
A Distributed System Dynamics-Based Framework for Modelling
Virtual Organisations

Bryan Conneely, Jim Duggan and Gerard J. Lyons

National University of Ireland, Galway

Enterprise Computing Research Group,
Department of Information Technology,
National University of Ireland, Galway,
University Road, Galway, IRELAND

Phone: +353-91-750582

Fax: +353-91-750501
 bryan.conneely@nuigalway.ie

jim.duggan@nuigalway.ie
gerard.lyons@nuigalway.ie

Abstract
���������	
����	�����
�������
������	����
�	�����������������������
������
��	������	�����	��� �
�����

������
���
��� �������
�����������������
����������	������������ ���	�� ���
��������� �
�
��	��������	��
����	���������
�	��
������
����	�����
���
������
�	��� �
����������������������������������	�����������
�����
�� ����
� ����	���� �
�
����� � �	�� ��
����	��������	���
���
������������� ���
� ������������������
���	� �����
��� ��� �����
����
����� ���		�	�� �
���������� � ��
�� �
���� �����
�� ����
����� ������ �������
� ����	� ���� ����� ���
� � ����!�� "��� ���� ��� �����
����

�� ��� ��� ����
���� ���	���
�	�� ���������	��� �	�
����
�������
������	�� �� #� $� �	�� �%&"� �	� ��
��
���
� �� ��� �
������ �� ����� �	�� ����!� ��	��
�	���
���
����
��������
���� �
���� ��
��
�	������
�������
�����
��
���	�����
������
��	������	��"����
�����������
�����
����������������	������
����������� �����	�� 	� ���
�����!��"��������
��
���	���������
��
��	��
�����
����
��
����������
������������

����
��
�������������� 	���	������
��� �
��������

����������

1. Introduction
This paper describes ongoing research into the application of distributed computing technologies
to system dynamics, with particular emphasis on the development of collaborative modelling and
gaming environments to support actors in virtual organisations. It has evolved from initial
research (Duggan 2002) based on a client/server architecture, to a proposed system that
embraces: (1) emerging data exchange standards such the eXtendible Markup Language (XML)
and (2) component and service based architectures such as .NET. These new technologies have
also shifted the design focus of our research effort. Whereas previously, the design philosophy
was to build a comprehensive environment, our thinking has now taken a more “componentised”
perspective. Therefore we do not intend to “re-invent the wheel” by building detailed equation
solving systems, but rather provide an enabling framework where proven systems can “plug-in”
to our distributed framework, and therefore support collaborative modelling across
organisational boundaries.

2. Collaborative Gaming and Distributed Computing
From a technological viewpoint, a collaborative gaming environment is a distributed and
complex environment, where a number of core features have to be supported by a robust and
fault-tolerant framework, namely:

• To allow input from a number of remote users where one input from every user
represents a set of simulation parameters.

• To accurately progress the simulation with each new set of new inputs.
• To synchronise model output with adequate information to allow users to accurately

formulate their next input.
• To maintain state across a number of different simulations.

In this section, we evaluate existing technologies and architectures that provide support for such
an environment.

Client-Server
The client server model is the most mature and commonplace distributed model. The server is a
process that implements a specific service and a client is a process that requests the service from
the server. A server can typically provide any computing task that is common to many clients,
who in turn use the service, e.g. a web server that responds to requests from many client
browsers. Communication between the client and the server can be implemented by a number of
protocols. With respect to a collaborative framework, where clients are simultaneously accessing
one resource, there have to be measures in place to ensure that synchronisation and model
validity are maintained.

Figure 1. Client-Server Architecture

Figure 1. Peer-to-Peer Architecture

Peer-to-peer
A peer is a process that both listens and makes requests and as the name suggests, all peers are
equal. Each node acts as a client and a server (O'Reilly 2001). In a peer-to-peer solution, all of
the users would have a local private copy of the shared resource, and using a distributed event
system, would update other collaborators’ copies when changes are made locally. An
implementation of a peer-to-peer distributive model is the most natural for a collaborative
environment. (Berg 1999) describes “the inherently ad hoc nature of peer-to-peer technology
makes it a good fit for user-level collaborative applications”. The paper also mentions several
technical challenges that make such implementations difficult, such as the location of other peers
on the network, fault tolerance, access rights and security for the peers.

Some algorithms for peer locating are described in (Milojicic et al. 2002). The Flooded Request
Model is based on peers broadcasting all over the Internet for other peers. This has limitations as
other peers may be inside firewalls. The Central Directory Model uses a server to hold location
and other information on all the peers, similar to MSN Messenger (Microsoft 2002). In a hybrid
system (Milojicic et al. 2002) like MSN, the peer consults the server only when loading, and
communicates directly to the other peers thereafter. The server can however hold information to
meet the other technical challenges, such as access rights and peer security.

In the traditional peer-to-peer model, peers append changes to a single resource; however, the
gaming nature of a collaborative environment sees users synchronically competing with each
other by appending changes to a single resource. It is not suitable to have several copies of the
model because inconsistencies may arise in the game state amongst different version of the
model. These inconsistencies arise due to distributed synchronisation, real-time constraints and
network performances, and because of these limitations, the client-server approach where users
connect to a server is most suitable for our proposed framework.
Architecture
Our proposed collaborative framework is far too complex to be modelled by a client-server
model alone, and, because of this, the server must have an appropriate architecture to
accommodate its range of functions. It is to be implemented using a service-orientated
architecture (SOA). An SOA is “a way of designing a software system to provide services to
either end-user applications or other services through published and discoverable interfaces”
(Brown et al. 2002). The published service operates as an entry point for the system. Our service
architecture is component based. A component (FEA-PMO and SAWG 2002; McInnis 1999) is
the implementation of a business function that is exposed through a deployed interface. A
Component Based Architecture uses a suite of components, that call each other to provide an
end-to-end solution. It offers developers the potential to assemble applications rapidly. Figure 3
shows how these technologies are used together.

 Figure 2. Service-oriented and component-based architectures

An example of a service-orientated, component-based development environment is Microsoft’s
.NET (Microsoft 2002) platform.

Microsoft .NET
Microsoft’s .NET (Microsoft 2002) platform was introduced as “an emerging platform used to
define, build, deploy and execute XML Web Services, components, applications and business
solutions. It provides a standard based, multi-language environment to integrate ‘today’s’
existing applications with ‘tomorrows’ next generation solution and business applications”
(FEA-PMO and SAWG 2002). Some of its basic design objectives (Microsoft 2003) include full
compliance with W3C standards, extensibility and a component-based architecture. With these
design goals in mind, the .NET platform makes the ideal choice for the rapid development of
distributed, component and service orientated, data-centric applications. And despite the fact that
the .NET platform is an emerging technology and relies on emerging standards, it has large
community of skilled developers, it is heavily supported, it integrates seamlessly into the
Windows (Microsoft 2000) environment and is the chosen platform for the collaborative
simulation environment.

XML
XML (W3C 1998) is a mark-up language for documents containing structured information. It is
a plain-text representation of data and is an open standard being used by applications to store and
transmit data. XML is a natural object representation and it is easily distributable. It is the
technology behind SOAP (W3C 2000), which is a standard for data interchange. SOAP is an
XML syntax for exchanging messages and is both language and platform independent, and
because SOAP typically transferred over HTTP, it is also firewall friendly. SOAP is the enabling
technology for Web Services.

Web Services
Web Services are becoming the new official standards for application integration. The reason for
its popularity is that it is made up of several industry-accepted standards, namely SOAP, WSDL
(Web Services Description Language) and UDDI (Universal, Description, Discovery and
Integration. WSDL is a format for describing network services as a set of endpoints and the
nature of the message passed between them, either as a document transfer or an RPC call. It
describes the Web Services interface as IDL describes a CORBA (OMG) interface. WSDL can
be automatically generated with development tools and SOAP toolkits.

UDDI is a standard for publishing information about Web Services in a global registry. Queries
can be made to a UDDI registry for a company or service, which will provide sufficient
information to locate, dynamically bind to and consume the Web Service. Web Services is a core
feature of Microsoft’s new .NET framework. The use of web-services to create complex or
secure applications has been a matter for concern but Web Service Enhancements (Microsoft
2003) offers a means to extend basic web services functionality. Using WSE, security, routing
and attachment handling are integrated, making Web Services a more suitable choice for
document passing and RPC.

In summary, our view is that this emerging service-based component architecture can be used to
extend the capabilities of system dynamics tools and modelling environments. Our choice of
Microsoft .NET is also informed by the ease of integration with existing desktop applications
such as spreadsheets, databases and word processing, as we would view our framework as being

co-dependent on these other forms of technology. Before introducing our system, we provide an
overview of the state of the art in distributed and component approaches to system dynamics.

3. Current Distributed and Component Approaches for System Dynamics
Here, we examine distributed and collaborative system dynamics applications. Simulation is
traditionally a stand-alone, centralised task but emergence of the Internet has offered vendors a
new means to execute models. Netsim and SableNet models are distributed using the Internet.
Sable and SableNet introduce the concept of multiple user interaction with system dynamic
models in both centralised and distributed environments respectively. Molecules highlight the
idea of substructures existing within models; substructures that can be assembled together, like
components, to build larger structures that can be further assembled to create models.

NetSim Creator
NetSim Creator (HPS 2002) enables you to transform a STELLA or ithink model into a web-
based simulation and provides the server components needed to distribute the simulation using a
web server.
When using NetSim Creator to publish a model on the Internet, the model must be in either a
STELLA or ithink model format. Along with the publication of interactive models, Creator also
publishes the websites server framework (i.e. several server pages, a navigation structure and
input and output controls). So when deploying a model on the Internet, Creator interprets the
model file and will generate the framework of pages required. It is up to the developer to add
extra content to the website. When the model is run on the Internet, a component that sits on the
web-server executes the model and generates numerical output. NetSim Creator’s focus is to
enable a user to run a simulation remotely and enabling the user to interact with the model to run
scenarios. However, every user connects to a new instance of the model. There is no
collaboration.

Saple
Sable (Ventana 2001), the Vensim Application Builder, allows you to design and create
graphical user interfaces for Vensim models. Gaming is an interesting feature of Vensim and
Sable as it enables a user to interact with simulations by allowing them make assumptions
throughout the run of the game. These assumptions directly manipulate the state of the model
and affect the output giving the user power to control the ultimate outcome of the game. A user
should be able to control the simulation to maximise their benefit in the long run. Saple is a
standalone technology. Vensims SapleNet technology is its distributive counterpart.

SapleNet
SableNet (Ventana 2002) enables Vensim developers to publish a model on the Internet. Several
participants can simultaneously interact with the model. When a model is published to the
Internet, the model is loaded into a component that is controlled via the Sable interface, which is
distributed to the client computers and viewed through a web browser. Users can view/input
assumptions, run, interact (game) and evaluate model outcomes.

Vensim Molecules
Molecules (Ventana 2000) can be regarded as the building blocks of a larger system dynamics
model. They are made of primitive stocks, flows and auxiliary elements and are, in turn, the
building blocks of complete models. Molecules and their organisation provide a framework for
presenting important and commonly used elements of model structure. This concept has strong
parallels to the component approach of our system.

4. Proposed Framework
The overall system structure and behaviour is now illustrated in figure 4 below.

Figure 3. Structure and behaviour of Collaborative Framework

The sequence of steps is:

Step 1: The user builds a model using a system dynamics application that supports the
concept of components, and this model is then converted XML format file. As of yet, support
for XML version of models is not present in the main vendors systems but it is likely that
future version will have this capability. For our initial version of the system, it is expected
that we will implement a simple model builder, but our intention is to provide seamless
integration with all System Dynamics vendor applications.

Step 2: This model component is submitted to the Server

Step 3: The server, having knowledge of all the partners in the supply chain, combines this
model (with reference to the integration points), and then loads this into memory.

Step 4: The server notifies all clients that the model is loaded.

Step 5: The clients acknowledge they are ready to run the model.

Step 6: The model is solved using a problem-solving engine (most probably provided by a
System Dynamics vendor – for the first version of the system we will use the Vensim DLL,
but because of the modular design, this will be open to other vendors also).

Step 7: The clients simultaneously interact with the model.

In order to focus the development activity, we decided to base the first version of the system on
the “beer game” scenario. In this case, we assume that each node in the virtual organisation has
the same basic stock, flow and decision rule structure, which is extended from the model

proposed by (Sterman 2000). Within this structure the standard heuristic for inventory ordering is
used (adjustment for stock + expected demand). As the basic component does not take the supply
line into account, the expected results from this model will mimic the overall beer game with
significant stock oscillations resulting from a small increase in demand.

Figure 4. A Model Component for the Beer Game

We view this common structure as a model component – similar to the molecule idea presented
earlier. This model component will be expressed using XML – an independent representation
format that is application-neutral. It will represent the set of differential equations, and also
specify “integration points” in the model, namely those variables that will link other model
components. These models must be comprehensive enough to show an accurate portrayal of the
users activity, as discussed by ((Yogesh 2000).The simulation servers parse these integration
points and this will ensure that the virtual supply chain is totally connected from end–to-end.

Design
The framework is designed using the Client-Server model where a thin client connects to the
server. The server implements a service-orientated, component-based architecture. The
framework has three high-level components and three high-level services as shown in figure 6.

Figure 5. Server Component Diagram

• SubmissionManager: This component administers the submission of models from the
different clients. When all the models are submitted and validated, all of the individual
models are assembled into a single model and prepared for a collaborative simulation.
This SubmissionManager implements the LoginSrv and SubmissionSrv interfaces.

• ModelViewer: This component is distributed to the client machine over the web. This can

be deployed in two ways:

1. The ModelViewer will be downloaded as an ActiveX object. The user will then only
have to point the web browser to the appropriate URL. The functionality is then
downloaded. The advantages of this are that there is little distribution overhead, and
that there is one central copy of the component. Any updates to the components can
be easily redistributed.

2. The alternative is to package the component as an application that is installed onto the
client machine. Although this method will allow a greater flexibility, its shortcomings
are that the user is limited to using machines that have the application installed, and
higher distribution overheads. If changes are made to the component, it is up to the
user to update the changes.

The ModelViewer component is, in essence, a proxy for the client’s portion of the model
being executed on the server,

• ModelManager: This component will reside on the server and act as a container for the
model. It will coordinate input from all the connecting clients, progress the simulation
and synchronise output. This client uses the CollaborationSrv interface to interact with
the simulation.

• LoginSrv is an interface, which allows a client to login and be authenticated.

• SubmissionSrv is an interface, which allows clients to submit their models. It can also

provide the client with information on the submission status of other clients, and
feedback when the model results have been accumulated.

• CollaborationSrv is an interface, which enables the client to interact with the simulations

(submitting inputs, starting stopping and restarting the simulation).

Presently, the distributed element of the framework is complete, and the model manager is under
construction. It is expected to have a first iteration of the system developed by July 2003.

5. Conclusions and Future Work
This paper has proposed the development of collaborative modelling and gaming environments,
based on system dynamics, to support actors in virtual organisations. The emergence of data
exchange standards, architectural styles and development platforms are broadening the
boundaries of distributive system development and enriching the environments that utilise them.
Our view is that participants from across the virtual organisation contributing to a
‘componentised’ system dynamics model. These are aggregated within a server, and the
simulation “broadcast” to all participants. Although its framework is still in an early stage of
development it has significant scope for development.

1. Horizontal Development: Enhancement of the collaborative modelling environment
framework offering a wider range of basic functions.
• Developing a model description that will support the automatic submission of current

well-known System Dynamics vendor model formats, i.e. Vensims .MDL format or
Stellas .STM format. When a participant is submitting their model, they can bypass
the step that involves converting the model into our internal XML model
representation format by selecting their model format and calling an automatic
converter. The intention is to provide seamless integration with all System Dynamics
vendor applications.

• Adding value to the end-user experience by allowing a larger range of collaborative

options during scenarios. For example, not only could the simulation be stopping and
restarted; a client could roll the simulation back up. There could also be chat or
meeting facility support.

2. Vertical Development: Applying the collaborative framework as a platform for the basis

of other functional components to be built
• Introduction of the role of a host, as described in (Werden et al. 2002) and

corresponds to the endpoints of the supply-chain. The Host can have some inputs into
a model that are outside the scope of the internal components. For example, in the
Beer Game, the Host can fluctuate demand. In respect to its business value, the Host
can represent the individual/corporation building the system to see how the models
components interact with each other.

• Provide feedback on model performance and a substitution process to the Host. This

is to allow weak components to be substituted for a more appropriate component with
hope that the change will improve the models performance.

7. References
���������	
���
���
���������
����
��������
�����
�����������
��
�
�����
�����

��
�
��

���
������
�������� !!"��' ��	��(�
��
��)
��	�������

����
��
���	��

*����	�	��+�����,��������	�����+���������(�
��
�������
����	�� !! �#	�����$���%���� !!"&��
'%���
������� !! �����������%����	
�(%��
���((�
�	���
����������
���	���(������,�	���
��-����� ��)�

*�+,)-.�)��
$��./�0 ���
����1 2 �� !! ��*����	�	��+������

����
��
��. ����	
���	��-�
����	�����	��*��
%���+��

$��������
���(�������	����	�%���/�
�������
�����
��0 33�	�� !! �#	����� !!"� !! &������������
3�
�����(,44� � � �3��(�
��
�4���
%�	��4���51 ����5/�(��51
�6�
�5'��3�5���"�(�3��

7�����������
�� �!��8 ����/��3
���
	����������9
	��
�	9

����������� !!"��*����	�	��������,����	��	��-������1 ��������	���9
���
(����������0 ���
�����

�

�����#	��������	�� !!"&������������3�
��� � � �	��.
�:�	
�4/'$�4	���:��!-�;6�5��'��%���(�3��

1 �
�
� �� !!!�*0 (�����
��������+����	�
�
3������������1 ���
��	�
�
3���7�<���!�"-!;����	�
�
3������������1 ���
��7 ������
����;�!����	�
�
3������������1 ���
��	�
�
3���,����	�. �������
�#� $��	������%&"�/
���� �
�� !!"�#	����������������3�
��

���(,44���
���	�
�
3��	
�4�������4��3�%�����(=%��>4�������4�
.
%�4	(�%���4����4	(

�����
�
���3
�?��3�����
�6�

�����(��

1 ��������	���
��
	���
�����!����	�
�
3������������1 ���
���
@�	�	��'�@�
����A�
�����
����6���B�@�
�C%6
��������
�7�����@�������/�%�
�����%

�B�	�����������

B
���
����
��D��	��
�E%�� !! ��0��
����0��
�*������	�� !! �#	�������
%���� !! &������������
3�
��� � � ��(���(�	
�4��	���(
���4 !! 48 /C. !! .;-�(�3��

0 �2 �� !! ��*) -+� �#	������%��� !! &������������3�
�����(,44� � � �
���
��4��
0 FB�������<�� !!���B���6�
������(���.�
.(����������9
�0��
����0��
1�2 �
	����	������0�� �
����

, ��
�������"�
�����������������������0 �����������
(
�����,�0 FB������G ����
	�������
������
���
�
�'�� !!!��+���	����,�	���
���(�������"��	��	���	��� ������	����
���*���������
��,�

�	2 ��� .8 ����8 ��������%	���

��
�
�����
��� �����
��	%������H��A�
��
�����������9
	��
������;����A�
��
�����������I ���
�����7����A�
��
�����������I ���
1 "��� !! ��#� $��1 "�����)�#	�������(������� !! &������������3�
�����(,44� � � �� "�
��4E�C4��
J J J �� !! ��(������) �3�
���

����0
���
���4() �05�6�6��1 "�� !!!�#	�������(������� !! &������������

3�
�����(,44� � � �� "�
��4<B4�0 �/4��
1 ����
���	
������
����
�����
����
�����	�2

�
���� !!"���(�7�' �����(
�	�
�����1 ��������	��.

9
���
(����������0 ���
�K���

� !! �#	�����$���%���� !!"&������������3�
�����(,44� � � �� �.
��
��4���(���((��	���

�4�%((������
��
�����
�4 !! .��4I �����	�
���
�.��!!.�B'.! ��(�3��

L
�������
����A�� !!!��9
3
�����

�A�����������
��9�F���33�	��0
��%((�������
�'�
���	�����	��
�	���
�
��
����
��������	�%������9
����%���0 3�<�	�

�
����

	back to the top:
	Abstracts:
	Table of Contents:

