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In this paper we present a formal system S~, in order to characterise 
the evolution of knowledge. In addition to the connectors of classical logic, 
we introduce two dynamic connectors - the mediate future and the immediate 
future - expressing the transformations that may affect data in the course of 
time. The. axiomatisation of these connectors and their semantic characterisation 
lead us to define a model of interpretation for the formal system which is 
comparable to that of Kripke for modal logic. With this_ model we prove the 
intrinsic consistence and the validity_ of S~. Similarly we demonstrate comple­
teness and other propositions connecting the immediate future and the mediate 
future. 

The formal system S~ is one of the component modules of the ARCHES 
system, a symbolic system for the representation and treatment of knowledge 
whose objective is to produce new knowledge through two modes of reasoning -
deduction and analogy - based upon specific processes of inference. 
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1. 0. INTRODUCTION. 

This paper concerns the formal description and the logical properties 
of the formal system S~ which allows the expression of the modalities of know­
ledge evolution. S~ is one of the component modules of the ARCHES system, a 
symbolic system for the representation and treatment of knowledge [5]. Note 
that designing ARCHES required not only an analysis of work carried out i.n 
the representation of knowledge and reasoning (semantic networks, frames, ex­
pert systems, first order logic, etc~ .. see [1], [7], [10], [11], [13]) but 
also looking at several case studies related to expert domains of human sciences 
[2]. To be more precise the ARCHES system allows the representation of any set 
of facts (objects of material culture, factual assertions, events, etc •.. ) whose 
description and organisation are adequate to its architecture. For instance, 
statements like "Peter sleeps peacefully", "Mary's dress is made of 1 ight red 
wool", "the car V1 is located in the garage G" and "elephants have a trunk-1 ike 
nose" represent elementary facts susceptible to be conveyed by ARCHES. The sys­
tem aims at obtaining new knowledge from the facts which have been recorded in 
the corresponding knowledge base. The production of knowledge is carried out by 
two modes of reasoning-deduction and analogy - based upon specific processes of 
inference (see [6]). 

The representation of facts is determined by composing entities cons­
tructed from the general notion of concept. The concepts are sets whose elements, 
called individuals, denote unambiguous and distinct observable terms producing 
the facts (for instance in the previous statements, PETER and V1 are two indi­
viduals belonging respectively to the concepts PERSONNE and CAR). Each fact is 
represented by a formula giving a description of an individual (see § 2.2) ; so 
if A denotes a concept, x a variable or a constant individual andy a descri~tion 
then A(x,y) is a formula of ARCHES (for more detail see [4]). 

One of the originalities of ARCHES is to integrate, in its conception, 
operations which allow the expression of the evolutive character of data : 
acquisition of new knowledge, representation of events in terms of changes of 
states, modification in the description of phenomena resulting from calculations 
concerning them and/or objects related to them. Nevertheless the transformations 
which could occur-on data involved in calculations must leave ARCHES in a con­
sistent state. For instance, in an application of ARCHES describing the behavior 
of individuals, we must be able to assert at a given moment that "JOHN IS EATING" 
and, the moment later, that "JOHN IS NOT EATING" ; these statements would be 
contradictory in a system based on classical logic where properties and relations 
are definitively asserted or negated, irrespectively of the notions of time and 
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and space. In the same way, some natural language formulations of statements 
expressing changes of states have to be represented in ARCHES as the tran­
sition from a present descriptive state to a future one. For instance the 
statement "MARY IS AWAKENING" can be interpreted in ARCHES as a change of 
state between SLEEP and AWAKENESS ; these are still problems of consistency 
in that the two activities cannot occur simultaneously. 
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In order to represent the evolution of studied facts we present a non clas:sical 
logic in which temporal connectors are defined, [8] and [15]. This paper aims 
to present the formal system described by the modalities of evolution of the 
descriptions characterising the individuals. To be more precise, the descrip­
tions conveyed by ARCHES define a formal systemS~ which has·four components; 
to express the two aspects "Representation" (see § 2) and "Deduction" (see § 3.) 

which respectively define and organise them 

s~ = {~.~.~T·===>} 

~is an alphabet on which is generated the set ~ of description3~Tc:~ repre­
senting the set of theses of S~. These three sets aim to define and convey 
the representation of descriptions (see§ 2.2, and§ 2.3). They are built from 
a primitive data structure able to convey the elementary descriptions called 
descriptive terms (see§ 2.1). The relation===> is a deductive relation defi­
ning inferential activity among the descriptions. It is defined by rewriting 
rules on descriptive .terms and from specific conditions associated with two 
categories of connectors. These are static connectors which define addition, 
disjonction and negation, and dynamic connectors which define the immediate 
future and the mediate future (see§ 3.). We give a semantic characterisation 
of this temporal formal system, defining a model of evolution similar to that 
of Kripke for modal logic ([9], [121, [141) (see§ 4.) and we show that the 
deductive relation===> is valid in this interpretation (see§ 5.). Chapter 6 
presents propositions related to dynamic connectors together with a decision 

procedure for the relation ===>. 

2.0. REPRESENTATION SYSTEM OF DESCRIPTIONS. 

2.1. The primitive elements. 

Descriptive terms permit the representation of properties and more 
generally of state relations characterising individuals. They are built from 
four basic entities : features, classes, operators and the functional symbol 
$, [3]. Features permit the representation of distinctive characters of 
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individuals , as in the previous example (see § 1.) the words PEACEFUL, RED, 
LIGHT, NOSE, TRUNK, G. Thus features may be information without extension 
(PEACEFUL, RED, LIGHT),concepts (NOSE, TRUNK), or individuals (G). Features 
having· a single semantic nature are .. grouped into sets called classes. The class 
symbols express the semantic scope of the state relations attested in the 
elementary descriptions. Thus the features RED, TRUI'\K and G refer respecti:ve ly 
to the classes COLOR,.FORM and LOCALISATION. The relationships which exist 
between the classes and the features are expressed by particular functional 
symbols, in general n-ary, called operators. The operators allow specification 
of the semantic nature of the state relations which characterise individuals. 
For example, the statement "Automobile whose seating capacity is inferior or 
equal to 5" shows the kind of relationship which can exist between classes 
and features : the feature "number of seats" (i.e. numerical value 5) is re­
lated to its class CAPACITY by the arithmetical operator .LE.(~). Moreover 
properties and state relations can be described locally, as in the following 
two statements : "Amphoras stamped T1 of type P1" and "Automobile of a dark 
blue colour". The characterisation of features by descriptive terms permits 
the precise representation of this descriptive situation (properties of pro­
perties, state relations made precise by these properties ; state relations 
of:"state relations, etc.). The relation which expresses the attribution of a 
descri~tive element to a faatur.:: is represented by the functional symbol $, thus 
permitting. the representation of local descriptions of state relations. When 
a state relation is not locally described, we consider that the corresponding 
feature is characterised by the empty description A (see§ 2.2.). 

More precisely a descriptive term·. is any expression of the form 
opn(T,tt) in which opn is an n-ary operator, T a class symbol, and~ a tuple 
of degree n whose elements are either of the form $( ti ,A), or of the form 
$(ti,OPni(Ti'tii)) where ti is a feature referMngto the class T, A is the 
empty description and opni(Ti,ttil a descriptive term characterising ti. 
We call undescribed descriptive term any descriptive term for whi ~hthe el erner~ts 
of the tuple t~ are of the form $(ti,A). Otherwise it is a described descriptiy~ 
term. Thus in the statement "the dark blue car V1 is in the ga-rage G"~the 
individual V1, instance of the concept CAR, is characterised by the two des­
criptive terms ISA(COLOR,$(BLUE,ISA(SHADE,DARK))) and IN(LOCATION,INS(GARAGE,G)), 
the first being described and the second undescribed. 



5 

2.2. The set of descriptions b. 

The description of an individual x belonging to the extension of 
the concept C is the organised set of descriptive terms which characterises 
it. 

More precisely the descriptions are generated from an alphabet 
composed of four categories of symbols : /1/ a countable set~ of descriptive 
terms ; /2/ the empty string A ; /3/ two categories of connectors, the state 
connector,, •, + respectively called Negation, AND of addition and non 
exclusive OR, and the dynamic connectors o and $ respectively called immediate 
future and mediate futrue ; /4/ the parentheses ( and ) . 

....-0. = -t U {A} U {., , ~, +, o, :a } U { (,)} 

The countable set b of descriptions is a formal language built on~. The des­
criptions which are its well formed formulas follow the rules (R) of construc­
tion 

R1 A is a description (called the ... empty description") 
R2 Every descriptive term is a description ; 
R3 If a is a description then -.a is a description 
R4 If a and b are descriptions then (a • b) is a description 
R5 If a and b are descriptions then (a + b) is a description 
R6 If a is a description, then oa is a description ; 
R7 If a is a description, them 111a is a des·cription 
RS Any description is derived from descriptive terms by application 

of the pr~vious rules. 

-e is the base of b (.Cc:bc::b*). 

2.3. The theses of the formal system Sb. 

Let~ be the finite set of individuals and j) the mapping which 
associates with every x~ 1 its description JD(x). If the individual xis 
an instance of the concept C, then the association of ~(x) to x is represen­
ted through the structure C(x;:b(x)) (see § 1.) : we say that :D(x) is a 
thesis of the formal system sb. 

Let bTc: b be the set of descriptions such that JJ be a one to one 
mapping between ' and bT : the structures stored in ARCHES are the well 
formed formulas C(x,{)(x)) in which x, instance of the concept C, has 
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j) (x)e. bT for description. 
bT is the set of theses of the formal system Sb of characterisation of the 
descriptions. 

3.0. DEDUCTIVE ORGANISATION OF DESCRIPTIONS. 

3.1. The transformation rules of descriptive terms. 

The representation and the logical properties of descriptive terms 
allow the definition of three kinds of rewriting rules : rules of decomposition, 
rules of inheritance and transitivity, and rules of extension. These rules 
express the semantic properties of classes. For example the semantic relations 
existing between the classes PART and MATERIAL are expressed by the following 
rule of inheritance : 

ISA(PART,$(x,ISA(MATERIAL,y)))--->ISA(MATERIAL,y) 

This rule means that if an individual has a part x made of material y, 
then the material employed in the manufacturing of the individual is also y. 

Generally, for any application we have several possible rewriting 
rules like the previous one. These rules define the system of substitution 
reduction rules of ARCHES, from which are operated the transformations on des­
criptive terms.These transformations are determined by the rewriting relation 
--->* defined on the set of descriptive terms as the transitive and reflexive 
closure of the relation --->. Given two descriptive terms A and B, we say that 
B derives from A by application of substitution/reduction rules if and only if 
th.e relation A --->*B is verified. We have demonstrated that the results obtained 
from the processes of derivation do not depend on the order in which rewriting 
rules are applied. This allows us to define an original algorithm of decidabi­
lity for the relation A---->*B. This algorithm can be split into two parts : 
first a procedure for the irreductible descriptive term of any descriptive 
term U and then a function of discordance between two descriptive terms V and 
W which searches/the first different undescribed descriptive term in V and W. 

for 

3.2. Definition of the relation===>. 

In order to complete the definition of Sb, we have to define the moda­
lities of derivation of the descriptionsby taking into account their formation 
rules from the descriptive terms and the connectors •, +,.,, o, t (see § 2.2.) 
and the rewriting relations of the descriptive terms (see§ 3.1.). So on the 
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set ~ we define a deduction relation between the descriptions,written ===> , 
which is the smallest transitive reflexive relation verifying the following 
condition (on this subject see [16]): 

Cl a * b ===>.a 
C2 if a ===> b then 
C3 if a *,b ===> b .then 
C4 if a --->* b then 
cs a ===> 11a 
C6 oa ===> sa 
C7 osa ===> 11oa 
C8 s(a+b) ===> sa+sb 

a * b ===> b 
a * c ===> b * c 
a ===> b 
a ===> b 

The conditions Cl and C2, which establish the logical relation between the 
relation ===> and the connector *• give to the derivation generated by ===> 
the status of deduction (see§ 3.4.). The condition C4 determines the deductive 
relations (from a specific element to a generic one) between descriptive terms 
and descriptions. The condition CS and C6 indicate that the present and the 
immediate future belong to the future ; C7 defines the semantic relations between 
immediate future and mediate future. 

3.3. The equality relation = ~ 

We say that a = b (the description a "is equal to" the description b) 
if and only if a===> band b ===>a. We may show easily·that the relation 
is a relation of equivalence. The relation =, and hence the relation ===>, 
satisfies the following conditions : 

C9 a*b=b*a a+b=b+a 
ClO a*(b*c) =(a*b)*c a+(b+c)=(a+b)+c 
Cll a*a=a a+a=a 
Cl2 a*A=A*a=A a+A=A+a=a 
C13 a*(a+b)=a a+(a*b)=a 
Cl4 a*(b+c)=(a*b)+(a*c) a+(b*c)=(a+b)*(a+c) 
C15 a*~ a=• a*a=A 
Cl6 o~a=~oa 

C17 o(a;.b)=oa;,ob 
C18 tolla=<lla 
C19 sA=A 
C20 if a ===> b then oa ===> ob 
C21 if a ===> b then sa ===> lib 
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Conditions C9 to C15 determine the semantic properties of the connectors*, + 
and ~ giving to them the same formal status they have in classical logic. 
Consequently the quotient set ~/= is a distributive and complemented lattice. 

Condition C16 expresses the determinism of the evolution of descriptions. 

Condition C18 points out that the connector e is transitive. 

Cl9 Expresses the coherence of the evolution of descriptionsin that the set ~ 
has one and only one minimum (because ~/= is a distributive and complemented 
lattice). 

Conditions C20 and C21 mean that if the formula a ===> b is always true then 
it will always be true in the future. Note that conditions Cl and CS ·to C19 
are of the form a===> b (or a=b which is equivalent to a===> b and_b ===>a). 
Therefore these conditions are the axiomsof a formal system with formulas of 
the form a===> band they define the deduction relation===> (i.e. the meta­
linguistic symbol ===>becomes an element of the object language in this for­
mal system). Otherwise the conditions C2, C3, C4, C20 and C21 of the form : 
IF a ===> b THEN c ===> d, are the inference rules of the same formal system. 

3.4. The deductive nature of the relation ===>. 

Theorem. The formula a ===> is verified if and only of the formula a*b=a 
is veri f~ ed. 

Proof. If a===> b is verified, then a*a ===> b•a (from C2) ; from Cll 
we have a===> a*a then a===> b*a (transitivity).Besides a*b ===>a (from Cl) 
it r_esults that a*b=a. Reciprocally if a*b=a then a ===> a*b (definition of =) 
since a*b ===> b from Cl, then by transitivity a ===> b. 

We immedi'ately infer the equality a+b=b from the refation a*b=a 
(from Cl3) , and reciprocally. 

This theorem says that if the formula a ===> b is verified then the 
description a conveys a more "specific" information than the description b does. 
The relation ==;>. is inferential and always turns an information into a more 
general one ;_it is an inferential operation of deductive type. From this we can 
show that the formula fJ. · ===> a is always true ~a e ~ ; the empty description 
A can be interpreted as the always false description, i.e. A cannot characterise 
any individual. Finally this theorem allows us to show that every described 
descriptive term generated from n undescribed descriptive terms is more specific 
than the addition of these n undescribed descriptive terms taken separately. 
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Example : 

Consider the following system of rewriting rules 

(S) {U ---> A (rule of decomposition) . 
ISA(COLOR,$(x,ISA(SHADE,y)))--- ISA(SHADE,y) 

From C4 and the previous theorem we can prove 

ISA( COLOR,$(BLUE, ISA( SHADE ,LIGHT)) )===:>.ISA( COLOR,BLUE) * ISA(SHADE ,LIGHT) 

But we cannot prove the symetrical relation : 

ISA(COLOR,BLUE)*ISA(SHADE,LIGHT)===>ISA(COLOR,$(BLUE,ISA(SHADE,LIGHT))) 

4.0. SEMANTIC CHARACTERISATION OF Sll.: 

Defi ni ti on. We ca 11 interpretation of the forma 1 system S ll =fQ..ll,liT,===>} 
the structure J(, ={ D ,-(.'} whose elements D and ~ respectively 
represent a set and a function to be defined. 

4.1. Definition of D. 

Dis a non empty set called the interpretation range of Sll. The set D 
is the union of two sets Dr and De : the elements of D1 correspond to symbols 
of individuals belonging to the set~, and the elements of De correspond to 
symbols of concepts. 
These two sets have the two following properties : Dec SPcD1) (g((Dr) denotes 
the power set of D1) because every concept may be interpreted as a set of 
individuals ; and Dec D1 because every concept may be interpreted as an indi­
vidual. 

4.2. Oeftriitiori of ~Jt .. 

~ is a correspondance function .which associates to each component 
of Sll its interpretation in the range D. 

(1) Interpretation of individuals 
Each individual xis associated with its interpretation, noted~(x), 

belonging to the set Dr. 

(2) Interpretation of concepts 
The interpretation of any concept A, regarded as a set of individuals, 

is defined as follows : 
);(AJeDcC tf( DI) 

(3) Interpretation of information without extension 
Everv feature t reoresentinq an information without extension (see § 2.1.) 
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is interpreted as the set of the interpretations of the individuals characterised 
by this feature. So every information without extension t is interpreted as 
a part of the set Dr : 

As every feature is either an information without extension, or a concept; 
or an individual (see§ 2.1.), then the set of features is interpreted by the 
set T such that : 

T = DrV g:>(D1) 

(4) Interpretation of the functional symbol $ (see § 2.1.) 
When the local description is represented by the empty description A, the 

functional symbol $ is interpreted as the identity function 

..... ~($(t,A) )= ~(t) 

When the local description is not represented by the empty description A, the 
features locally described can only be either an information without extension 
or a concept (see § 2.1.). Nevertheless the interpretation of the functional 
term $(t,opn(C,tL)) remains the same whatever the type of the feature t because 
it is always interpreted as a set of individuals (see§ 4.2., (2) and (3)~ 

We define the interpretation of the descriptive. term opn(C,jV as 
the set of interpretations of the individuals characterised by the descriptive 
term. 
In other words, the interpretation of any couple <class,operator> of the form 
<C,opn> introduces a mapping of Tn into 'Y(D1) : 

_.,g(<C,opn>) Tn ----------> PcD1) 

with .h'(<C,opn:;-) (...C(~))e.<f(D 1 ) 
Hence the functional term $(t,opn(C,~)) is interpreted as the subset of tbe 
interpretations of the individuals belong to the set ~(t), characterised by 
the descriptive term opn(C,1;i.). 
More precisely, the functional symbol $ is interpreted as the operation of 
intersection : 

..,.C($(t,opn(C, t_e,)) )=,C(t)A,C( <C,opn>) (.4 (~)) 

Note that if,e(t) is always an element belonging to De when tis a concept, 
this is no longer true in the general case for~($(t,opn(C,~))). In other 
words,,G($(t,opn(C,td))) is a "homogenous" set of individuals in that it is ~:;; 

/" 7 
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included in the conceptt(t) ; but this set does not form a proper concept 
explicitly represented by a symbol in ARCHES. Note that the interpretation 
of the functional symbol $ does not introduce the notion of evolution. In 
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other words, the 1 oca 1 descriptions a 11 owing the characterisation of features 
do not evol~e independently of the main descriptions in which they play a role. 
It is the elements of description characterising the individuals which globally 
evolve (see (5) and (6) above), and this is consistent with the syntactic 
definition of the connectors o and • (see§ 3.). 

(5) Interpretation of the descriptive terms which form the base ~ of ~ 
(see§ 2.2.). 
The enumerable set ~ of descriptions is mainly built from the enumerable 

set -C of descriptive terms. Every element of de is of the form 
opn(C,~(t1 , ... ,ti'''>tn)) in which opn is an n-ary operator, C a class and 
~~ 1~i'n ti is a described or undescribed feature (see§ 2.1.). We define the 
interpretation of the elements belonging to ~ in respect to the modalities 
of evolution of individuals. 

The modalities of evolution of individuals are determined from the 
definition of a set n isomorphic to N. Every element of n is called a state. 
The states indicate the different transformations which ~~Y occur on the des­
criptions characterising the individuals.With each state/~x~~~sses the descrip­
tive situation of the individuals at a given moment, we associate an integer. 
In general, a state may generate new states which themselves evolve and so on. 
In our model of interpretation, we suppose that evolution is a determinist 
process because n is isomorphic to N (see § 3.3. : condition· C16) ; by this 
we mean that each possible state can evolve towards one and only one following 
state. So, from an initial state E

0 
the interpretations of the descriptions 

characterising the individuals in the state E0 (see also (6)) evolve in such 
a way that the transformations they undergo generate a linear sequence of 
states E1, E2, ... En•··· organised by the structure~, organisation similar 
to the one defined by Kripke for modal logic [14]. 

The interpretation of a descriptive term belonging to~ is defined 
as the set of interpretations of individuals characterised by this descriptive 
term. ; and theseinterpretations take_ account of the evolution of the indi­
viduals which will be expressed by means of the set N in accordance with the 
definition of n. 
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In other words the interpretation of any couple <class,operator> 
of the form <C,opn> maps Tn into (N----> ~(D1 )) : 

..-G'( <C ,opn>) : Tn-------->(N---------> <f(D1)) 

with ,.g(opn(C,# (tl' .. ,tn)))(i) = 

/~( <C,opn>) ~(t1 ), ..• ,.g( tn)) ( i )e: <JlD I) 

The ith state is formed by the union of sets of the form 
A?(opn(C,# (tl'"' ,tn)))(i) for all interpretations of couples <class,operator>. 

In particular if we have,g(opn(C,# (t1, .. ,tn)))(i)=~ in the interpretation 
of the couple <C,opn> then there is no individual characterised by the des­
criptive term opn(C,# (t1, .. ,tn)) in the state i. 

(6) Interpretation of the descriptions (see§ 2.2.). 
Every interpretation a is interpreted as the set of the interpretations 

of·the.individuals characterised by a :more precisely, it is interpreted as 
a mapping of N into lf(D ) so-as to take account of the evolution of individuals 

I @ 
~ --------------->{N----~--------> ~(D1 )) 

with -G{a){i)e.c:?(D1) 

_,g{a){i) determines the set of interpretations of individua~·characterised by 
the description a in the state i. 
We denote by/go· the mapping which defines the interpretation of descriptions 
in the initial state E

0 
: 

The formation rules of the descriptions from the connector *• +,..,, o and • 
ar:1d the definition of~ contribute to the definition by iteration of the 
correspondence function ,C through the following rules (see § 3.2. and 3.3.) 

,~(a•b){n) = Ai'(a)(n)n..-e(b)(n) 
2 £( a+b )( n) = .-G (a)( n )IJ -€(b )( n) 

3 4'{-.a)(n) = [e(a)(n) ( [: complement in D1) 

4 -G(oa){n) = .{(a)(n+1) 

5 -€(•'a){n) = C --~{a){n+p} 
p=o 

6 _,g (A){n) = ~ 
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The first three rules correspond to the classical and intuitive interpretation 
of the connectors *, + and ..., . 
Rules 4 and5 determine the semantics of the evolution of descriptions : the 
interpretation of the connector o (rule 4) shows that this latter expresses the 
evolution between two consecutive states Ei and Ei+1 ; the interpretation of 
the connector & (rule 5) expresses the evolution between two successive but 
not necessarily consecutive states Ei and Ej(j~i). From rule 5 we may also 
deduce tha~~(eea)(n)~e(ea)(n), which proves the transitivity of the connector 
&_. Finally, we may ·remark that unlike the connector o, the connector s assures 
that the present is a part of the future (because j~i). 
In an other way rule 6 shows that, whatever th~ state Ei' there is no indivi­
dual x characterised by the empty description (see§ 3.4.). 

The connector & must be introduced in order to derive de-scri'pti ons 
in which the sequence of states is not explicit (the aim is to look for the 
existence of at least one state in which an individual x has a given group of 
properties ; this connector is similar to the existential quantifier in classi-­
cal logic). 

5.0. VALIDITY OF THE RELATION OF DEDUCTION===> UNDER ANY INTERPRETATION~. 

Definition 1 : Given two descriptions a and b of !J., the formula- a ===> b is 
defined to be valid if for every interpr~tation Jt and for all 
~.e(al·(i) is included in e(b)(i) : 

A(a)( i )c.C(b) (i) 

Definition 2 : The deduction relation ===> is valid if all the component 
formulas are valid. 

Theorem . The deduction relation ===> is valid. 

Proof. To prove the validity of===>, it is necessary to prove the validity 
of every condition satisfying thi:i> relation. 

The validity of conditions ca to C4 and C9 to Cl5 which determine the relations 
between the connectors *• + and..,,and the relation===>, is established imme­
diately because the quotient set !J./= is a distributive and complemented lattice 
(see § 3.3.). 
Let us prove the validity of conditions CS to CB and Cl5 to C21 (see § 3.2. and 
3.3.) : 
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00 

Proof of C5 :-{?(-&a)(i)=U~(a)(i+p) from rule 5; 
p=o 

hence~(a)(i)t:-G'(.-a)(i), which proves the validity of the formula a===>!Jia. 
00 

Proof of C6 : £(.a)(i )= v.e(a)(i+p) ; or 
p=o 

,..G ( oa )( i ) = ,C( oa )(\i + 1), which proves the formu 1 a a===>ma. 

Proof of C7 : simultaneously we have 
00 00 

,g(~t a)(i)= u,e(oa)(i+p)= v,~(a)(i+l+p) 
p=o p=o 

and 
..(;(oe-a)(i )=b(~a)(i+1 )= v,e(a)( i+1+p). 

p=o 

consequently the formula of.a===>,oa is verified. 

Proof of C8 : we have simultaneously : 
00 

/b($ (a+b)) ( i )= V t(a+b) (i+p), 
p=o 

and 
A~ (ea+$b) ( i )=fl(&a)(i )U C(~b) (i )= 

00 00 

V [.C(a) (i+p)V-~(b) (i+p)]= V~(a+b)(i+p). 
p=o · p=o 

consequently the;''formul a ~t( a+b )===>tta-te b is verified. 

Proof of Cl6 : to prove the validity of the formula ~a=,oa it is necessary 
to prove that Vi -G'hoa) ( i )=.-G'(o ,a) (i). 
From rule 4 we have,g(o-,a)(i)=e("..,a)(i+l); thus 

.£(-,a)(i+1)= [..e(a)(i+1) (rule 3). 

Consequently.t(o, a)(i )= [1(oa)(i) rule .4, 

whence : .g( o.., a) ( i )= [ ~(-, oa) (i) or 

.... g(o-, a) (i )~(-, oa) (i). 

Proof of Cl7.~(o(a*b)(i)=1:(a*b)(i+1) rule 4 ; 
whence A~'(o(a~<b)(i)=~a)(i+1)C'I,g(b)(i+l) rule 1.· 

Consequently ,e( o(a*b) ( i )=C( oa) (i) (\ -b(ob) ( i), so ,C(o(a*b)) ( i }=1C{oa•ob) ( i) 

Proof of Cl8. Obvious 

Proof of Cl9. Obvious because Vi,C(fl)(i)=~. 
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Proof of C20 and of C21. Obvious from definition 1 and rules 4 and 5. 
Consequently all the conditions satisfied by the relation ===> are valid. 
From definition 2 we can deduce that the relation ===> is valid. 

6.0. METHOD OF RESOLUTION FOR THE FORMULA H===>C. 

6.1. Some propositions. 

888 

From conditions C5 and C6 and from the transitivity of the relation 
===> we easily establish the three following propositions: 

J:~: :::::a l ,,.., a ===>sa 

These propositions show that the complex operator "•••" may be interpreted 
as an universal quantification in the framework of time expression (analogous 
to interpretation with 3 and 'V in classical logic : ., '3.,:: \1) ; thus we 
may express the permanence of descriptions whatever the state of knowledge : 
if 3iEN such that xe:~(.,s-u)(i) then Vj xe:C(a)(j) and conversely. 
From the axiomatisation of the relation ===> we can also establish the three 
propositions : 

jo(a+b) = oa+ob 
e(a+b) = ea+eb 
e( a*b) ===l> ~a*lilb 

The converse proposition of the last line is not verified : this 
is easy to prove from the semantic inte~pretation of the formula 
$a*ab ===> e(a*b) (see§ 4.2 .• (6)). So, in order to represent the description 
in a normal form expressed as an addition of disjonctions,we make the hypothe­
sis that descriptions of the type ~t(a*b) and •~(a+b) are not formulas of the 
formal system s~. 
Finally we proved, provided that the induction hypothesis is verified, six 
propositions expressing the semantic relations between the connectors &~ and o 
in any state n : 
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j ~nsl ontJa ===> ~ta 

~nE:N on a ===> ~t·a 

lineN on~a ===> ooa 

l ~n.:.N ~ona ===> t·a 

~neN i&•a ===> o"a 

~ne:N .,~,a ===> 111:ona 

6.2. Decision procedure for the relation ===>. 

We have elaborated a decision procedure in order to solve the follo­
wing problem : given a couple of descriptions (H,C), determine if the relation 
H===>C is verified. Obviously, this problem is of prime importance in order 
to demonstrate theorems of the ARCHES system (see§ 1.). The definition of 
this procedure based on the formal properties of the relation ===>, uses the 
methodology of problem solving by decomposition and construction of the corres· 
ponding AND/OR graphs. More precisely, this procedure builds up two AND/OR trees 
JtH and ~C associated with the hypothesis H and the ·conclusion C, the modalities 
of construction being determined from derivation schemes of the description 
and of their properties. Then, the procedure builds up the AND/OR graph ~R 
by "arpending" to each ter;ninal of '1:-H' the tree t'c without its toot and tries 
to validate the relation H===>C by searching for at least one valid AND sub-tree 
of k"- through the utilisation of the algorithm of decidability for the rela­
tion --->* (see§ 3.1.). 

7.0. CONCLUSION. 

The conception.of the formal systemS~, whose logical properties have 
been systematically studied, appears as a methodological and theoretical con­
tribution to the study of evolution in knowledge. We essentially focused on 
the representation and treatment of "future" by means of connectors whose 
semantic characterisation shows that data evolution is deterministic, i.e. the 
transformations they undergo generate a linear sequence of successive states 
organised in accordance with the model of interpretation of S~. 

This formal system is'one of the component modules of the ARCHES 
system, symbolic system of representation and treatment of knowledge whose 
utilisation in domains of empirical knowledge such as the human sciences~ is 
potentially of great importance. 
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