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Abstract: A model of infectious diseases has been developed for integration within a 
larger simulation structure to assess the interdependencies of critical infrastructures. The 
model has been parameterized to model a disease outbreak in a large metropolitan area. 
The model calculates the spread of the infection and the influence of vaccination policies, 
quarantine and isolation procedures. Consequences are deaths, illnesses, and estimates 
of economic costs. Sensitivity analysis is a statistical technique to investigate how 
uncertainty in the input variables affects the model outputs and which input variables 
tend to drive variation in the outputs. Such analysis can provide critical information for 
decision makers and public health officials who may have to deal with the realities of a 
virulent infectious disease. This paper presents the results of preliminary analyses of the 
effects of inputs to the infectious disease model on the calculated consequences. 
 

Introduction  
The whole world lives under the threat of infectious diseases. The effects of virulent 
infections with high lethality rate, whether from natural causes or from explicit acts of 
war, are quite similar. Many people will die; medical and support systems will be 
stressed. People will demand protection from the threat of disease, either through 
vaccination, new drugs, or self-isolation. The desire to avoid contact, and thus infection, 
may result in people staying home from work, resulting in disruption of many services 
and substantial economic losses. Interventions to mitigate the effects of an infectious 
disease epidemic include preventative treatments such as vaccination, the use of effective 
treatment regimes, application of strategies to reduce the rate of spread of the disease, and 
the use of policies and technologies to provide early detection and rapid response to the 
presence of the disease. 
 
With the greatly expanded trade and travel, infectious diseases can spread at a fast pace 
within and across country borders, resulting in potentially significant loss of life, major 
economic crises, and political instability.  With an increasingly mobile society, infectious 
diseases can spread rapidly across state and national borders.  Health officials must be 
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prepared to recognize and respond to these new and emerging threats to public health in 
order to reduce illness and death.   Recent examples of the rapid transmission and 
consequences of newly emerging diseases include the severe acute respiratory syndrome 
(SARS) and avian influenza (H5N1 strain) in Asia.  As witnessed in Asia, infectious 
disease outbreaks could impact national critical infrastructure, cause large fatalities, and 
substantial economic damage.  While many studies have sought to estimate the impacts 
of infectious disease on total illnesses and deaths, few studies and modeling efforts have 
sought to determine the intangible costs that often surround disease spread and 
containment, such as social stigmatization, loss of worker productivity, apprehension, 
impacts to transportation, and the economic sector.  However, it can be the intangibles 
that can quickly add up and cause extreme economic and emotional harm to a region or 
country.   
 
Natural biological variation in pathogen impacts and responses such as transmission rate, 
in addition to uncertainty in disease parameters can greatly impact the outcomes of 
modeling efforts of the impacts on our Nation’s critical infrastructure.  It is important to 
then understand if the model’s pattern of behavior is strongly influenced by changes in 
the uncertain parameters.  For many diseases these uncertainties can be based on 
centuries-old data. Some examples of these uncertain parameters would include 
transmission, infectivity rate, incubation time, mortality, recovery rate, and the stage of 
the greatest infectivity.   
  
Some simple characteristics of the epidemiology of the disease may remain ambiguous at 
best, or a large range of values exist for disease parameters. At worst, a complete 
disagreement of the disease characteristics may appear in the literature.  Clearly, there 
will be uncertainties in epidemiological modeling that must be incorporated into the 
modeling effort.  Completing sensitivity analyses with a dynamics system model will 
elucidate the role of uncertainties and enable the extrapolation of the results into decision 
support systems.  

Infectious Disease Model 
In general, infectious disease models are classed [Koopman] as either compartmental or 
as network models. The former are characterized by differential equations under the 
assumption of continuous mixing of the population. Network models represent 
individuals with unique connections and habits (typically stochastically assigned). 
Compartmental models have considerable history, while network models are relatively 
recent, e.g., see Eubank, et al. The infectious disease model described here is a modified 
SEIR (Susceptible-Exposed-Infected-Recovered) model [Murray] implemented in 
Vensim Version 5.2. The model described here uses an expanded set of disease stages, 
demographic groupings, an integrated model for vaccination, quarantine and isolation, 
and demographic and stage-dependant contact rates.  As a variant on the SEIR model 
paradigm this implementation represents the populations as homogeneous and well mixed 
with exponentially distributed residence times in each stage (characterized with a 
nominal residence time) [Hethcote].  However, the use of additional stages and 
demographic groupings is designed to add additional heterogeneity where it can be useful 
in capturing key differences between sub-populations for disease spread and response.  
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Disease Stages 
The disease stage representation within a stock and flow structure is shown in Figure 1 
(the use of prefixes and color-coding for variable names in the diagram is due to 
compliance with coding standards [Thompson, et al.] defined for the parent critical 
infrastructure simulation project [Bush, et al.]).  The stages are represented in a generic 
manner so that the model can be used for a large number of infectious agents by selecting 
the input parameters appropriately.  Each stage is designed to carry some combination of 
four key characteristics, namely whether at this stage, the disease shows clinical 
symptoms (patient exhibits symptoms characteristic of the disease), is infectious (the 
disease can spread to another person due to contact or proximity) to other persons, is 
preventable by vaccine, and the characteristic residence time in the stage.  This is 
accomplished by indexing infectivity, contact rates, residence time and vaccine 
effectiveness by disease stage.  In this manner, disease parameters such as infectivity (the 
probability that a given contact will result in an infection) are a characteristic of the 
persons in a given stage of the disease.  Each stage with the right set of characteristics, in 
combination with the remaining stages, can be made to simulate a variety of diseases.  
Two stages of recovery are used to accommodate diseases whose immunity extends for a 
relatively short period. 
 
The population tracked throughout the model is divided into demographic groups that 
allow the differing behavior between age groups and other demographics to be 
represented.  In the current model six groups are used. The first five groups represent 
infants, youth, younger adults, older adults and the elderly.  The sixth group is used to 
treat the class of people who respond to a disease outbreak.  This class includes health 
care workers, emergency responders and law enforcement personnel who behave 
differently from the bulk of the population in such a crisis.  These groups are represented 
in the model using subscripted variables for the stocks representing the disease stages and 
associated auxiliary variables.  The model assumes that the duration of the outbreaks to 
be modeled is short enough that the effect of movement between the demographic groups 
is small. 

Vaccination 
The process of targeted or ring vaccination is modeled starting with the identification of 
an index case with disease-specific symptoms who identifies some fraction of the people 
with which they have had recent contact.  Each contact is queued for quarantine and/or 
vaccination.  Of the contacts identified by each index, a portion will have been infected 
and be in some stage of the disease depending on how long the contact took place prior to 
the identification of the index case.  Therefore contacts are queued out of every stage up 
to index case identification, as well as the susceptible population (for those not infected), 
in proportion to their contact rates and the time since the contact (as estimated by the 
residence time in each stage).  This is illustrated in Figure 2, which isolates a portion of 
the model for stages zero and one.  Note that the queued and vaccinated populations are 
represented with a parallel set of stages to model the fact that people continue to get sick 
while they are waiting in a queue or have been unsuccessfully vaccinated.  Since it is 
generally unknown which stage a contact is in when they are identified, many will be 
queued for vaccination and vaccinated after the point where it is useful to do so. 
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The initial design of the model represented the competing flows from each stage – for 
moving to the next stage (based on average residence time) versus being queued for 
vaccination or being vaccinated – as multiple flows out of each stock.  However this 
created some difficulties because of the very different characteristic times associated with 
moving between stages versus moving out to be queued or vaccinated.  The results 
tended to be unpredictable and result in an artificial slowing of progress of an outbreak 
because of the competing stage flows across and vaccination flows down.  A more 
reliable method of splitting the movement of people was implemented by dividing the 
flows as they enter each stock according to the probability that people will flow out of the 
stock for queuing or vaccination before their residence time in the stage expires. 
 
Mass vaccination is treated separately because of the differing dynamics with mass 
vaccination. For example, people identified for mass vaccinated are generally not 
quarantined unless they become symptomatic in contrast to targeted vaccination where 
there is greater reason to believe that they are at risk. The stock and auxiliary variables 
for this mass vaccinated population begin with the word ‘Mass’ (such as ‘Mass 
Susceptible’) as illustrated at the bottom of Figure 2.   

Contact Rates 
Contact rates are one of the most important drivers in modeling the spread of an 
infectious disease, analogous to the use of a reproduction number in many infection 
models.  The use of contact rate was chosen because it can be more directly related to the 
differing behavior amongst age groups and the choices made with regard to quarantine 
and isolation. 
 
The contact rate model is shown in Figure 3.  It is divided into two sections, one 
concerned with the behavior of infected individuals and the other with the rest of the 
population.  The quarantine behavior of the bulk of the population is estimated based on 
the population targeted for vaccination typically quarantined as a precaution and an 
estimate of the tendency of persons to self-quarantine based on government alerts and the 
severity of the disease.  Quarantine behavior can have an important effect on the spread 
of the disease but also affects business operations and the demand for business and 
infrastructure services. 
 
The contact behavior for infected persons is treated separately for individuals not queued 
for vaccination, those queued for targeted vaccination, undergoing a targeted vaccination 
and those undergoing mass vaccination.  Contact behavior is also stage dependent for 
these individuals since they may be symptomatic and reduce their interactions with 
others.  Contact rate is also allowed to vary with demographic group using an age group 
index. 
 
Transmission of infectious diseases depends on the two factors that may differ in each 
stage of the disease, the contact rate within each age group and the relative infectiousness 
of the disease.  Differences in infectivity between stages may also be disagreed upon.  
Halloran et al. (2002) and Kaplan et al. (2002) made the assumption that prodromal 
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period in a disease such as smallpox is highly infectious whereas Legrand et al. (2003) do 
not consider individuals in the prodromal stage to be infectious.   This infectivity rate 
difference in stage could have potentially large consequences in model output.  This 
disease model was designed to capture each aspect of transmission within each stage 
using the contact rate model.    
 
Depending on when detection of a specific disease outbreak occurs, treatment or 
vaccination may be too late for substantial control of the disease and resulting mortality.  
Therefore, each stage is modeled to include the entire progression of the disease which 
would be inevitable for many of the initial cases.   Recovery can occur at all stages of the 
disease if treatment or vaccination is initiated.   
 

Other Features 
The infection model is designed for integration into a much larger model set that includes 
a population model and models of vaccination production, detectors, government 
behavior, economics and key infrastructures including public health, emergency services, 
energy, water, food and telecommunications.  The features of this larger simulation 
project, called CIP/DSS (Critical Infrastructure Protection Decision Support System), is 
discussed elsewhere [Bush].  However the model can also be run in isolation although 
some of the dynamics associated with interdependencies with these other sectors are 
absent in that case. 
 
Government response in the model in the form of quarantine and vaccination programs is 
initiated after the discovery of an outbreak either through direct detection of the outbreak 
or recognition of the first cases in the public health system.  Detection can take place 
relatively early in the outbreak while recognition by the public health system awaits the 
first infected persons reaching the initial symptomatic stages of the disease with an 
additional delay for confirmation and government actions.  Government action can select 
from several response options including targeted vaccination, mass vaccination and 
combinations of these.  Vaccination can be biased toward particular sub-populations to 
model priority vaccinations of children or health care personnel.  Allowances for refusing 
vaccination and separating segments of the population who cannot tolerate vaccination 
out of the queues can also be made. 
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Figure 1: Disease Stage Structure of the Infection Model
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Figure 2: Queuing and Vaccination in the Infection Model.
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Figure 3: Contact Rate Model 
 
The model also responds to investments in better hospital care, isolation and anti-viral 
treatments, which can affect fatality and recovery rates in the population.  The model 
keeps track of the state of the population in terms of immunity, health status, availability 
(sick and/or in quarantine) and fatalities which is passed to the population infrastructure 
models whose effects can then feed back into the infection model.  Examples of this 
behavior include sickness and fatalities leading to reductions in health care staff, which in 
turn may raise fatality rates in the infection model due to poorer and less timely care. 

 9 



 
The application of this infection model and the larger CIP/DSS simulation package is 
limited to those where the treatment of the aggregate behavior of the system is adequate.  
The situation is analogous to the difference between modeling disease spread using an 
SEIR type model as we do here versus an agent-based model where the behavior of 
individuals is modeled.  Some heterogeneity can be introduced by indexing on 
demographics and other important characteristics but those sub-groups are still treated in 
an aggregate fashion.   

Confidence in Model  
Every simulation model should undergo a process of assessing whether the model 
provides results in which the users have confidence, at least to the level at which the 
model is intended for use. Terms such as validation and accreditation are often used for 
this process, although validation of a simulation model is problematical [Oreskes et al.]. 
For the purposes of this paper, the term confidence building will be used since models 
cannot be proved to be valid, only disproved. To build confidence in this model, the 
results have been assessed against the published results of other models for selected 
diseases. This assessment is still in process, but early results show that this model closely 
reproduces the results of other SEIR models for the limited number of diseases examined 
thus far. More work is needed to better establish confidence in this model. 

Sensitivity Analysis 
Historical cases of many epidemics display considerable variations that arise from a 
multitude of sources including the number of initially infected, the rate of spread of the 
disease, the lethality of the infection, and the total number of fatalities. As a result, 
depending on the magnitude of these variations, the behavior of an epidemic will vary 
from one realization to another. While these realizations are individually deterministic, 
the overall collective effect is to make the characteristics appear in a range of values. 
Capturing the uncertainty over this data is essentially the specification of probability 
distributions for the parameters. This parametric uncertainty is a characterization not only 
of system parameters but also, to some extent, the external environment. This 
characterization involves the development of methods to model both epistemic 
(irreducible uncertainty resulting from inherent variability of a quantity) and aleatoric  
(theoretically reducible uncertainty resulting from lack of knowledge about a quantity) 
type. The next step is to attribute variance in the outputs to sources of variance in the 
inputs. 

Sensitivity analysis is a statistical technique that can be applied to mathematical or 
computational models to provide insight on how uncertainty in the input variables affect 
the model outputs and which input variables tend to drive variation in the outputs. For 
models such as this infectious disease model, where the output is intended to inform 
decision-makers, uncertainty in the output can be disconcerting, as a single value is not 
given. However, the benefit is that a range of output values reveals a suite of possible 
model outcomes. It is sometimes of value to put in place robust policies that avoid the 
worst that can happen, although the policies may not achieve optimal results. If 
mitigating policies and alternatives are included and parameterized within the model, 
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then sensitivity analysis can provide estimates of how responsive key output measures are 
with respect to these inputs. 
 
The term “sensitivity analysis” is variously interpreted in different technical communities 
and problem settings. Until recently, sensitivity analysis was typically considered as a 
local measure of the effect of a given input on given output, customarily obtained by 
estimating system derivatives such as: Sj = ∂Y/∂Xj, where Y is the output of interest and 
Xj an input factor. While the local approach is valuable for some problems, other  
problems, such as the analysis of risk and decision support demand a different approach. 
For these problem domains the degree of variation of the input factors is material, as one 
of the outputs being sought from the analysis is a quantitative assessment of the 
uncertainty around some best estimate value for Y, the output vector (uncertainty 
analysis). The application of Monte Carlo methods in conjunction with a variety of 
sampling strategies can achieve this. In this context, sensitivity analysis is aimed at 
establishing priorities, to determine which factor most needs better determination, and to 
identify those inputs that propagate most variance in the output. Sensitivity analysis in 
this context is often performed using techniques related to regression analysis, using the 
regression coefficient for a given factor as a measure of sensitivity. Methods of this type 
are termed global, to distinguish them from local methods, where only one point of the 
factor’s space is explored, and factors are changed one at a time. A disadvantage of 
regression based methods is that their performance is poor for non-linear models, and can 
be misleading for non-monotonic models [Saltelli, et al.].  

Steps in Sensitivity Analysis 
Sensitivity analysis is a method that can require iteration and refinement to achieve the 
desired goals of the analyst. The following steps [Saltelli, et al.], shown in Figure 4, are 
suggested to provide a working guide to the process. Not all steps must be taken and the 
analyst may find it worthwhile to embellish one or more steps.  

1. Identify simulation outputs and features based on the goals of the analysis. 
2. Decide which input factors to include in the analysis.  
3. Choose a probability distribution function for each of the input factors.  
4. Choose a sensitivity analysis method on the basis of the following: 

a. The question being asked; 
b. Number of model evaluations; 
c. Presence of correlation structure; 
d. Use of an experimental design. 

5. Generate the input sample. This has the form of N strings of input factor values on 
which the model is evaluated.  

6. Evaluate the model on the generated input sample and produce the output, which 
contains N output values in the form specified in Step 1. 

7. Analyze the model outputs and draw conclusions, possibly starting a new iteration 
of the analysis. 
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Figure 4: Steps in sensitivity analysis. 

If an experimental design is implemented resulting in N output samples, then the 
importance measure of xi is given by the estimate of the correlation ratio [McKay, 98]: 
 

η2 = Var(ŷ)/Var(y). 
 

In this case, y is the set of all outputs from the design and ŷ = E(y | xi). The larger the 
correlation ratio, the more important xi is in contributing to the variance of the outputs. 
For the results presented in this paper, an experimental design of 817 runs varying 40 
factors over five levels was used. 

Application 
 
The inputs to the infectious disease model chosen for this study are given in Table I. The 
selected levels are based on the nominal value for the parameter, as well as a low value 
and a high value.  Thus the value for level 1 is the low value; level 2 is the midpoint 
between the level 1 and the nominal value; level 3 is the nominal value; level 4 is the 
midpoint between the level 3 and the high value; and level 5 is the high value. The 
nominal, low, and high values were determined from the literature and from domain 
experts. 
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Table I: Model inputs selected for sensitivity analysis. 
 

Variable Name Level-1 Level-2 Level-3 Level-4 Level-5 Units 
Sdc: Normal Contact Rate[Upo Infant]1 3 4 5 6 7 c/day2

Sdc: Normal Contact Rate[Upo Youth] 9 12 15 18 21 c/day 
Sdc: Normal Contact Rate[Upo Young Adult] 6 7 8 9 10 c/day 
Sdc: Normal Contact Rate[Upo Old Adult] 2 4 6 8 10 c/day 
Sdc: Normal Contact Rate[Upo Elderly] 1 3 5 7 9 c/day 
Sdc: Isolation Contact Rate 0.02 0.06 0.1 0.2 0.3 c/day 
Sdc: Quarantine Contact Rate 0.1 0.3 0.5 1 1.5 c/day 
Sdc: Quarantine Effectiveness 0.5 0.7 0.9 0.95 1 dmnl2

Sdc: Self Quarantine Tendency Maximum[Upo Infant] 0.45 0.7 0.95 0.975 1 dmnl 
Sdc: Self Quarantine Tendency Maximum[Upo Youth] 0.4 0.6 0.8 0.9 1 dmnl 
Sdc: Self Quarantine Tendency Maximum[Upo Young Adult] 0.15 0.225 0.3 0.65 1 dmnl 
Sdc: Self Quarantine Tendency Maximum[Upo Old Adult] 0.2 0.3 0.4 0.7 1 dmnl 
Sdc: Self Quarantine Tendency Maximum[Upo Elderly] 0.4 0.6 0.8 0.9 1 dmnl 
Sdc: Removal From Quarantine Delay 240 372 504 672 840 hours 
Sdc: Fraction Of Symptomatic Not Isolated 0 0.1 0.2 0.35 0.5 dmnl 
Sdc: Quarantine Reaction Delay 1 4 7 14 21 days 
Sdc: Sickness Contact Factor 0.1 0.175 0.25 0.4 0.55 dmnl 
Sdp: Test Initially Infected 200 600 1000 1400 1800 person
Sdp: Unvaccinated Infectivity[Sdp Stage Two] 0.01 0.03 0.05 0.125 0.2 dmnl 
Sdp: Unvaccinated Infectivity[Sdp Stage Three] 0.05 0.13 0.21 0.28 0.35 dmnl 
Sdp: Vaccinated Infectivity[Sdp Stage Three] 0 0.025 0.05 0.125 0.2 dmnl 
Sdp: Sdp Stage Residence Time[Sdp Stage Zero] 2 2.5 3 3.5 4 days 
Sdp: Fraction Initially Immune 0.2 0.32 0.44 0.55 0.66 dmnl 
Sdp: Disease Fatality[Upo Infant] 0.2 0.27 0.34 0.39 0.44 dmnl 
Sdp: Disease Fatality[Upo Youth] 0.2 0.157 0.114 0.207 0.3 dmnl 
Sdp: Disease Fatality[Upo Young Adult] 0.2 0.145 0.09 0.195 0.3 dmnl 
Sdp: Disease Fatality[Upo Old Adult] 0.1 0.1505 0.201 0.2505 0.3 dmnl 
Sdp: Disease Fatality[Upo Elderly] 0.2 0.287 0.374 0.387 0.4 dmnl 
Upo: Initial Population 1.0e6 3.0e6 5.0 e6 7.0e6 9.0e6 person
Sdp: Fraction Vaccine Intolerant 0.08 0.14 0.2 0.26 0.32 dmnl 
Sdp: Fraction Refusing Vaccination 0 0.025 0.05 0.15 0.25 dmnl 
Gpo: Vaccination Policy 1 2 2 3 4 dmnl 
Pvr: Maximum Vaccination Rate 1000 2500 4000 5500 7000 p/hour2

Sdp: Mass Vaccination Phase In 1 2 3 5 7 days 
Sdp: Targeted Vaccination Phase In 2 3 4 6 8 days 
Sdp: Name Overlaps 0.5 0.65 0.8 0.9 1 dmnl 
Sdp: Fraction Named 0.5 0.75 1 3 5 dmnl 
Sdp: Interview Time 3 5 7 9 11 days 
Sdp: Index Fraction 0 0.125 0.25 0.375 0.5 dmnl 
Sdp: Policy Time 2 8 14 20 26 days 

 

                                                 
1 Some variables are indexed by age group. The age groups are 0-4, 5-18, 19-44, 45-64, and 65 and over. 
2 c/day is contacts per day;  dmnl is dimensionless;  p/hour is person per hour. 
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These inputs were organized according to an experiment design to support both 
uncertainty and sensitivity analysis. The design is based on a combination of two 
orthogonal arrays, one with 3 levels and the other with 2 levels that yield a design with 5 
levels for 40 factors [Moore, et al.].  The total number of distinct sets of inputs is 817. 
 
Outputs from the simulation are collected for analysis. For this experiment the outputs are 
listed in Table II. Most of the output variables are provided for diagnostic purposes. The 
primary metrics of the simulation are Sdp: Total Fatalities, Sdp: Total Cumulative 
Afflicted, and Sdp: Outbreak Duration. The first denotes the number of fatalities due to 
the disease throughout the population. The second is the total number of people who 
contract the disease, irrespective of the outcome. Third is the duration of the outbreak. 
The outbreak is defined to be over when the number of patients with the disease in the 
hospital is less than a specified threshold (say 5) and the infection rate indicates that the 
disease is dying out, or the simulation ends. The simulation is run for 365 days and the 
disease outbreak begins at day 3. 
 

Table II. Variables output from the simulation for analysis. 
 

Variable Unit 
Sdc: Alert Time minute 
Sdc: Contact Rate[Upo Age Groups] c/day 
Sdc: Mass Vaccinated Contact Rate[Upo Age Groups] c/day 
Sdc: Queued Contact Rate[Upo Age Groups] c/day 
Sdc: Total Quarantined person 
Sdc: Vaccinated Contact Rate[Upo Age Groups] c/day 
Sdp: Actual Vaccination Rate p/hour 
Sdp: Outbreak Duration days 
Sdp: Sum All Infecteds person 
Sdp: Sum All Mass Vaccinated person 
Sdp: Sum All Queued person 
Sdp: Sum All Susceptibles person 
Sdp: Sum All Vaccinated person 
Sdp: Sum Infecteds person 
Sdp: Total Cumulative Afflicted person 
Sdp: Total Early Recovered person 
Sdp: Total Fatalities person 

 

Results 
Summary results of the experimental design are shown in Figure 5 as histograms of the 
observed outputs.  The outputs of interest are the total number of people quarantined due 
to the government imposed vaccination policy (Sdp: Total Quarantined), the duration of 
the disease outbreak in days (Sdp: Outbreak Duration), the total number of people that 
are infected with the disease (Sdp: Total Cumulative Afflicted), and the number of 
fatalities (Sdp: Total Fatalities). Since the disease model generally produces exponential 
growth, a log transformation is deemed appropriate.  Figure 6 depicts the histograms of 
the logarithm of the data.  
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Figure 5: The histograms of key outputs from the infectious disease model. 

 
It should be noted that Sdp: Outbreak Duration expresses the length of time that the size 
of the exposed population is greater than a specified threshold, in this case 5. There are 
cases where this condition is not met, i.e., there are more than 5 exposed people at the 
end of the simulation run. In such cases, the outbreak duration is the number of days from 
the beginning of the outbreak to the end of the simulation. 

 
 

Figure 6: Log transforms of the key output metrics. 
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Figure 7 shows the sensitivity of the outputs to the input factors, by rank of the 
correlation value of the input. In each plot the top five variables are listed that have the 
highest correlation values. Also, each plot has a solid line near the x-axis that depicts the 
level of significance for the correlation statistic. If a correlation measure falls above the 
line then it can be considered significant at the 0.05 level. What is notable in these plots 
is that none of the input tend to be strong predictors of the outputs by themselves. For 
Sdp: Total Fatalities, the top predictor is Sdc: Quarantine Contact Rate, but its value is 
only about 0.17. This same input is also the single best predictor of Sdp: Total 
Cumulative Afflicted and Sdp: Outbreak Duration.  
 

 
Figure 7: The sensitivity of the major metrics to the model inputs. 

 
Figure 8 shows the sensitivity analysis performed on the (natural) log transformation of 
the key outputs. The monotonic log transformation has the potential to reveal more 
structure in the outputs than can be discerned in the raw data.  
 

 16 



 
Figure 8: The sensitivity of the log of major metrics to the model inputs. 

 
As can be seen by comparing Figure 7 and Figure 8, the log transform shows an 
improved relationship between Total Quarantined and Removal From Quarantine Delay. 
A slight improvement is noted between Total Cumulative Afflicted and Quarantine 
Contact Rate, and Total Fatalities and Quarantine Contact Rate. The effect on Outbreak 
Duration is to reverse the order of sensitivity to the top two inputs, thereby slightly 
raising the measured sensitivity to Unvaccinated Infectivity. Overall, however, the 
sensitivity of these model outputs is relatively low to the specified inputs. It was expected 
that contact rate and infectivity would be  
 
If one subsequently looks at how two variables at a time contribute to the variance of the 
outputs, the logical approach is to use the top correlate and then examine the other 
variables for their contribution. This is done in Figure 9. The variable log(Sdp:Total 
Fatalities) has four top correlates: Sdc: Quarantine Contact Rate, Sdp: Unvaccinated 
Infectivity[Stage 3], Sdp: Test Initially Infected, and Gpo: Vaccination Policy.  This plot 
examines the variance that can be accounted by inputs given that the variance associated 
with one of the top four correlates is already counted. In the plot for “SdpInitInfect” 
(lower left subplot of Figure 9), shows that Sdp: Initially Infected and Sdc: Quarantine 
Contact Rate together account for approximately 35% of the variance in the log of total 
fatalities. Each plot in Figure 9 has a dashed line near the x-axis that depicts the level of 
significance for the correlation statistic for the specified conditional variable, e.g., for 
Sdc: Quarantine Contact Rate for the upper left subplot. Each plot also has a heavy 
dashed line that depicts the fraction of variance accounted by the conditional variable. If 
the two lines are added, the resulting level is considered the line at which the listed inputs 
can be considered significant at (approximately) the 0.05 level. For the upper left plot, the 
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line of significance is 0.21; any of the correlates with a value greater than 0.21 would be 
considered significant. In this case, the top four correlates are significant in each subplot. 
 

 
Figure 9. The sensitivity of the log of total fatalities to two inputs. 

 
This type of analysis can compute the fraction of variance due to the top k correlates. Due 
to resource limitations only the cases where k = 1 or 2 are examined in this study. This 
analysis reveals that for this model of infectious disease, the most influential inputs are 
Sdc: Quarantine Contact Rate, Sdp: Unvaccinated Infectivity[Stage 2], Sdp: 
Unvaccinated Infectivity[Stage 3], Sdp: Test Initially Infected, and Gpo: Vaccination 
Policy with respect to estimating the total number of fatalities.  

Conclusions 
A model of infectious diseases has been developed to assess the interdependencies of 
critical infrastructures placed under stress by disease outbreaks. The model has been 
parameterized to represent a scenario where a variety of infectious agents are represented 
in a large metropolitan area while at the same time working within a much larger model 
context including simulation of each of the major infrastructures, population and 
economics.  Sensitivity analysis, a statistical technique used to identify input variables 
driving variation in the outputs, has been used to assess which inputs of this model most 
affect predicted fatalities. This method provides a quantitative assessment of the relative 
importance of model inputs. The top correlates for total fatalities include the rate of 
contact of infected persons, the probability of a contact leading to an infection, and the 
vaccination policy. Although these correlations are in the range of 0.1 – 0.2, a log 
transformation on the outputs provides modest improvement. In examining the 
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contribution of inputs two at a time, up to 35% of the variance can be accounted. The 
results of this analysis show that the sensitive inputs to the infectious disease model 
match a priori expectations – contact rates, infectivity, and treatment policy. Although 
these variables predict the key outputs rather weakly, they can in combination account for 
larger fractions of the observed output variance.   
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