es, the experimentation has helped to increase model
confidence. Otherwise, the sensitivity analysis will indicate some model de-
ficiency, either in the mental model, the formal model of both. The deficiency
necessitqtes a review of the model -- an indication of the iterative nature
of modeling.

Even if a comprehensive sensitivity testing of a model yields reasonable
results, it is no certain proof of the model's correctness. At best, testing

can only increase model confidence.

To direct further work on

Parameters and structure

It has prgviously been méntioned that the sensitivity analysis helps to
sort out the parameters and structural relationships whose precice values
are of critical importance for model behaviour. This section will discuss
this aspect of sensitivity analysis in more detail.

A lack of p}ecice data, difficulties in determining which parts of avail-
able iﬁformation that is important to the problem or not, has often been a

reason for not making a formal model of the problem. In system dyndmics
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modeling the opposite will be true. To make a roug£ model at an early stage
and subject it to a sensitivity analysis, will be a help in sorting out the
data that are of importance and to distinguish between relevant and irrele-
vant information. In this case, sensitivity analysis will actually direct
further vork on the problem.

The sensitivity testing will indicate thebrather few parameters that
have the potential to alter the model's behaviour que. Whereas effort should
be put into estimating, controlling or reformulating these parameters, the
current precicion of the other parameters is sufficieﬁt to let the modél ful~-
fill its purpose.

Moreover, sepsitivity testing reveals the feedback loops that‘govern
the model's behaviour and those which do not. Consequently, further work should
be directed toward verification and understanding of this part of the struc-
ture.

Even if the sensitivity analysis itself tends to be time consuniing,
there is no doubt that such a use of sensitivity analysis saves a lot of

effort.

TYPES OF MODEL CHANGE IN
SENSITIVITY ANALYSIS

A1l changes, with the possible exception of perturbations in the exo-
genous variables {including noise functions), can be viewed as being either
a structural change, a parameter change, or a combination of the two. Al-
tering the system boundary implies a structural change. Changing the initial
value of a level is a parameters change. Reformulating a parameter may impl&
a structural change as well as a parameter change.

In their impact on model behaviour perturbatibns in model parameters
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and struéture are usually very different. The division line between them,
however, is not always clear. One reason being that changing a parameter

value may induce a structural change as well. Another reason being that para-
meters are iq a way a reducement of structure. Underlying each parameter is

a structure, Altering the value of a parameter reflects a change in the struc-

ture producing that parameter.
The parameter change

Parameters in system dynamics models consist of

- table functions and

- constants (including initial values and time delays).

Whether or not this category includes exogenous variables will not be discus-
sed here. (See Forrester, 1961, pp 112 - 114 and 124 - 129.)

System dynamics models are usually rather insensitive to parameter chan-
ges, as are real complex systems. The source of parameter insensitivity can
be found in model structure. One source is the dynamic properties of the ne-
gative fgedback loop. Such goal-seeking loops tend to counteract any alter—
ations imposed by perturbations in parameters, very often with success. A
second reason is that model behaviour is primarily generated by only certain
feedback loops. Changes outside these loops —-- perturbations in the non-domi-
nant or dormant loops —- will normally not affect model bebhaviour.

There are, however, exceptions. A given model structure is capable of
exhibiting different behaviour modes. The shifts that can drive the model
from one mode to another must be instigated in the model paramcters (and/or
the exogenous va;iables).

Considering the large number of parameters in most system dynamics mo-—
dels,.an arbitrary search for the most sensitive parameters would be hopeless=-
1y timé-consuming. The "key parameters," however, can be located in zpecific

parts of the model structure.
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Therefore, when saying that system dynamics models are insensitive to

parameter changes, what actually is meant is that they are insensitive to

most parameter changes. Behaviour is sensitive to a few points in any system.

These sensitive spots have certdin identifiable locations in the model struc-

* ture, Such locations, or influence points tend to be situated in or near posi-

tive feedback loops, delay times, and intersections of several positive and

negative feedback loops.

Parameter testing should focus on the location and perturbation of "key
parameters." In addition, parameters which are controversial and thus dispu-
table, should be tested, not necessarily with the intention of altering model
behaviour. A disputable parameter's potential for altering behaviour may be
small. The intention with the test, however, is more often to demonstrate the
insignificance of the precise parameter value with respect to model conclusio;s.

Such a result will tend to increase the model confidence.
The struetural change

A structural change in a system dynamics model is an alteraﬁion of a
causal relationship in the model. Structural changes will normally be visible
in the revised model‘'s causal loop diagram, whereas parameter changes can only
be seen in the nodel equations or in the explicit graphing of table functions.

System dynamics models as a rule are more sens{tive to structural than
parameter perturbations, because the possible behaviour modes are actually
embedded in the model structure. Different structures will normally be cava-
ble of exhibiting a different set of modes.

The models are usually more sensitive to structural changes that affect
positive loops than negative loops. A positive loop normally encourages ex-—
ponential growth (in some few cases, exponential decline). A negative loop

will be goal-seeking, and consequently act to stabilize model behaviour. The
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addition or removal of a positive loop versus a negative loop, may therefore
have quite a substantial impact on model conclusions. However, the impact
will be dependent on the rest of the model structure. Adding a negative loop

to an already stable sysﬁem may have little effect, unless the addition em—

bodies a structure with two interacting negative feedback loops. Such an al-

teration could lead to system oscillations. On the other hand, removal of a
negative loop from a stable system may destabilize the system, provided that
the loop was active in the structure. As with parameter variations, the impact
of a structural change depends on its connection to the dominant part of the,
model structure, Removing a dormant structure has little effect. Actually,
eliminating. the inactive part of the structure to find the basic mechuanisms
underlying a problem is one of the objectives of structural sensitivity tes~
ting. The other'important objective is to evaluate the impact of controversial

or disputable relationships.

Parameter changes

with structural implications

In some cases, the division line between parameter and structural per-
turbations is unclear. As will be illustrated below, changing a table function
may induce an alteration in model structure.

Considering the simple model structure illustrated in Figure 1.

- D
C .

Figure 1. Model structure corresponding to the relationship between A
and B in Figure 2,
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Assume for a moment that A's influence on B is given by the table func-
tion in Figure 2. Now, if the relationship between A and B, for some good
reason, were changed to the pattern in Figure 3, the alteration would obvi-
ously have the chargcteristics of a parameter change. However, the altera-

tions would also imply a change in structure.

B °

>
A

Figure 2, Assumed relationship between A and B.

Whereas a rise in "factor A" now induces a decrease in B, a rise in A tended
to increase B in the previous situation. The model structure corresponding
to the alteration is drawn in Figure 4, Figure Y- contains a positive and a

negative loop interaction at A instead of two negative loops. Actually, the

» .

A

Figure 3. Alternative relationship between A and B.

change is much more than a parameter change. 1t reflects a reconceptualization

of both the two variables, A and B, and their interaction.
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+

AN

Figure 4. Model structure corresponding to the relationship between A
and B in Figure 3.
If, for instance, the relationship between A and B were assumed to be that

in Figure 5 a. the structure would look as indicated in Figure 5 b.

+

IIII.'- B : ¥
A B
+ -
- \’ j
A c +
D
’ B
Figure 5. Another change in the relationship between A and B and its
structural consequence..

A

Once more, the parameter change has structural implications. The loop to the
left in the figure will be positive or negative, dependent on A's variation
within its parameter space.

Finaily, changing the relationship between A and B to the pattern in
Figure 6 a eliminates one .of teh two loops completely, Whatever the value of
A migh§ be, B is a constent. Dynamically then, the loop containing A, B, and

€ has no significance. The resulting structure is indicated in Figure 6 b.
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B in system dynamics are outlined in the three following subsections.

.-"'iI-.' /////’—-_‘\\\:\\ Sensitivity of qualitative
N \,) E

Versus quantitative models

A + An overall purpose of most system dynamics models is to describe the
D . s
A ’ R qualitative behaviour of the systems under study. If a model qualitatively

. . . e ib henomenon, the evaluation of sensitivity must focus on qualita-
Figure 6. A flat table function and its structural consequence. describes a pl ™ > 4 . a

tive, not quentitative differences in model behaviour. On the other hand, in
a point predictive model gquantitative discrepancies are critical.
"HE INTERPRETATIOHN OF Consider a system dynamics model with the purpose of explaining the

i t is t alitative aspectls of
MODEL RESPONSE TO CHANGES causes of an Qbserved mode of behaviour (that is the qualitative aspecls o

a system). Let us further assume that the mode in question is an overshoot

: s ' . i i ote s the itud at ap-
The interpretation of model response to changes in parameter and struc- mode. Now, if a change in a model parameter alter he magnitude of that ove

PRI foss . 2 i i consi signifi t. T 2havi
ture depends on the definition of sensitivity. There is no strict objective shoot mode, the alteration will not be considered significan The behaviour

e e . s . . mode, from a qualitative point of view, is still the same. However, if a change
definition. It is also impossible to define once and for all sensitivity in ’ a P ’ ’ chang

s that caused the model to shift from an overshoot mode to stable equilibrium
general terms as it depends on the purpose of the sensitivity analysis. This m g a *a !

. : . would arded as significant el would be considered sensitive
implies that even one model can have different measures of sensitivity for ' be reg & » the model v > “e ve

different purposes of the modeler, his clients, and his critiecs. To define to the given parameter change.

sensitivity, therefore, constitutes in itself an important part of the indi- From a point predictive polnt of view, the model is sensitive to both

vidnal sensitivity analysis. chenges. In this context such an interpretation is wrong because it is in-

The subjective and individual character of a sensitivity analysis is not consistent vith the stated purpose of the model. A model should mever be re-

to say that the interpretation of its results is difficult. It is, however, uired to answer guestions that it is not made for.

important that: Reasonable ers
v u s
1. the iut?rpretation is based upon a definition of sensitivity which unreasonable changes
1s consistent with the purpose of the sensitivity analysis as well
as the purpose of the model;
In the context of sensitivity analysis any change, as long as it is con-

2. the changes that induce the new model response are consistent with
the same two purposes; sistent with the purpose that underlies Lhe model and the sensitivity annlysis,
3. the model's client is involved in the judgement of sensitivity. is reasonable., This implies that the meaning of a reasonable change is altered

liow these three aspects direct interpretation of model response to changes as the purpose of the model and the sensitivity analysis are altered. 'These
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purposes will always change, as models always will be used by other people,
as they are open to everybody. Inconsistency between purpose and change in
model structure or parameters may lead to a misinterpretation of the results
derived from the sensitivity testing.

In evoluating the effect of uncertainties in model parameters, changes
should be restricted to values within the intervals of estimated uncertainty.
Alterations which go beyond these intervals will not reflect the model's sen-
sitivity to uncertainties in parameters. If, however, such alterations are
made in connection with the above evaluation, the interpretation of the mo-
del's response may be quite wrong.

In testing how well the model duplicates the real-world system it is
meant to portray, reasonable alterations inélude any changes which can be
conceptually verified, at least aut a level of confidence to that of the model
elements they replace or modify. Variations in parameters should be restricted
to values that they could realistically assume. Structural changes shoula
always have a real-world counterpart. The modeler or reviewer must always
consider all the ramifications of a structural or parameter change. A real-
world phenomenon may appear to be caused by a change in one variable, while
it actually corresponds to variations in several model variables (and vice
versa), The change in one variable alone may have no real-world counterpart.

System dynamics models often treat the long-term behaviour of a system
through a historical period and on into the future. An alteration which de-
stroys the historical behaviour does not necessarily indicate that the model
is wrong. On the contrary, the change itself may be inconsistent with the
rest of the model.

A model is typically tuned to recreate history. Deviation from the his-
torical trend is inconsistent with the modeler's mental picture of the system.

If, for example, a parameter appears to be inaccurate and its alteration

= 750 ~

produces.a non~historical result, then the accuracy of the alteration will be
dependent on whether some other change in the model restores the historical
behaviour. The two or more changes togelher may recreate history, while pro-
ducing an aiternate prediction. Non~historic behaviour is a simple indication
that a parameter test value may be inconsistent with the rest of the model
and must be justified by éhe proper adjustment of related parts of the model.
If, however, such an adjustment proves impossible and if the test value is
reasonable, then the model itself must be faulty.

‘ In the context of model understanding, however, the concept of "a rea-
sonable change” should be interpreted somewhat differently. Test alterations
are no longer restricted to realistic values, Model understanding implies
discovering the possible behaviour modes of the system, whether Lhey are 1li-
kely to happen in the real world or not, and, furthermore, finding the values
at which the shift from one model to another occurs. Therefore, nearly any

change would be considered reasonable.
The role of the client

When modeling a problem there is always the danger that the real problem
is modified to suit the methodology used to analyze it. If this modificalion
goes too far, the model will address quite another problem. And in the client's
mind, a wrong one.

Dis_aéreement between the modeler and the client in interpreting the re-
sults of a sensitivity analysis may indicate a wrong problem definition. The
ultimate judgement of sensitivity should, therefore, rest in the hands of the
client. The role of the client underlies the subjective nature of sensitivity

evaluation,
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SENSITIVITY ANALYSIS INTHE PROCESS OF
SYSTEM DYNAMICS MODELING

Unlike other modeling fields in which the sensitivity analysis often is
performed after the model building, it is in system dynamics modeling spread
over the model building process. In general, every experiment carried out on
a model contains an element of sensitivity analysis., The sensitivity analysis,
in reality part of the model construction itself, will often constitute the
basis for review and possible redesign of the model. The followiug two sub~
sections outline the involvement of sensitivity analysis in the system dynamics

modeling process.

Sensitivity analysis containeda

in the model experimentation

Several of the different stages in the anaiysis part of the system dy-
namics modeling process involve sensitivity testing in one form or another.
The tuning of a system dynamics ﬁodel is in reality a limited sensitivity
éest. This process, which usually concentrates on parameter values, may give
the first indications on a model's sensitivity to perturbations in its para-
meters.

Policy analysis can also be vieﬁed as a limiéed sensitivity test. A po-
licy is nothing other than a chenge in model structure and/or a change in
parameters —- a change that is feasible in the actual system, and to which
model behaviour is sensitive. Moreover, an important part of policy analysis
is testing the robustness of recommended policies vis-a~-vis uncertainties in
model parameters and structure. The strange situation arises, therefore, where
policy analysis, which can be considered a component of sensitivity testing,
should also be subjected to sensitivity investigations.

The validation of a model, another important aspect of system dynamics
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modeling, also involves an element of sensitivity testing, and vice versa.

In summary, every experiment carried out on a model contains an element

of sensitivity testing.

Sensitivity analysis as a8 means tc generate

new dynamic hypothesis

In principle model testing may generate a new dynamic hypothesis in two
different situations. Both situations will be exemplified later in this sub-
section. The first situation arises when a model's response to some change is
very fast, compared to the model time-horizon. The model cannot explain this
rapid response, but instead the model implicitly assume that such a responsé
is plausible. If the response is believed to actually be slower in the real
system, thereby interfering with the present model conclusions, the hypothesis
embodied in the quick réesponse should be investigated further. Any new model
will have a different purpose and a considerably shorter time-horizon. llowever,
if the new model confirms the new dynamic hypothesis, it also increases con-
fidence in the original model. The new model then, indicates thal the implicit
assumption of the original model was correct.

The second situation occurs when testing reveals a response generated
by very slow processes within the system. Again, the processes are slow, com-
pared to the model time-~horizon. Such a response will wusually be vigible to-
ward the end of the model time-horizon. In this case, the model suggeshs the
presence of a new behaviour mode. The alternative behaviour mode will often
address another question than the original model. Therefore, the occurrence
of a significant change in the behaviour mode at the end of a model time—
horizon may establish the foundation for a new dynamic hypothesis.

The two contrasting situations can be exemplified by resnlts obtained

from two system dynamics models. The first example, shown in Figure 7, iliu-
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strates the results of one of the tests carried out on the "Solid Waste Model"
(Meadows, D.L., Meadows, D.H., eds. 1973, pp. 165 - 211). The behaviour mode
of interest is that of the market price of raw materials. In the test, a 50
per cent increase in the price is imposed on ihe system in year 25 -- a sur-
rogate for the implementation of a 50 per cent tax on extraction Af raw mate~
rials. As shown by the figure, the system manages to compensate extremely
quickly for the price hike., Approximately S5 years after implementation of‘the
hike, the price returns to the same level as in the basic run. The quick re-
sponse can be attributed to lower-demand and a higher recycling rate, both

caused by the price increase.
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Figure 7. From Meadows, D.L., Meadows, D.H., eds. 1973, p. 195.
The response in market price of raw material ($) to a 50 per
cent tax on extraction, introduced in year 25. An example of
a very fast response, compared to the model time-horizon.
Implicit in the model, then, is the assumption that the recycling rate

is able to respond quickly to a change in price. The assumption is reflected

in the table function shown in Figure 8, and the lack of a delay in reaching
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the "indicated value." The model structure is illustrated in Figure 9. The
model cannot explain the response of the recycling rate. On the contrary, the

implicit assumption is a part of the model's basic premises.
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Figﬁfe 8.‘ From Meadows, D.L., Meadows, D.H., eds. 1973, p. 185.

’ The recycling fraction's dependence on the market price of

raw material.

Some critics might dispute the quick response in the recycling rate.

Rather than accepting the assumption, they may call it a hypothesis. An in-
vestigation of this dynamic hypothesis would require another model with quite
a different problem focus, however, and a time-~horizon of about 15 years.
If the hypothesis were confirmed in the new model, the confidence in the ori-
ginal model would increase. Consequently, an investigation of the new dynamic
hypothesis, derived from. the original model, actually contributes to the vali-
dation of the model.v

The second example is taken from a model (SOCIOMAD) of the interaction

between the ecosystem (rangeland) and the social system (represented by the

_human and animal populstions) in the Sahel area (Picardi, A.C., 1975). The

model purpose is to describe the ecological problem of desertification and
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Figure 9. Dynamo flow diagram of "Solid Waste lodel". From Meadows D.L,,
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the human problem of starvation and herd losses in the Sahel, and to suggest
policies to avert the reoccurence of the 1971 - 197k catastrophe.

During a comprehensive sensitivity analysis of this model, one test re-
vealed a significant shift in model behaviour toward the end of the model
time~horizon (100 yearg).'ln all but this specific test, the most important
system variables —-— soil conditions, and animal and human populations -~
seemed to stabiliie at a very low level at the end of the model time-horizon.
The basic run of the SOCIOMAD model, Figure 10, illustrates this behaviour.
At one point in the testing, the evaluators became convinced that it was im-
possible to restore the system to its pre-drought (1970) levels. Would it at
all be possible to rehabilitate the system after the serious collapse in the
early 1970's? This question falls somewhat beyond the scope of the original
model. A deliberate change in the future rainfall pattern was done, aiming
at giving the ecosystem a chance to recofer. Since ecosystem dynamics are
asymmetrical, soil regeneration is much slower than degeneration. In the
SOCIOMAD model, the recovery time of the soil condition is assumed to be 80
years at maximum, The results of the more favourable rainfall pattern are
illustrated in F§gure 11, As shown in the figure, the variables are in a
growth mode, rather than an equilibrium mode, at the end of this particular
simulation. However, the model cannot confirm that a complete recovery is
possible, It only provides a rationale for generating the dynamic hypothesis,
that a very long long-term recovery may take place. To test this hypothesis,
a model with a much longer time-horizon would be necessary. Prolonging the
time~horizon of the original model is no alternative. Such an extension would

be mixing two models that address quite different questions.
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FINAL REMARKS

The nature of the problems being modeled in system dynamics, demands
a comprehensive sensitivity analysis of the models. In judging how well this
demand is met, it is necessary to employ a different perspective on sensitivity
analysis, Traditionally, the sensitivity testing has been conneéted to the
finished model. If this perspective is employed, the conclusion will be that
the sensitivity analysis that system dynamics models are subjected to, nor-
mally is rather moderate, which will be a wrong conclusion. It is, however,

a conclusion often arrived at by crities of sfstem dynamics models, probably
due to the reason suggested above.

Instead, a perspective which reflects the actual role of sensitivity
analysis in system dynamics should be used. This role indicates that unlike
many other modeling fields, the sensitivity testing is spread all over the
modeling process. The extent of the sensitivity analysis at each step of that
process may be moderate, in sum, however, it will as a rule be extensive,. Ié

constitutes in fact a necessary element of the model construction itself.
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