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Abstract 

Software projects have traditionally been problematic in terms of quality, cost and time. 

Researchers and practitioners have focused on agile software development as an alternative 

to overcome these problems. Agile methods employ iterative development cycles (typically 20 

working-days), interspersed by user feedback. The key to agile projects is the sense of 

urgency created by the need to deliver at regular intervals. This paper examines this 

construct, i.e., schedule pressure. We investigate the relationship between the level of agility 

(length of the iterative cycle) and project outcomes. We argue that project outcomes may 

suffer either from a team being too inactive, e.g., in sequential or low levels of agility, or from 

a team being over-active over too long, a situation likely to occur in high levels of agility. We 

hypothesize that moderate levels of agility are likely to result in the best project outcomes. We 

test our hypothesis through simulation, and find a U-shaped pattern: performance is better 

when iteration lengths are 50 working-days, as opposed to 20 working-day cycles widely used 

in practice. Our analysis provides both theoretical insights into the dynamics of agile 

software development and practical suggestions for managing these projects. 
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1 Introduction 

Software is a core component in a wide range of products ranging from mobile 

phones to automobiles, health care and financial services. Therefore, the effectiveness with 

which software development projects are managed influences the quality of products and 

services offered by organizations. However, the reality of software projects is that they 

frequently run late, over budget and suffer from problems in quality and functionality (Austin 

2001; Lindstrom and Jeffries 2004, Molokken-Østvold and Jørgensen 2005; Meso and Jain 

2006; Cao and Ramesh 2008).  

Agile or iterative software development methods are increasingly being adopted as an 

alternative to traditional methods. Agile methods are: “…lightweight processes that employ 

short iterative cycles, actively involve users to establish, prioritize, and verify requirements, 

and rely on a team’s tacit knowledge as opposed to documentation. A truly agile method must 

be iterative (take several cycles to complete), incremental (not deliver the entire product at 

once), self-organizing (teams determine the best way to handle work), and emergent 

(processes, principles, and work structures are recognized during the project rather than 

predetermined)” (Boehm and Turner 2005, p. 32). Typically, an agile project is divided into 

several parts or iterations. In each iterative cycle – typically one month (20 working days) - a 

part of the complete product is finished and shown to the customer. Based on the customer’s 

feedback, the team and the customer decide on the deliverables to develop in the next 

iterative cycle (Schatz and Abdelshafi 2005; Larman 2006).  

These iterative cycles create deadlines that are never distant in time. Deadlines force 

progress, and thus teams always work with a sense of urgency, rather than being 

comparatively inactive in the beginning and then experiencing massive schedule pressure 

toward the end. Customers provide frequent feedback, and thus little effort is wasted on 

implementing obsolete or incorrect specifications. Evidence on the effectiveness of agile 
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methods – while nascent and mostly anecdotal – suggests that they lead to: improved 

accuracy of estimates and lower effort overruns (Molokken-Østvold and Jørgensen 2005), 

reduced time to market (Schatz and Abdelshafi 2005), and fewer defects (Lindstrom and 

Jeffries 2004; Schatz and Abdelshafi 2005).  

This paper focuses on a fundamental aspect of agile methods: that of ensuring 

progress by creating a sense of urgency throughout the project. The underlying mechanism is 

schedule pressure (Austin 2001), which is a function of the team’s perception of the time 

required to finish the tasks at hand versus the actual time remaining. Specifically, we examine 

the relationship between schedule pressure and the level of agility as characterized by the 

length of the iteration, and its impact on project outcomes. We also investigate how this 

relationship is affected when customers change requirements between iterations. 

We hypothesize that at one end of the continuum, i.e., sequential projects, the 

eventual peak of schedule pressure is so high as to result in sharp increases in errors 

generated, with not enough time to detect and fix them. The result is not only poor quality, 

but also extra effort in fixing the errors that are detected, as well as time overruns. At the 

other end of the continuum, i.e., high levels of agility, frequent due dates at the end of each 

cycle create high peaks of schedule pressure, with an outcome of poor quality. Thus, it is 

possible to push a team over the edge by planning so many intermediate due dates that there 

is little no time to recover from the pressure of the previous iteration. That is, agility brings 

benefits to a project only when the peaks and troughs of schedule pressure are moderate. The 

hypothesis is tested through a simulation using a widely validated systems dynamics model.  

As hypothesized, we find a U-shaped relationship between schedule pressure, project 

outcomes (in terms of errors, time, costs), and the level of agility, i.e., iteration length. Our 

results show that the best iteration lengths are closer to 50 working days (2.5 – 3 calendar 

months) rather than the 20 working day monthly cycle used in the field. Thus, contrary to 



 4

widespread practice, there is no “one size fits all” length of the iterative cycle in agile 

development.  

Beyond the prescriptions and conventions of monthly cycles, there is little 

understanding on how the dynamics of agility affects the behavior of project teams and 

outcomes. This constitutes a significant gap in our knowledge of agile development, and is of 

relevance both conceptually and for practitioners. Our research addresses this gap by 

suggesting a way to think about iteration lengths in terms of schedule pressure, and thus 

project outcomes.  

The paper is structured as follows. We start with a description of the model structure 

in Section 2, followed by a description of the research method. In Section 4 the results of our 

simulations are discussed. The paper ends with a discussion of the implications of our study.  

2 Literature and Model Structure 

2.1 Schedule Pressure 

The core concept of our model is schedule pressure. Schedule pressure is a widely 

documented phenomenon in software and product development projects (Perlow 1999; 

Schatz and Abdelshafi 2005). The project team feels schedule pressure when the time 

available is inadequate, i.e., the ratio of the number of days required to the number of days 

available exceeds 1 (Abdel-Hamid and Madnick 1991; Austin 2001).  

There are two main reasons for schedule pressure in software projects. Software 

development is not deterministic. It is extremely difficult to estimate up-front the number of 

tasks and effort need to complete the tasks (Brooks 1979; Boehm 1981; Abdel-Hamid and 

Madnick 1991). Moreover, estimates are typically asymmetrical: project size and effort are 

usually under-estimated. This occurs because managers focus on the highly visible mainline 

components, thereby underestimating or even completely missing the less visible components 

(e.g. help message processing, or error processing). Moreover, new tasks are discovered 



 5

during execution (Abdel-Hamid and Madnick 1991; Eisenhardt and Tabrizi 1995; Dawson 

and Dawson 1998; McDermott 1999; Tatikonda and Rosenthal 2000; Van Oorschot et al. 

2005; Iansiti and McCormack 1997). The additional tasks create higher workload and thus 

increased schedule pressure unless team size and/or due date are extended.  

Second, even when extra time is available as a contingency for “unforeseen” events, 

team members often use it by being less productive in the beginning, often for gold-plating, 

e.g., refining features beyond requirements (Goldratt 1997; Gevers et al. 2001; Latham and 

Seijts 1999; Buehler et al. 1994; Seers and Woodruff 1997; Karau and Kelly 1992; Lyneis 

and Ford 2007). This loss of productivity in the beginning impedes progress and eventually 

increases schedule pressure.  

2.2 Software development 

Figure 1 shows a system dynamics model of software development. Here, software 

development is conceptualized as transforming a stock of tasks that need to be developed to a 

stock of developed tasks. A task is defined as a set of deliverables, such as lines of code or 

source instructions. Initially, most of tasks that need to be developed are known (initial level 

of Tasks to be Developed, Figure 1). The stock Tasks Developed is empty, since nothing has 

been developed as yet. 

 

Figure 1: Basic stocks and flows of software development 

Once completed, a task flows from Tasks to be Developed to Tasks Developed. The 

software development rate is the speed at which tasks flow to Tasks Developed. This rate is 
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determined by the team’s productivity, i.e., the number of tasks developed in a normal 

working day. The higher the productivity, the more tasks flow to Tasks Developed, and the 

sooner the project is finished.  

The team’s workload increases with discovery of new tasks while executing known 

tasks (Figure 1, software development rate → discovery rate of new tasks), i.e., the level of 

Tasks to be Developed increases. The project is complete when there are no tasks left in 

Tasks to be Developed, and all tasks are in Tasks Developed. 

2.3 Consequences of schedule pressure on software development 

Higher levels of agility mean more iterations, and thus more reviews and due dates. 

Now consider how the length of the iteration affects schedule pressure (Figure 2). Sequential 

development has only one final due 

date. The team works toward this due 

date. Schedule pressure exceeds 1 when 

the team realizes it is running out of 

time. To compensate, the team starts 

working overtime. This continues until 

all tasks are developed or until schedule 

pressure drops below 1.By working overtime, the team increases its productivity. In agile 

development, on the other hand, there are multiple pressure peaks toward the end of the 

iterations rather than one large peak toward the end of the project. Thus, agility influences the 

distribution of schedule pressure and overtime during a project’s life cycle. To understand 

how the number of pressure peaks influences project outcomes, we need to consider the three 

main effects of schedule pressure described in extant research: overtime and learning, 

exhaustion and turnover, and errors and rework. 

Figure 2: Schedule pressure in sequential and 
agile projects 
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2.3.1 Overtime and learning  

A team increases its rate of development through overwork (Boehm 1981; Abdel-

Hamid and Madnick 1991; Repenning and Sterman 2002; Perlow 1999). When no new tasks 

are discovered, overtime has a balancing effect on schedule pressure, because a higher 

development rate decreases the number of tasks remaining (the overwork loop in Figure 3).  

 

Figure 3: Positive effects of overwork 

The level of experience determines team productivity via the learning curve (Sterman 

2000; Boh et al. 2007; Ford and Sterman 1998; Kessler and Bierly 2002; Wiersma 2007). At 

the start of a project, the team is inexperienced and at the bottom of the curve. Experience 

grows each day the team works on the project. Thus, experience (and therefore productivity) 

is higher at the end of an iteration than at the beginning. Overwork increases the output of the 

team, and therefore the team is able to gain more experience. By getting additional 

experience through more hours spent, the team learns faster (the learning loop in Figure 3). 

Thus, overwork can increase software development rate in the short-term by increasing the 

number of hours worked per day and in the longer-term by improving the team’s experience 

and productivity. 

Due dates at the end of each iteration (or the end of the project in sequential 

development) disrupt continuity in the experience formation cycle. Before the review, the 
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team has to stop working on development tasks in order to prepare. The normal pace of work 

is also disrupted during the review. After the review, it takes time for the team to close their 

mental accounts and decompress before getting ready for the next iteration, i.e., open the next 

mental account (Thaler 1999). 

 

Figure 4: Due dates cause disruption in learning and productivity in agile projects 

These disruptions affect the team’s productivity (Seshadri and Shapira 2001). Thus, 

team productivity at the end of iteration i is higher than at the start of iteration i + 1. 

However, because the drop in productivity is less than the productivity gained (via an 

increase of experience) during the previous iteration, average productivity increases during 

the project. This behavior is shown in Figure 4, for different levels of agility (dividing the 

project into two, five and nine parts, respectively). Note also that due to lower initial 

productivity, it is difficult for the team to finish the earlier iterations on time (assuming 

iterations have the same length and the same workload (Schatz and Abdelshafi 2005; Larman 

2006; Lindstrom and Jeffries 2004). As a result, schedule pressure is higher during the earlier 

iterations than during the latter, leading to more overtime in the beginning of the project than 

in the end. 

2.3.2 Exhaustion and turnover  

When schedule pressure is persistently high and the period of overtime is long, 

negative effects can occur, as shown in Figure 5, exhaustion & turnover loop. Moore (2000) 
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found that technology professionals experiencing higher levels of exhaustion reported higher 

intentions to leave the job (Abdel-Hamid and Madnick 1991; Moore 2000; Oliva and 

Sterman 2001; Schatz and Abdelshafi 2005). Work overload contributed most to the level of 

exhaustion (Abdel-Hamid and Madnick 1991; Moore 2000; Oliva and Sterman 2001; Schatz 

and Abdelshafi 2005), compared to other possible factors such as role ambiguity, conflict, 

lack of autonomy or rewards. Note that turnover does not imply that a team member quits the 

organization. S/he may simply choose to be moved to another project. 

 

Figure 5: Negative effects of overwork 

Exhaustion is modeled as a stock that increases each time the team works overtime 

(Figure 5). Exhaustion slowly builds up when the team works overtime to finish an iteration. 

As long as the team does not feel pressure in the next iteration, exhaustion gradually 

decreases (Abdel-Hamid and Madnick 1991). The level of exhaustion starts increasing when 

the team resumes working overtime. Beyond a point, working overtime may lead to 

exhaustion breakdown (burn-out). A breakdown occurs when the exhaustion level reaches a 

certain threshold. During the breakdown, the team is not willing (and not able) to work 

overtime anymore (Abdel-Hamid and Madnick 1991). Progress stagnates immediately, while 

schedule pressure keeps increasing. The shorter the time to decompress, the more vulnerable 
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the team is to an exhaustion breakdown (burn-out). 

Attrition from exhaustion is modeled as increased turnover rate. Quits reduce team 

size immediately, thus leading to a decrease in team productivity (i.e., fewer tasks developed 

per day by the team). New employees hired as replacements usually have less experience 

than the experienced employees (Abdel-Hamid and Madnick 1991). Also, because 

experienced team members are the ones who train the newcomers (Brooks 1978; Abdel-

Hamid and Madnick 1991), their productivity also suffers along with the new hires. Thus, 

hiring reduces the average experience level and productivity of the team.  

Therefore, in addition to the two positive effects mentioned earlier, overtime can also 

causes two negative effects: exhaustion breakdown and/or increased turnover. These negative 

effects can form a vicious cycle that further increases schedule pressure. High pressure results 

in overtime, which causes increased exhaustion. Exhaustion may lead to a breakdown or 

increased turnover, further reducing productivity and the development rate. This can create a 

vicious cycle because an increase of schedule pressure causes team behavior that increases 

schedule pressure even more.  

This is likely to be the situation for very low and very high levels of agility. A 

sequential project (Agile-1) has only one due date. The team works overtime continuously for 

a long time toward the end of the project, without time to decompress. At high agility levels, 

due dates follow each other so rapidly that the time available to de-exhaust is not enough to 

empty the exhaustion stock. Here, exhaustion builds up from one iteration to the next, 

causing a breakdown. In the worst case scenario, exhaustion leads to turnover, thereby 

reducing team size. Because of hiring and training delays (Brooks 1978; Sengupta and Abdel-

Hamid 1996), team productivity is lower in iterations that immediately follow any turnover. 

2.2.3 Errors and rework 

Schedule pressure leads to an increased rate of errors (Abdel-Hamid and Madnick 
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1991; Zellmer-Bruhn 2003; Mass and Berkson 1995; Austin 2001; Oliva and Sterman 2001; 

Wickens 1984; Lyneis and Ford 2007; Austin 2001). Developers under pressure to meet a 

due date may take shortcuts in dealing with complications. Shortcuts are not in the best 

interests of the project, and usually have adverse effects that lead to extra (re)work later 

(Austin 2001; Oliva and Sterman 2001). Once detected, errors need to be fixed, thus 

increasing workload further. This creates a vicious cycle wherein high schedule pressure 

leads to higher error rates (Figure 6: errors & rework loop). The errors that are detected lead 

to more work, increasing schedule pressure even more. The errors that remain undetected 

result in a software product with lower quality (see also Austin, 2001). 

 

Figure 6: Negative effects of errors and rework 

In sequential projects, more errors are generated toward the end of the project because 

of how pressure increases. In higher-agility levels, error generation is distributed throughout 

the project (i.e., during all pressure peaks, not just the last one). Rework on errors is therefore 
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also more balanced. However, here as well, rework increases workload and schedule 

pressure. 

2.3 Summary 

The model in Figure 6 shows that schedule pressure influences project outcomes in 

terms of quality (undetected errors), time and costs (person-days). Project outcomes may 

suffer either from a team being too inactive, e.g., in sequential or low levels of agility, but 

also from a team being over-active over too long, a situation likely to occur in high levels of 

agility. In both cases, the impacts on project outcomes are likely to be adverse. Thus, we 

hypothesize that moderate levels of agility are likely to result in the best project outcomes. 

3 Method 

We test this hypothesis through simulation/experimentation.  Davis et al. (2007) argue 

that simulation should be the preferred approach for theory development when the research 

question involves a fundamental tension or trade-off among competing factors, such as the 

ones described in our hypothesis. The use of simulations also helps overcome the practical 

problems entailed in using other approaches for examining our research question. For 

example, it would be infeasible to ask software development teams to develop the same 

software product multiple times using different iteration lengths (or for that matter even ask 

different teams to develop the same product using different iteration lengths). 

The simulations reported here use a system dynamics model of software development. 

System dynamics is especially suitable for situations involving multiple and interacting 

processes, time delays, and other nonlinear effects such as feedback loops and thresholds 

(Davis, et al., 2007). This modeling approach has been used extensively in similar research 

(e.g., Oliva and Sterman (2001); Repenning et al. (2001); Repenning and Sterman (2002); 

Lyneis and Ford (2007). 
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3.1 Simulation Model and Software Project 

The model we use is an extensively validated model of software development (Abdel-

Hamid and Madnick, 1991), and based on the figures shown in Section 2.  The model has 

also been used as a research tool in several studies (e.g., Sengupta and Abdel-Hamid 1993; 

Sengupta et al. 1999; Abdel-Hamid et al. 1999), as well as in actual project settings in 

organizations (Sengupta et al. 2008). The model is a rich and widely accepted representation 

of software project dynamics, and is well-suited for testing our hypothesis. A brief 

description of the model is provided in the appendix. 

The project used for the experiments is a simulation of a real-life organic project 

developed in-house for satellite telemetry software. The scheduled duration of the project is 

260 working days when executed in a sequential mode (Agile 1). At the other end, the highest 

level of agility we examine consists of monthly iterative cycles (Agile 13 - 20 working days). 

The project consists of 24,400 Delivered Source Instructions (DSI)1. However, 

because the full size of the project is not clear to the team in the beginning of the project, the 

perceived project size is smaller than the actual project size. In our simulation model we 

assume that 35% of all tasks that need to be done are unknown at the start of the project. This 

is similar to the level of uncertainty that was used in the model of Abdel-Hamid and Madnick 

(1991). The level conforms to Boehm’s estimates as well.  

We use the COCOMO equations to estimate the perceived project size in person-days 

from the number of DSI that the project should deliver 2 (Boehm 1981; Abdel-Hamid and 

                                                      
1 We also conducted experiments with a smaller project (12200 DSI).  The results are substantially the same as 
those reported here. 
2 Planned person-days for project = 2.73*19*(perceived project size in DSI/1000)1.05 

   Perceived project size = actual project size in DSI * uncertainty fraction 
The perceived project size = 24400 * 0.65 = 15860 DSI, consequently, the planned person-days for the project = 
2.73*19*(15.860)1.05 = 945 person-days. The project should be finished in 260 days (comparable to the target 
development time of the software development project that was simulated by Abdel-Hamid and Madnick, 
1991). The workforce is set to 4.9 persons. With this initial workforce the team perceives it has sufficient time 
for the project (945/4.9 < 260). However, when all tasks are known, this workforce turns out to be too small. For 
a project of 24400 DSI at least 1485 person-days are required. With a team of 4.9 persons this leads to a 
development time of 303 days. So, with a team of 4.9, schedule pressure increases and overwork is required. 
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Madnick 1991). The minimal required size of the project team can be determined from the 

perceived project size (in person-days) and the scheduled development time. Thus, when 

perceived project size is 1000 person-days and the scheduled development time 200 days, a 

team of 5 employees is required.  

The model of Abdel-Hamid and Madnick (1991) is based on a sequential software 

development model. Therefore, we had to adjust the model for our research purposes. Our 

operationalization of agile development follows Boehm and Turner’s (2005) recommendation 

for partitioning a project into multiple parts of similar iteration lengths (Agile-n) that are 

executed sequentially. When all parts are developed, the complete project is also finished. 

The stocks and flows of the agility subsystem are shown in Figure 7. 

Products in
Backlog

Products in
Iteration

Products
Reviewedproduct start rate product finish rate

number of
products in project

 

Figure 7: Stocks and flows of the agile subsystem  

The level of agility determines how many subsequent products or parts will be developed. So, 

when the level of agility is 5, the project is divided into 5 parts or iterations and 5 

intermediate products will be developed. All 5 products are assumed to be of equal size that 

is given by the total project size divided by 5. The initial values of the stocks and flows and 

the equations that are used in the agile subsystem are given in Table 1. At t = 1, the model 

starts simulating the development of the first part or product. As soon as the team is finished 

with the first product, the product finish rate is 1, and the team begins developing the next 

product. In summary, each time the stock ‘Products in Iteration’ is 1, the simulation model 

will run again, until all agile project parts are finished (Products Reviewed = number of 

products in project). 
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Table 1: Equations for the agile subsystem 
Nr Equation 
Eq 1 Products in Backlog = number of products in project - 1 
Eq 2 Initial values:  

- Product start rate = 0 
- Products in Iteration = 1 
- Product finish rate = 0 
- Products Reviewed = 0 

Eq 3 Real product size in DSI = real project size in DSI / number of products in project (24400/5=4880 DSI) 
Eq 4 Perceived product size in DSI = real product size in DSI * (1 – uncertainty%)  
Eq 5 Planned person-days of product = planned person-days of project/ number of products in project 
Eq 6 Planned development time of product = planned development time of project / number of products in 

project 
Eq 7 Product finish rate = IF THEN ELSE (actual product% complete=1,Products in Iteration,0) 
Eq 8 Actual product% complete = Tasks Finished / real product size in tasks 
Eq 9 Product start rate = IF THEN ELSE (Products in Iteration=0,MIN(1,Products in Backlog),0) 
 

3.2 Scenarios 

We implemented two scenarios which differed with respect to whether customers 

choose to change requirements between iterations. This often occurs during reviews between 

iterations. After reviewing the functionality developed during an iteration, a customer may 

decide to make requests for modifications during the next iteration (e.g., a change in 

specifications for the look and feel of a screen). The requests for modification require 

changes made in what was previously developed.  

We operationalize this aspect of agile projects, at two levels. The No Change level 

assumes that customers do not change their requirements; and that a part developed during an 

iteration does not require any extra effort/rework of the parts already developed. (Note: there 

can still be undiscovered tasks that come to attention when executing known tasks). 

In the level incorporating Requirements’ Changes, the development of each new part 

requires additional effort in modifying existing parts. The number of extra tasks thus created 

is assumed to be a function of the number of iterations: ½ * n(n-1), where n is the number of 

iterations (Brooks 1979). Thus, when a project has 4 iterations, 6 extra tasks need to be done 

by the team because customers have changed requirements. 
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3.3 Dependent Variables 

Our primary outcome variable is the number of undetected errors remaining, because 

of how the level of agility affects the peaks of schedule pressure, and therefore quality. A 

software product with many undetected errors (bugs) in the code is assumed to be of inferior 

quality than a product with few undetected errors. Additionally, the errors that are detected 

require effort to fix, and thus also impact two other outcome measures widely used in 

projects: development time (number of working days needed to complete the project) and the 

number of person-days expended (including any overtime expended). 

Schedule pressure is our key process variable. Schedule pressure is analyzed in two 

different ways. Average schedule pressure for a period is calculated as the sum of daily 

schedule pressure during the period divided by the number of days in that period. Second, the 

behavior over time of daily schedule pressure is analyzed during the project (to analyze the 

pattern of oscillation).  

4 Results 

4.1 Project outcomes 

Table 2 shows the project outcomes in terms of quality, effort and time for the two 

scenarios described above: No Change, i.e., assuming that customers do not change their 

requirements between iterations, and Requirements Change, assuming that they do. The 

differences between levels of agility with respect to actual development time are relatively 

small (column 5 & 8). This is because adherence to schedule is the first goal that the 

simulation model tries to accomplish. Therefore, scenarios differ more with respect to quality 

(undetected errors, column 3 & 6) and cost (person-days expended, column 4 & 7). 

In both scenarios, performance improves with the level of agility. The numbers of 

undetected errors decrease, as do effort and time. However, this occurs only up to Agile-4 to 

Agile-6, and reverses at higher levels. In other words, there appears to be a U-shaped trend in 
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performance. In the requirements change scenario, the reversal in performance is even more 

severe for higher levels of agility. To understand the reasons underlying the U-shaped trend 

in performance, we examine how iteration lengths drive the core underlying mechanism 

schedule pressure, and in turn, outcomes.  

Table 2: Project outcomes 

No change Requirements change 
Agility Iteration 

(days) Undetected 
errors 

Effort  
(person days)

Time 
(days) 

Undetected 
errors 

Effort 
(person days) 

Time 
(days) 

Agile 1 260 239 1361 280 239 1361 280 
Agile 2 130 198 1291 262 201 1292 262 
Agile 3 87 179 1286 261 189 1287 261 
Agile 4 65 164 1285 261 183 1293 262 
Agile 5 52 160 1291 262 191 1294 262 
Agile 6 43 164 1292 262 206 1296 262 
Agile 7 37 174 1293 262 274 1307 265 
Agile 9 29 189 1311 264 401 1349 285 
Agile 11 24 272 1306 263 595 1325 268 
Agile 13 20 416 1302 264 839 1390 284 

4.2 Schedule pressure and progress 

Figure 8 shows the average schedule pressure during the project for each level of 

agility in the two scenarios. Figure 9 shows the behavior of schedule pressure over time for 

different levels of agility for the No Change scenario. Some agility levels are not reported in 

the figures to facilitate visual exposition.  

The average schedule pressure across various levels of agility (Figure 8) shows a U-

shaped distribution similar to the outcomes. Figure 9 indicates that for each agility level, 

schedule pressure has a low initial value at the start of an iteration, and peaks at the end. 

However, the heights and durations of the peaks differ both within and across different agility 

levels. In Agile-1, it takes 137 days (more than 50% of the scheduled development time) 

before the team realizes that the time remaining is less than the time required. Schedule 

pressure never drops after that day, and accumulates rapidly. In these first 137 days, the team 
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has underestimated total development effort and has underutilized time. By the time the team 

realizes that it needs to work much harder, it is too late. The result is low schedule pressure 

for much of the project, which leads to working “undertime”: inefficiently or slowly, 

followed by a steep rise. Note that the rise is even steeper after day 211. This is the time the 

team has an exhaustion breakdown after working overtime for too long. As of this day the 

team only works normal hours, with the expected negative effect on schedule pressure. 
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Figure 8: Average Schedule Pressure 

Now consider what happens when the due date for the first deliverable arrives earlier 

than in Agile-1, e.g., Agile-63. In order to complete the iteration on time, the team needs to 

make progress from the beginning. Thus, schedule pressure starts earlier: in Agile-6: it takes 

the team only 33 days to notice that the time required to finish the iteration is smaller than the 

time remaining (Figure 9). However, as Figure 8 shows, the average schedule pressure is 

lower in Agile-6 (for both situations) than in Agile-1. 

                                                      
3 Agile-6 is chosen here as an example because this level of agility lies between the two extremes: Agile-1 and 
Agile-13, and furthermore, Agile-6 has much better project outcomes than Agile-1 and Agile-13 (Table 2). 
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Figure 9: Schedule pressure during the project in No Change Scenario 

Thus, up to Agile-6, the effect of increasing agility on schedule pressure is two-fold: 

pressure is perceived earlier, but has less of a cumulative impact, because on average 

schedule pressure is lower. The result is the downward path of average schedule pressure for 

Agile-1 to Agile-6 shown in Figure 8. Therefore, with higher agility less time is wasted at the 

start, more work gets done early and less work needs to be done at the end (also shown by the 

lower schedule pressure peaks at the end of the Agile-6 project in Figure 9). 

This activates a virtuous cycle of learning and thus, productivity. When agility 

increases from Agile-1 to Agile-

6, we see an increase in schedule 

pressure, which triggers 

productivity (via the overwork & 

learning loop). This increase in 

productivity is shown in Figure 

10: to develop for example, the 

first 100 tasks, in the Agile-6 Figure 10: Productivity in the No Change situation 
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scenario 340 person-days are required, as opposed to 464 person-days in the Agile-1 

scenario.  

 This further helps the team manage workload in the later parts of the project. The 

team is already productive, and good progress ensures that there is less continuing schedule 

pressure and therefore the need for overwork. This is shown in the contrasting patterns in 

schedule pressure in the later stages between Agile-1 and Agile-6 in Figure 9. The final 

implication is that the Agile-6 team is less pressed for time than the Agile-1 team, and thus 

less prone to take shortcuts that stimulate the error-generation and rework cycle discussed in 

Figure 1. This is shown by the lower number of undetected errors for Agile-6 compared to 

Agile-1 (Table 2). 

Now consider what happens with further increases in agility from Agile-6 to Agile-

13. Higher levels of agility imply earlier due dates, and require even earlier progress. 

Moreover, progress is not linear: productivity is low at the beginning of the project and the 

learning curve takes time. Thus even though the amount of work required for the first 

deliverable is lower in higher levels of agility (7.7% for Agile-13 compared with 16.7% for 

Agile-6), the time available is also proportionately lower. Consequently, teams with higher 

levels of agility are forced to spend more effort to get the work done initially, and experience 

higher schedule pressure. Expectedly, with increase in agility, the schedule pressure starts 

earlier. For example, Figure 9 shows that the schedule pressure for the highest level of agility 

considered here (Agile-13) starts earlier than for any other level (on day 18 schedule pressure 

rises above 1 for the first time). However, in contrast to, e.g., Agile-6, the pressure also 

accumulates to increasingly higher levels. The combined effect is the upward drift of average 

schedule pressure from Agile-6 to Agile-13 (Figure 8). The drift is even more aggressive in 

the situation where Requirements Change. 

In the Requirements Change situation the average schedule pressure for lower levels 
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of agility (Agile-1 to Agile-4) are almost similar to those of the No Change situation (Figure 

8). However, looking at the results on quality in Table 2 we see that as of Agile-3 the number 

of undetected errors is much higher than in the No Change situation. High levels of agility 

result in much more errors due to the changing requirements and the accompanying extra 

workload. Since there is hardly any time for the extra work packages that need to be done in 

this scenario, schedule pressure is increased even more than in the No Change situation, 

leading to more errors. In Figure 11 the behavior over time of three variables is shown in both 

the No Change and Requirement Change situation for both Agile-6 and Agile-13.  

Agile-6 Agile-13 
 
Figure 11a: Schedule Pressure 

 
Figure 11b: Schedule Pressure 

 
Figure 11c: Undetected Errors 

 
Figure 11d: Undetected Errors 

 
Figure 11e: Exhaustion 

 
Figure 11f: Exhaustion 

Figure 11: Schedule pressure, undetected errors and exhaustion for Agile-6 & -13 
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In the Requirements Change situation (compared to No Change) schedule pressure 

increases slightly in the Agile-6 scenario, but severely in Agile-13 (Figure 11a & b). Because 

of the increased pressure the team is under, more errors are made, and less errors are 

detected, leading to a huge increase in the level of undetected errors (Figure 11c & d, note 

that the scale in (Figure 11d is different from that in Figure 11c). Increased schedule pressure 

leads to working overtime which leads to an increase of the exhaustion of the team. The 

exhaustion in the Agile-6 scenarios remains under the exhaustion breakdown threshold. This 

means that at the end of an iteration, the team has sufficient time to recover from the pressure 

and to decompress before the pressure of the next iteration hits them (Figure 11e). In the 

Agile-13 scenarios this is not the case. Here, the team suffers from exhaustion breakdowns 

several times during the project (2 times in the No Change situation and even 3 times in the 

Requirement Change situation). After an exhaustion breakdown, the team is not willing to 

work overtime until the team is de-exhausted. This takes on average 40 working days. During 

this time no extra progress is made, keeping schedule pressure high (with its negative effects 

on errors). So, the graphs in Figure 11 and the results in Table 2 show that when requirements 

can change, the performance differences between mid- and high levels of agility become 

much more profound, in favor of the mid-levels. 

 Thus, beyond a point (Agile-4 to Agile-6 in our simulation), having increasingly 

earlier deadlines for the first few deliverables (as is implied by higher levels of agility) 

becomes relatively inefficient because it takes time for the learning effect to occur (and 

because of the extra workload that occurs in the Requirements Change situation). For 

example, consider how many person-days are required to finish the first 100 tasks in the 

Agile-6 and the Agile-13 scenario (Figure 10). As was described earlier, in the Agile-6 

scenario 340 person-days are required, as opposed to 342 person-days in the Agile-13 

scenario.  
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The first iteration in the Agile-13 project is finished 1 day too late. Because iteration 

lengths are equal, the lateness of the first iteration leads to a reduction of the available time 

for the second iteration. Thus, at the start of the second iteration, the team faces even less 

time available. Due to the lateness of the first iteration, the second iteration is almost as 

difficult for the team to finish on time, even when learning and productivity have increased. 

Because of the need to catch-up on the lateness of the first iteration(s), teams in highly agile 

projects still experience high schedule pressure peaks at the end of the project (see Figure 9). 

Thus, higher levels of agility are likely to have delays in subsequent iterations, resulting in 

late projects. 

Summarizing, the relatively poor performance of the higher agility scenarios is caused 

primarily by inefficiency due to over-activity. The early due dates are simply planned too 

early. Problems from the first iteration cascade to the next iteration. In the Agile-6 project, a 

future iteration is easier to finish than the previous one. In the Agile-13 project, a future 

iteration is almost as difficult to finish as the previous one. The team is constantly forced to 

make more progress than they can handle (with the given productivity), leading to an overly 

active team that needs to work overtime very often to make up for the low productivity and 

the lateness of the first iteration(s).  

The effect of over-activity is aggravated for the Requirements Change situation. Here, 

apart from the tasks remaining from the previous iteration, the team also needs to do some 

unexpected extra tasks that were discovered during the feedback session with the customer. 

As a result schedule pressure increases even more (see Figure 8), and project outcomes suffer 

(Table 2). 
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5 Discussion and Conclusion 

Many managers and organizations have increasingly favored iterative approaches 

such as agile development to improve the effectiveness and efficiency of projects. While 

agile approaches have many flavors, practitioners generally anchor their projects on a 20 

working-day monthly iterative cycle of development and customer feedback. However, there 

is no sufficient evidence of the effectiveness of this 20 working-day cycle. This is the essence 

of our research question.  

Project outcomes under different levels of agility are influenced by schedule pressure. 

Long iterations lengths (e.g., sequential development) create little schedule pressure initially, 

leading to inefficiency caused by inactivity. Slicing the project into smaller parts (i.e. smaller 

iteration lengths) brings the next delivery date progressively closer, thus providing a sense of 

urgency and creating greater schedule pressure. Higher schedule pressure leads to more work 

being accomplished, in turn enhancing the experience cycle, thereby improving productivity.  

However, it takes time for the experience cycle (and therefore higher productivity) to 

kick in. Thus, beyond a point, compressing iteration lengths simply adds to schedule pressure 

without commensurate increases in experience (and productivity). Progress is forced to occur 

too quickly while productivity is still low, leading to overwork (over-activity). The team gets 

further behind in deliverables; and exhaustion from high levels of schedule pressure reduces 

productivity. Attrition causes schedule pressure to increase further, leading to less attention to 

error detection and correction, higher costs, and more development time. The pattern is 

accentuated when customers are able to change requirements between iterations.  

Our simulations show that moderate levels of agility have the best performance 

(Agile-4 - Agile-6). The best options for projects are to work in slices of 43-65 working days, 

i.e., around two to three calendar months. Shorter iterations – e.g. the 20 working days-

iterations that are often advocated by practitioners of agility (e.g., the Scrum process - Schatz 
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and Abdelshafi, 2005; or Larman (2006) recommendation of 5-30 working days) – appear to 

be less beneficial to project outcomes. 

Thus, there is a boundary beyond which agility may not be useful. Shortening the 

length of the iteration any further is unlikely to improve performance, and may well decrease 

it. Furthermore, the iteration lengths of the best levels of agility are much longer than those 

prescribed in the literature and widely adopted by practitioners.  

In our study (as in agile development), the customer is able to specify requirements 

for the next phase regardless of the length of the iteration. This means that long iteration 

lengths are only possible when the customer is able to determine what deliverables should be 

developed. In practice, there should be some alignment between the interval at which new 

requirements/change requests can reasonably be expected to occur, and the interval of 

reviews. In environments where specifications are highly volatile, requirements can only be 

specified for short intervals, e.g., one month. In these cases, iteration lengths of 45-54 days 

may not be appropriate. Such projects need great flexibility, and the project manager may 

instead be better off with monthly intervals, even if the efficiencies are lower. However, that 

does not imply that all development situations need monthly cycles. Shorter cycles can 

arguably foster a lack of discipline in requirements generation. Some requirements and 

modifications are likely to be specified simply because of the flexibility available from short 

cycles. In such cases, high agility can potentially destroy value. Evidence shows that 

organizations with high levels of development capability (CMM level 5) exercise process 

maturity by finding ways to limit the number of modifications that customers make (Agarwal 

and Chari 2007), typically by working with customers to help them narrow the pool of 

potential requirements/changes. Our finding can be thought of as a temporal version of this 

argument: moderation in agility can improve project performance by limiting the number of 
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modifications (and any cascading effect), while at the same time providing flexibility when 

needed. 
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