
New Technologies in
Simulation Games

Kenneth L. Simons
System Dynamics Group

M.I.T., E40-294
Cambridge, MA 02139

April 1990

Advances in computer software allow modellers to design, with
relative ease, sophisticated, realistic educational tools. With these
advances, new issues arise about how to make this educational software
productive and stimulating, without limiting the freedom of the user or
creating simply a computerized workbook.

Such simulation games have great educational potential for people
who play video and home computer games, and sometimes for students in
classrooms. The games must address three information levels: (1) real
world details, (2) simulation of a model, and (3) conceptual understanding
of structure and dynamics. The systems viewpoint on the particular model
must be clearly explained; otherwise users will have much fun but learn
little. Feedback during the game teaches this systems understanding
without requiring textbook readings. Such feedback requires new modes
of "expert" computer analysis which need to be developed. Other tools
need to be developed to help in creation of simulation games and to give
the games abilities that they do not yet have, such as access to databases
of models, pictures, and text, and connections between simulation games.

Simulation Games as Stand-Alone Educational Tools

Simulation games are especially useful for situations in which
someone learns without a teacher. Simulation games generally are not
ideal for classroom education about dynamic systems. Students can learn
better and think more freely if they use discussion, chalkboards, and
modeling software such as STELLA (Richmond, Peterson, and Vescuso
1987). Modeling software forces them to build their own models. In
contrast, simulation games supply models to students. The modeling
process .P,robably engages students in thought and learning more than
simulation games do.

1047

1048 System Dynamics '90

Some particular situations in which simulation games may be
preferable to modeling software include: (1) The students do not know
how to model and to use modeling software, and do not have time to learn.
This is often true in one-day workshops. (2) The students work without
teachers, and they do not have the resources or the motivation to build
their own models. (3) A simulation game is full of details that are best
taught by playing the game, rather than model-building aided by a text
and classroom lectures.

Everyone who plays computer games for fun is a potential learner
without a teacher. People typically play games for entertainment, not for
learning, but it is logical to make these games as educational as possible
while retaining the fun and interest they elicit. Simulation games that are
sufficiently fun and flashy can address the broad market of people who
play computer games. Thus, simulation games that are made to be stand
alone educational tools have enormous educational potential.

Levels of Abstraction: from Macro to Micro

Ideally, simulation games should be designed at three levels of
abstraction, from macro to micro. (Fig. 1.) At the macro level, the user
(the learner) examines structure and dynamics of the simulated system:
(1) the key variables involved, (2) important ways in which these
variables interact, and (3) how the interactions cause the observed
dynamics. Causal loop diagrams with explanations can effectively present
structure and dynamics. Software should be able to give detailed
explanations of all variables; for example if the user clicks with the mouse
on a variable name, its explanation appears. For advanced users, the game
should have stock-and-flow diagrams and equations, with appropriate ·
explanations, and if possible it should include a copy of the model to be
used with a modeling program such as STELLA. This allows examination of
the model's assumptions and keeps it from being a "black box."

For complex models, the macro level is a crucial part of the learning
process. Without it, a simulation game is great fun, but the user learns
almost nothing. All too often participants or users say that simulation
games were great fun and, often, great educational tools, when in fact the
games have taught the participants very little about the dynamics of the
simulated systems and how to control them. This is fine if the purpose of a
game is to excite people or to make them have fun, but it does not achieve
educational potential.

System Dynamics '90

MACRO

MICRO

Concepts of the
system's structure

! T
Simulation experience

! T
Real-world details

(structure)

(behavior)

(events &
disparate racts)

Fig. 1. Levels in simulation game software: macro to micro.

1049

In the middle level between macro and micro is the simulation
experience. This is the essence of a simulation game. It is where events
play themselves out according to the model that underlies the simulation.
If the model is of urban development, businesses and slums spring up;
unemployment figures change; the number of homeless increases or
d.ecreases; and the city's attractiveness to outsiders fluctuates. Many
simulation games are now based only on simulation, with no macro-level
understanding and few micro-level details. This is especially true of
computer games intended for fun. With complex models, this will
probably leave the user without an understanding of the system.

The educational value of a simulation comes from repeated
simulation of a model. The user tries certain policies or parameters, looks
at the results, and then simulates again with different policies or

·parameters. Through this closed-loop process, the user gradually builds an
understanding of the system. The ability to simulate again and again is
crucial to simulation game software for education.

At the micro ~, computer software can provide a simulation game
with the richness needed to make the situation seem real. For example,
many people have used a model of the Kaibab deer plateau (Sterman
1979) and a STELLAStack simulation game with this model (Richmond and
Peterson, 1988). The model includes deer and predator populations, the
amount of vegetation ("food") available for deer, and policy options such as
hunting of deer and transportation of predators. One point of the model is
to devise policies that will keep the deer herd from overpopulation and
starvation. People learn with the model, but they generally do not
understand the concept of thousands of deer starving, or what a starving
deer looks like, or what it means that there is very little "food" left. This ·
experience is too far removed from most people's lives for them to
understand. A simulation game can provide them with the details they
need for this understanding, for example photos of starving deer and of
trees stripped bare, and conversations with rangers and park visitors.

lOSO System Dynamics '90

Similarly, a simulation game can provide information about what certain
parts of a model mean in practice: how hunting permits work, what kinds
of food deer eat, what it would take to get truck or airlift predators to the
Kaibab plateau, etc.

Micro-level details are a valuable part of educational software.
Explanation of these details as part of a simulation provides a rich and
powerful way to teach. For instance, in a biology class, students learn (1)
many details of organs, hormones, and chemicals, and (2) how these
separate entities lead to the dynamics of chemicals and hormones in the
body, breathing, etc. Simulation game software, if well-designed,
addresses details and dynamics.

When used properly, real details keep a simulation game interesting.
Without them, the game will likely be dry and boring, so that the user may
soon quit. It is also important not to swamp the user in a wash of detail
which removes all attention from dynamics. A game designer should ask
the key question: "Do people who use my simulation game learn to
understand and control its important dynamics?"

For the present, the main factor that controls use of micro-detail in
simulation games is how much the development process can afford. Detail
is becoming easier to include with new computer technologies, but in any
case it can be a big job. The developer of a simulation game as educational
software must make a decision as to how detailed the game will be, so that
he can finish the product given his available resources.

All three levels of abstraction can be used simultaneously, as is often
desirable. During . a simulation, the details of the micro-level will help the
game seem realistic, flashy, and interesting. Macroscopic understanding of

· the system can give the learner more chances to learn than just at the end
of a simulation, since explanations of system structure and dynamics
become tools that the learner uses to help formulate policy.

For example, during the Kaibab plateau game, there could be pictures
of the plateau and of deer and predators, mail that arrives from the Sierra
Club and from park rangers, and billing notices from consultants who
helped conduct a deer count. At the same time, the learner could
continually consult a causal loop diagram that helps her think through the
effects of her policies, and graphs of what has happened so far to confirm
the effects she expected from earlier policies.

Fun or Learning? - A Dilemma Resolved

There is a developer's dilemma between (1) a fun computer game
that teaches little and (2) boring educational software that functions like a
workbook or a textbook. A game's developer should not become trapped

lOISl

in the dilemma, but avoid it altogether. To do so, he can make software in
which the learner controls the game, but in the midst of or after each
simulation the computer explains · the dynamics and structure of what just
happened, so that the learner can generate ideas for her own
improvement. As the learner continues to play and to receive instructional
feedback from the computer, she will learn about the system in the game,
its dynamics, and the reasons for the results of her policies.

In preliminary tests of a computerized learning laboratory, Senge
discovered that businessmen very much enjoyed a simulation game of
their business, but that they learned little. Play did not yield learning. To
resolve his learning lab problem, Senge created a structured set of
discussions and exercises which participants follow. A teacher runs the
two.; to three-day seminars. While participants do spend time in which
they play with the simulation and try out their own ideas, most of their
time is spent on structured discussion and exercises. The success of this
method is under study, to see whether the participants learn about the
system represented by the model, its dynamics, and appropriate policy
decisions for those systems (Senge 1987, 1989; Kim 1989).

A teacher's structured guidance will not be available to people who
learn on their own, and a long and highly structured study plan will tum
away all but especially motivated people. For a general audience of people
who will work on their own, it is important to come up with independent
software that (1) captivates people and sustains their interest as long as
the learning takes, and (2) leads them to successfully learn. In addition, it
is desirable to (3) let the user direct her own learning. Learner-directed
learning (a) keeps people's attention via their direct involvement and (b)
helps make the software responsive to the user's needs.

To achieve these goals, a simulation game can be made to work as
follows: It may have a brief introduction, but the user takes control of the
game right away. She becomes an active participant in .the simulation and
makes decisions to try to keep the simulated system working well. The
simulation evolves throughout the game play, which may last for a minute
or for several hours. · (Long simulations have the disadvantage that they
limit the number of repeated trials for which the learner has time.) The
game gives her feedback (1) as she plays it, (2) at the end of each
simulation, or (3) both while she plays and after each simulation. This
fe~dback shows her the structure of the simulated system, and how the
structure results in its dynamics. Ideally, it addresses the specific
dynamics that the user has caused. Also ideally, this feedback exists as a
tool that the user can access at any time. !his tool to explain the system
becomes an integral part of the game because it is inherently useful to
help the user "win" the game. In a sense, it is the user's consultant during
the game.

10~2 System Dynamics '90

Feedback to the Learner - Problems In Computer Analysis

To create intelligent feedback is a difficult problem, if it is to address
what the learner does each time she plays a game. The computer must
analyze why the user's policies give certain results. It must pick out
certain feedback loops that are most relevant to the issue in question, then
explain these loops and their dynamics to the user. It should explain why
her policies give the results that she sees during the game.

The analysis is easiest when the user can set only a few parameters
in a model, and she sets those parameters only at the beginning of the
simulation. In this case, it is relatively easy to identify particular ranges of
parameters that give certain types of results. For example, what policies to
hunt deer and predators, chosen at the beginning of a game, result in
starvation of large numbers of deer or predators, versus what policies
always work well. In this example, two policy decisions (hunting of deer
and hunting of predators) could be represented as variables on the two
axes ·of a two-dimensional graph. In certain regions on this graph, the
results could be classified into result groups such as "dynamics of sort A
happen," "dynamics of sort B happen," and "dynamics of sort C happen."
For each of these groups, the computer could give a different explanation
of what happened in terms of feedback loops and the dynamics that result
from these loops.

The above method works fine with a small number of result groups,
but it becomes far too complex for (1) games in which the learner makes
decsions about many different variables that affect the results, and (2)
games in which people play continuously, instead of setting parameters
only at the beginning. (1) For games that have many different variables,
result groups are not on a two-dimensional graph, but in many
dimensional space, with as many dimensions as there are policies. With
many dimensions, it is exponentially harder to divide sets of policy
decisions into result groups. No one wants to have to find all possible
results for a game with 20 decisions which all significantly affect the
game's dynamics, and more importantly, no one wants to write
explanations of feedback and dynamics for each of the many results. (2)
Continuous-play games complicate the problem further because the
learner may not follow any clear policy. She may switch policies in mid
game, and .. do so repeatedly.

Thus, for all but the simplest games, another method of analysis is
needed. Perhaps the solution to this problem is to wait until computer
experts manage to create high-powered expert systems or artificial
intelligence systems that .do the job. However, the following description

S)'lltem Dpamlca '90 1058

suggests a method of analysis that may be useful for the process. To this
author's knowledge, these metho~s have not been put into practice.

The method is to analyze which feedback loops are important for
long-term and short-term processes. The computer can calculate the gain
of each feedback loop, because it knows each variable's numeric value and
equation. It can list which feedback loops are especially strong positive or
negative loops at any given time. In addition, it can look for changes in
variables that happen slowly, but that continue over the long term - for
example, a creeping but steady increase in how much a government
monitors individuals.

Once the computer has its own list of what feedback loops and
variables are changing quickly or steadily, it can compare these with a list
of what variables or sectors the game's designer considers important. The
computer may find strong dynamics in one sector of the model that
happens to be of little importance in explanation, so the designer would
tell the computer to ignore that sector. In some cases, the designer may
tell the computer to note when certain variables do not change rapidly,
because they should . change when all goes well. The analysis can be done
during the play of the game. Once the ·computer has completed some
amount of analysis, at the end of or in the midst of a simulation, it can
provide feedback to the learner.

The game should give this feedback in a form that allows the learner
to explore all sorts of information about the model, but that keeps relevant
factors most prominent. Even if the computer has found a lot of
information that is important to present, it should not · deluge the learner
with that information. Rather, it should carefully organize its presentation
in logical parts, perhaps according to sectors in the model. It should not
force the learner to look at all this information, but let her choose what to
see.

lnterllnkages Between A Simulation Game and Other Games and
Software

In future there may be an ~normous amount of simulation game
software, computerized encyclopediae, and other educational and
information-storage software. (Fig. 2.) In an ideal learner-directed
learning . environment, the user should be able to switch from one
simulation __ to a related one by expressing interest in the latter situation.
For example, the learner might be studying the dynamics of deer on the
Kaibab plateau when she comes across a reference to the dynamics of
forest growth. She could then tell the computer to "teach me about forest
growth." Simple versions of such software interconnections are now

Syatem Dynamics '90

feasible, but normally prohibitively expensive to develop. As software
develops to manage large amounts of information, interconnected learning
environments may become commonplace.

Concepts of the Abstract understanding
~ system's structure of systems & dynamics

1 T
Simulation experience ~ Other simulated

t----tl systems

1 T
~ Real-world details References to

computerized libraries
Fig. 2. Simulation games and other software could be interlinked to form a
large educational system that covers many topics.

Simulation game software should also interlink in appropriate ways
to (1) computerized libraries containing facts, pictures, historical events
and patterns, maps, film, sounds, music, etc.; and (2) educational tools
designed to teach about systems and their dynamics on an abstract level
that applies to all dynamic situations. Access to large libraries of
information is growing exponentially as electronic data storage becomes
practical for billions of bytes at a time, and as software tools evolve to
catalogue and access data and to interconnect different computers and
different information storage formats. Educational software to teach about
systems and their dynamics will surely develop soon, since (a) many
people would like to interlink this software to their simulation games, and
(b) such software would be easy to create. In its most rudimentary form,
the software could even take the form of a computerized book with
illustrations and an index. Such software would be a good thesis topic for a
student with a working knowledge of system dynamics.

An Example; Simulation Game

The following is an idealized example of a simulation game. It takes
into account the various goals mentioned in this paper as important for
some or." all simulation games:

1. Fun and education for the learner.
2. Simultaneous use of three levels of abstraction: (a) participative

simulation,. (b) . micro-details, and (c) macroscopic explanations of
system structure and dynamics.

SJBtem Dynamics '90

3. Suitability for use at home, where there is no teacher.
4. Learner-directed lea~ning.
5. Instructional feedback about the dynamics of the game

available throughout the simulation.
6. Interlinkages with other models, educational software, and

databases.

1055

Not all simulation games should have all these goals. Games for workshops
and class assignments may purposely be more academic. At present, some
of these goals cannot be met because current computer technologies make
the development of a full-featured game an expensive and lengthy process
which only half-heartedly meets some of the above goals.

Here is the example: Someone is using a game about urban
development and housing problems. She plays the role of mayor. In front
of her on a 40-inch screen is a map of simulated Boston showing areas
under development, slums, business districts, and factories. To the right of
the map a message from a city councilman appears, along with a picture of
the man. The message says that the councilman is annoyed at having to
spend much money on housing projects in Dorchester, and that he wants
instead to direct the money to public schools. He asks for the mayor's
political support in an upcoming council vote. The "mayor" uses the
computer's mouse to click on Dorchester, and pictures of Dorchester
appear. Two balding men in tattered clothes and blankets huddle over a
warm air vent, and one has his hand extended in a plea for loose change.

·His cracked voice comes over the computer's speaker: "Can you spare a
quarter, please?" In another picture, this one a video, a youth gang loiters
on a comer. A child comes out of a nearby school and runs past them
toward home, terrified by their taunts and jeers. These pictures serve to
make the simulation real, to bring a sense of importance that can so often
be lost in academic work. •

But academic understanding is important too. The mayor examines a
causal diagram that illustrates important feedback loops, using words,
arrows, and pictures. She tells the computer to show Boston's history of
development and housing. The feedbacks come to life: the arrows in
strong positive loops pulse with a hot red glow; the ones in strong negative
loops fight against the positive loops with cold blue pulses. Counters that
indicate population, unemployment, and available housing whirl madly as
the year goes from 1780 to 1990. A picture of a factory expands to
indicate growth in the number of factories in Boston. At the bottom,
graphs display historical trends of the most important variables. The
mayor clicks on a button for a summary r~port, and a document appears.
It uses simple text and sketches of feedback loops to explain what
happened. "In the 1700's, as Boston became a center for trade, more and
more people moved into the area. People attracted businesses, which

I

1056 System_Dynamlcs '90

created more jobs, attracted more people, and made the area a bigger
trading center. This spiral growth led to " After she reviews the
explanation, the mayor switches to the present. She looks at causal loop
structures and at graphs over the past ten years of unemployment,
housing costs, and her (declining) popularity. Chicago has had the same
problems, hasn't it? She reviews the dynamics of that city, especially
recent dynamics, just as she did with the historical dynamics of Boston.
After a little more thought, she is ready to answer the councilman, and to
go on with the business of running Boston.

Tools to Develop Simulation Games

Computer technologies needed to create simulation games have
advanced rapidly. These technologies are complicated and build upon each
other, and their final form is hard to predict until programmers actually
create them. Computer-to-user interfaces are a technology that has, in the
last few years, suddenly made development of simulation games much
more feasible. Until recently, building sophisticated interfaces required
knowledgeable programmers and lots of time. Recent software such as
HyperCard (Apple Computer 1988) has simplified interface development
and made it feasible even for inexperienced programmers. The
programmer selects and moves boxes, buttons, pictures, and other

· elements, and he can tell each element to ·perform simple or complicated
programs, with code that he or someone else has written. Although
software like HyperCard has faults, it is a great advance over what was
before. It has helped to shift emphasis from programming of interfaces
toward other issues such as educational value.

A number of other technologies are important in simulation game
design. (Table 1.) Modeling software, such as STELLA and Dynamo (Pugh
1986), allows people to efficiently formulate and try out models. Ideally,
the software should include advanced features to help analyze and test
models, including abilities to examine stock-and-flow and causal-loop
structures, to calculate feedback loop gains, to check dimensional
consistency, and to perform automated policy, parameter, and Monte Carlo
analyses. Software that converts models to computer code should let
simulation game developers attach to their games the models that they
create with . modeling software. In the games they should retain use of
advanced (eatures of the modeling software. STELLAStack is one such
program that allows a game designer to attach STELLA models to his
games, and other such programs exist or will soon exist. Multimedia tools,
which facilitate use of graphics, video, sound, and animation, are another
forefront of software development. At present, multimedia software is

System Dynamics '90 1057

typically unreliable, and industry standards have not been defined. It is
still hard to include video and animation in simulation games. Hypertext
and database-access tools are also still in developmental stages. Hypertext
creates linkages between text, so that a user can explore topics on his own,
rather than read from front to back. For example, a user who noticed a
reference to cougars could click on the word "cougars" to learn about the
species. Database-access tools allow access to information such as
encyclopedia entries, weather data, street maps, music, and paintings.
These tools are likely to become more prevalent as costs decrease for
storing huge amounts of data, and as such information storage systems
become commonplace.

Technologies Important to Simulation Game Design:

• Interface environments & tools to build interfaces.
• Model construction and analysis software.
• Programs to incorporate models and model analysis into
other software.
• Multimedia tools.
• Hypertext and database tools.
Table 1. Technologies for Simulation Game Design.

These features need to be put into (1) coherent game design
environments, or (2) toolboxes with the tools that programmers need.
Game design environments should allow easy construction of interrelated
screens which incorporate graphics, text, and automated objects such as
buttons, dials, tables, and graphs. Existing design environments either fail
to provide a complete set of easy-to-use tools to create polished simulation
games, or restrict a designer to a limited format. In the letter case are, for
example, Dynamo and MicroWorlds (Diehl), and in the former case is ·
STELLAStack. This author (Simons 1989) has created a prototype design
environment which uses HyperCard. The environment allows someone to
quickly create a polished simulation game with any STELLA model, and to
customize it as they wish, using a variety of standard tools in the process.
The prototype took about 500 hours to construct, and a full-fledged
version would likely require 1000 hours with experienced HyperCard
_programmers, if they take advantage of tools and knowledge that others
have created. While such a software-engineering environment is valuable,
toolboxes of commonly used routines and objects can be almost as
powerful when used by knowledgeable programmers, and they allow more
flexibility for development of future toolboxes and design environments.

10$8 System Dynamics '90

1~ ofDa.isy Species I 75 •c PLane-t Temp. "Vs. Time-

@la 60 41 1:

1 9
0 lC 4!)'11: .

!Datsy Att>&do 1

1\ Odal1< (0.25) ~0 •t
Oneutrel C0.5)
®wh1le (0.75)

15 ·c
For informotian1 ~

click on o topic:

~ • physical low~ o •c .. I I I. -'-

A nPINIMPtJ• 0 150 300

~
DI9P1EIU:I (i) Plan. TemiJ. Moael Run:l (stan Moael Paremeters:l

0 Plan. Albeaa
((Change)

Q 11R1SU AF"P.M stop

Fig. 3. A screen from a simulation game that might be made with
SIMGAME, an environment in which to develop simulation games. A
prototype version of SIMGAME has been created at M.I.T. by this
author. Individual elements can be placed on interlinked pages via
simple commands.

References

Apple Computer, Inc. 1988. HyperCard® User's Guide. Manual for
computer software. Cupertino, California: Apple Computer.

Diehl, E. MicroWorlds. Computer software. Cambridge, MA: MicroWorlds.·
Graham, A. K., and P. M. Senge. 1990. Computer-Based Case Studies and

Learning Laboratory Projects. System Dynamics Review 6 (1): 100-105.
Kim, D. H. 1989. Learning Laboratories: Designing a Reflective Learning

Environment. In Proceedings of the 1989 International Conference of the
System Dynamics Society, Stuttgart.

Pugh, A. L. 1986. Professional DYNAMO Plus. Computer software and
manual. Cambridge, MA: Pugh-Roberts Associates.

Richmond, B., S. Peterson, and P. Vescuso. 1987. An Academic User's
Guide to STELLA. Macintosh computer software and manual. Lyme, NH:
High Performance Systems.

Richmond, B., and S. Peterson. 1988. STELLAStack. Macintosh computer
software and manual. Lyme, NH: High Performance Systems.

System o,:a.amtcs '90

Senge, P. M. 1987. Catalyzing Systems Thinking within Organizations.
System Dynamics Group Worki.ng Paper D-3877-9.

1989. Organizational Learning: New Challenges for System
Dynamics. System Dynamics Group Working Paper D-4023.

Simons, K. L. 1989. SIMGAME User Manual. System Dynamics Group
Working Paper D-4115.

1059

_. 1989. SIMGAME Development Manual. System Dynamics Group
Working Paper D-4116.

__ . 1989. SIMGAME Code. System Dynamics Group Working Paper D-
4117.

Sterman, J. D. 1979. Kaibab Plateau Model. System Dynamics Group
Working Paper D-3032-10.

