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Abstract The determination of parameters within a system 
dynamics model is an important part of the model development and 
validation process. There are, however, very few useful tools 
available for working on this. The primary reason for this lack 
of tools has been the difficulty of applying the theory that has 
been developed for full feedback estimation. Useful tools can be 
based upon heuristic application of much of the theory. Rules 
are outlined that allow the easy determination and application of 
filtering techniques that deal with the problem of unobservable 
variables. The attributes of these techniques are discussed in 
different settings. Application to an example serves to 
illustrate a number of the issues. 

INTRODUCTION 

The process of model development and validation often requires 
adjustment of model parameters that influence behavior. This 
adjustment process, frequently referred to as "tuning," is slow, 
error prone and difficult to replicate. The application of more 
rigorous and automatic techniques such as regression is 
difficult, primarily because of the size and complexity of the 
problem. System dynamics models.have a large number of 
unobservable variables and a great deal of feedback. These 
attributes enhance the value of models in representing processes 
of interest, but make the comparison of the model to what 
actually happened difficult. In this paper we will discuss tools 
and techniques to aid in the tuning process, including a usable 
approach to estimating parameters in the context of the complete 
feedback structure. 

In the first section of this paper we will develop some 
heuristics that can be used to arrive at full feedback estimates 
of model parameters. These heuristics are meant to ease the task 
of specification required to do full feedback estimation and 
thereby make the techniques for such estimation more widely 
available. In developing these rules we will describe the theory 
of full feedback estimation and hence the source of our 
heuristics. 

The second section of this paper addresses the very pertinent 
issues of building to a reasonably tuned model from early on in 
model development. Full feedback estimation requires as a 
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starting point a model capable of roughly replicating what 
happened. A model built up with arbitrary parameters is unlikely 
to produce sensible results, and the larger and more complex the 
model is the more difficult it is to arrive at sensible results. 
In the second section we describe a useful methodology for 
breaking down a model into smaller pieces which can more easily 
be roughly tuned. We further discuss the nature of the potential 
problems in using full feedback estimation techniques in what is 
clearly a restricted feedback setting. 

FULL FEEDBACK 

Full feedback estimation takes into account all of the feedback 
structure that defines a model in order to find the model par­
ameters. This is the same as saying that the model is simulated 
in order to determine the parameters rather than being estimated 
statically using lagged values or other constructs. The further 
attribute of full feedback estimation is that the estimation of 
the parameters is coupled with an estimation of the model 
variables. Thus the simulation used is not a standard 
simulation, but involves adjustment of model variables on the 
basis of available data. 

Though full feedback estimation techniques have been available 
for use in system dynamics for some time (Peterson 1980) their 
application has been limited. The primary reason for this has 
been the difficulty and expense of application of these 
techniques. The techniques require that a great deal of inform­
ation about the noise structure of the model be specified, and 
are computationally costly. In this section we outline 
heuristics that can be used to accomplish full feedback estima­
tion without requiring this detailed specification of the noise 
structure of the model. The rules developed are based on the 
assumption that it is model structure that is most important in 
determining the relationship of internal model variables to 
available data. 

We will first outline the reasons for, and the nature of, full 
feedback estimation. We use this discussion to motivate reason­
able rules for achieving full feedback estimation without having 
to introduce a burdensomely large quantity of information. These 
rules, in a sense, introduce that information - they represent 
simple and codified informed guesses about the stochastic nature 
of the system we are dealing with. 

The important difficultly in the estimation of the parameters for 
a system dynamics model is the potentially large number of 
unobserved variables. Because of the lack of information on what 
values these variables take on, the simulation can easily diverge 
from what actually happened. This will be the case even when the 
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parameter values are exactly correct, simply by virtue of the 
small randomness entering the system or because the initial 
conditions are not correct. A striking example of this is given 
in Forrester (1961 appendix K) where the same model with slightly 
different noise inputs shows a completely different time path for 
its variables. If one is trying to tune such a model to data by 
simply simulating the model without realizing the cumulative 
nature of the errors the resulting parameter estimates cannot be 
expected to reflect correct parameter values. 

While complete divergence of behavior due to the entry of noise 
will only occur for some models, all models will show some degree 
of divergence. This divergence may be restricted to differences 
in timing, but will likely also be important to the shapes of 
time paths for model variables. The greater the tendency of the 
model to diverge, the greater the value adjusting model variables 
will have. 

In order to deal with the issue of keeping a model on track it is 
necessary to be able to describe succinctly where a model is at 
any time. This can be done using a vector made up of all of the 
levels in the model which we shall refer to as the state vector. 
The state vector suffices to describe current conditions because 
the current value for every variable that is not a level can be 
calculated from the values for the levels. The states play the 
key role in determining whether·a model is on track; in trying to 
adjust variables in a model it suffices to adjust the state 
vector. The model that forms the basis of our discussion is 
written in terms of state variables only as 

Ax+Be+E - - (1) 

with the dot (.) denoting the time derivative . 1 x is the state 
vector, A the dynamics matrix, e the vector of exogenous 
variables entering the model, B-the matrix transforming those and 
E the error terms influencing the process. The error term E is 
assumed a stochastic process (Doob 1954) though it is easier and 
equivalent for our discussion to think of the error as changing 
at regular intervals. The above model is linear and for 
notational convenience all equations will be written linearly; 
application to nonlinear models is discussed. 

Associated with the model given in equation (1) is a series of 
measurements of available data. When we speak of data we mean 

1. In the standard DYNAMOTM notation the equation for the first 
element of x (x1) would be 

L x1.k=x1.j+dt*(a11*x1.j+a12*x2.j+ . . +a1N*xN.j) 
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values of mode~ variables that are measured at different times. 
The equations for determining these variables are written in 
terms of the states as 

(2) 

with ~ the vector of all observed data, ~ the matrix relating 
this to the states and o a vector of measurement errors. 
Normally the matrix C has more columns than rows, that is, there 
are only a small number of measured variables available relative 
to the number of levels in a model. Thus, it is usually not 
possible to determine, or estimate, values for the entire state 
vector simply from consideration of observed variables. 

The problem of determining what the actual state of a model is at 
any time has long been recognized in its own right, and in a 
seminal article Kalman (1960) derived a method to get the best 
estimate of a model's states given the available information. 
The assumptions underlying this derivation are very strong, both 
linearity and normality of the errors are required. However, the 
basic approach has been adapted to nonlinear models quite 
regularly (Anderson and Moore 1979, Sage and Melsa 1979, Schweppe 
1974) . The technique for estimating the state of a model, 
commonly referred to as Kalman filtering, is at the heart of the 
full feedback parameter estimation techniques. Kalman filtering 
lines the model up with what was actually happening as well as 
possible given the available information and model parameters. 

The process of full feedback estimation makes use of Kalman 
filtering to get good estimates of the model variables at every 
time data are available. The estimates of ·the model's variables 
arrived at using the data available from one observation time are 
retained for further simulation. After further simulation the 
new values of model variables can be compared with the next 
available observations. Differences between the model variables 
and the data indicate changes for all the model variables through 
the Kalman gain, this is often referred to as an update. The 
equations for this update are quite straightforward. If we let G 
represent the Kalman gain then the best estimate for the state x-
is given by -

x = x + ~ (~ - ~ (3) 

where xis the model's predicted value for the state vector based 
on simulation from the last update, ~ is the actual data vector 
and ~is the models predicted value for the data vector given k 
The value of xthus obtained is used to continue the simulation 
to the next observation time. 

After a full simulation the errors that were made can be 
reviewed, and the parameters changed so as to make these errors 
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smaller. In the model of equation 1 the parameters are the 
elements of the A, B, and C matrices. The errors are given by 
y - ~ the last term in eqUation 2 . Since this error is over a 
number of different variables, weights have to be assigned to 

• arrive at a summary error measure. The best parameters make the 
summary error measure (normally a sum of squares) as small as 
possible. 

Essential to the Kalman filter is the determination of the Kalman 
gain (G) that is used to update all model states based on the 
errors-made in predicting the available observations. Even for a 
linear model this gain is changing over time, though it normally 
goes to a steady state. The gain is based on the covariance 
between the state variables and the observations. The determ­
ination of the gain requires knowledge of the covariance struct­
ure of the noise entering the model, the dynamics matrix of the 
model, the transformation required to go from the states to the 
variables corresponding to the data, and the covariance structure 
of the measurement noise. Based on this information the 
calculation of the gain requires the calculation and inversion of 
the observation covariance matrix which postmultiplies the state­
observation covariance (see Schweppe 1974 or Anderson and Moore 
1979). 

In intuitive terms, the Kalman gain is based on two things: 
first, how much, on average, does· unexpected (noise driven) 
variation in the observed values tell us about variation in the 
states, and second, how much of the observed values are based on 
signal (actual system changes) and how much on noise. The e 
stronger the link between an observed variable and a state, the 
more the suggested error in the value of the state for a given 
error in the observed value. The greater the signal relative to 
the noise the greater the strength of the updating. 

The difficulty of application of the Kalman filter arises partly 
out of the need for a continual updating of the gain, but 
primarily from the large amount of information required to 
calculate the gain. The calculation of the gain requires the 
characterization of the noise entering the model. For every 
equation it is necessary to specify the variance of the noise 
entering the equation as well as the covariance of this noise 
with the noise entering all other equations. This is a 
formidable task for a system dynamics model and requires a great 
deal more information than the modeler is likely to have. While 
it is possible to estimate characteristics for some of the noise 
terms, the number that can be estimated must be less than the 
available number of observations (Mehra 1974) . The specification 
of measurement noise has similar problems associated with it. 
Again, all the different variance and covariances must be 
specified, and their estimation is similarly restricted. 
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The determinat~on of a Kalman gain thus requires a good deal of 
computation and generally a great deal of specification by the 
user. Because this specification is often arbitrary the value of 
obtaining it is also questionable. To the extent that the 
resulting estimation is insensitive to an incorrect specification 
of the noise covariance the specification is largely an 
inconvenience. In the approach we take we assume that the 
appropriate gain is fundamentally determined by model structure, 
and only secondarily by the covariance of the noise entering the 
model. We develop some simple guesses about what the states' 
covariances are and then use these to derive a gain. 

Intuitively, the state covariance is simply a measure of to what 
extent, and in what direction, changes in some states are 
associated with changes in other states. To get at this we 
simply need to let a state change and observe what other states 
are doing. How much and in what direction change is introduced 
is dependent on the nature of the noise influencing a state. We 
specify the noise to be unrelated between the states and to have 
a strength (or variance) that is proportional to the variance of 
the original variable over the full simulation. We measure the 
c.ovariance by making a simulation without this noise entering the 
model and then making a simulation including the noise and taking 
the sample variance of the difference in values between the two 
simulations. 

Formally if we let x represent the state variable from the model 
simulation with noise entering and x' the state variable from the 
simulation without noise entering, the difference between these 
will evolve as 

x - x' Ax + Be + E - AX' -Be - - -
~ (~ - ~' ) + _f, 

(4) 

(4a) 

since the exogenous variables will be the same. The stochastic 
structure of equation 4a is the same as that of equation 1 but 
has the advantage of having no influence from the exogenous 
inputs. Because of this the variance as measured simply by 
simulating the model with a noise input and without a noise i~put 
will converge to the state covariance. This is convenient, s~nce 
it allows us to estimate the state covariance without having to 
do all the calculations normally required to do so and thereby 
allows us to quickly arrive at an approximation to the Kalman 
gain. 

The measure of the state covariance arrived at in this manner is 
dependent on the arbitrarily chosen values of the variances. 
This choice of variances was intended to tie the relationships 
between the different states down, not to be representative of 
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what the different states were actually doing. The calculation 
of the gain involves both an inversion and a matrix multipli­
cation. For this reason the effect of changing assumptions about 
the variance of each noise term is quite limited. 2 The dynamics 
matrix A is fundamental to determining how closely and in what 
manner the states are linked. The observation matrix (C) 
determines the linkage of the states back to the observations. 
While we do not make explicit use of the ~ matrix we do calculate 
the ~matrix to determine the observation covariance. 

The adjustment for observation error is made by comparing the 
detrended variance of the historical and simulated variables. 3 

If the data values show a higher variance then the simulated 
values they are assumed to have some error in measurement. 
Because of this, they are weighted less heavily in the updating 
of the state vector than they otherwise would be. Specifically 
if we let n represent the state covariance and ~ the diagonal 
matrix with excess of the data variance over thE!simulated 
variance then the gain we use is given by 

Thus a variance of the available data causes the gain to get 
smaller relative to that series (this is clear in the scalar 
case, and similar reasoning applies to the matrix case) . 

(5) 

Once the best estimates of the states are available we know how 
much of an error the simulation model makes when the filtering 
tools are working to keep the model as much on track as possible. 
The parameter determination is then done via a goal searching 
technique that finds the best value of a parameter by minimizing 
the squared error loss. 4 

The error that is considered in performing the tuning is the 
squared error between the model generated value with filtering 

2. This will. not be as true when changes in the covariance 
between noise terms (which we assume zero) are made. When 
this happens the patterns of linking between states can change· 
more dramatically. 

3. The variance for many models is a calculation about a moving 
mean that is the result of deterministic behavior. Taking the 
varaince around a trend is one way to remove, approximately, 
as much of this deterministic component as possible. 

4. The parameter search technique employed for the results 
reported was from the MINPACK search algorithms, though 
alternatives are currently under active consideration. 
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and the actual data (~ - .5/J • When there are a number of 
different data series the seeries are weighted according to the 
variance of the data streams (highly variable streams are given 
low weights). It is possible and simple to change these weights, 
emphasizing one series and ignoring others. What weights are 
chosen will often just reflect the focus on tuning one aspect of 
a model. Adjusting some parameters to get some model variables 
righ_ is a very useful way of tuning a model. 

To summarize, we have described a technique that can be used to 
arrive at an approximate value for the gain G. This gain tells 
us how much to update the different states in the model in 
response to differences between the simulated and actual values. 
Simulation is performed by updating the states each time observed 
variables are available. This type of simulation clearly differs 
from the standard model simulation and there is a sense in which 
the model is different from the original simulation model. Using 
this simulation we can record what errors are made for all of the 
available data. Using a weighted least squares criterion to 
summarize this error it is possible to determine the best 
parameter values through an optimization search algorithm. 

Estimating a Trend Function 

In order to illustrate the techniques we have discussed we can 
apply them to a very small and simple model. This is a model of 
the formation of inflation expectations as described in Sterman 
(1986) . The model is given by 

L FINF.K=FINF.J+(DT/TPT}*(IFINF.J-FINF.J) 
A IFINF.K=((PCPI.K-RCPI.K)/RCPI.K)/THRC 
L RCPI.K=RCPI.J+(DT/THRC)*(PCPI.J-RCPI.J) 
L PCPI.K=PCPI.J+(DT/TPCPI)*(CPI.J-PCPI.J) 

(7) 

with FINF the forecast inflation rate, IFINF the indicated 
forecast inflation rate, RCPI the reference consumer price index, 
PCP! the perceived consumer price index and CPI the actual 
consumer price index. The above model is no more than a 
nonlinear version of the TREND MACRO (Richardson and Pugh 1981 pp 
370-71) on CPI with a final smoothing of the forecast. The three 
time constants (TPT - time to perceive trend, THRC - time horizon 
for reference conditions and TPCPI - time to perceive the 
consumer price index) will determine how the forecast generated 
responds to changing conditions. 

There are observations available on what people actually forecast 
for the inflation rate six months into the future (Carlson 1977) . 
Thus there are measure of FINF but not of the other two states. 
Though the model does not possess a great deal of feedback, it 
clearly requires some so~t of state updating to estimate the 
parameters. We will consider the estimation of THRC based on a 
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gain calculated by the rules we have outlined. It is worth 
noting that not all three parameters in the model can be 
estimated together. There is a degeneracy in th~s model in the 
sense that changing one time constant can be compensated for by 
changing a second. For this reason we restrict our attention to 
the estimation of THRC with the two other parame~ers specified 
(at TPCPI = 2 and TPT=2 months) . I 

The gain when calculated by the above described DUles is given by 

.@.= 1.0 
- 0.8 
-n.. 

on FINF 
on PCPI 
on RCPI 

(8) 

where the price indices are normalized about 100, and the 
inflation forecast is done as a fraction. What ~he gain says is 
that if the model simulates too high a value forjthe inflation 
forecast it is because the model's value for the inflation 
forecast is too high and because the reference p ice index is 
lower than the model indicates (the perceived pr~ce index will 
not be appreciably changed) . The magnitude of tHe numbers 
suggests that if the model is high by 1% (.01) it will cause RCPI 
to decrease by about .75, the effect on PCPI is rtegligible. This 
adjustment is approximately the same as a .5% ch~nge in the 
reference consumer price index. I 

When the model is estimated using this gain to uJdate the state 
values, the best parameter value that can be det~rmined for THRC 
is about 16 months. Without any filtering the b~st value that 
can be determined for THRC is approximately 5 ye~rs, which is not 
very reasonable. The reason for this long estim~te without 
filtering is that the model consistently over estimates what the 
forecast will be. Since the majority of the dat~ are over a 
period of rising inflation the long time constant keeps the model 
generated forecast low. As argued in Sterman (1~86) it is likely 
that this over-estimation indicates a shortcoming in the model. 
The long time constant tries to correct for this .I With 
filtering, on the other hand, the reference conditions are 
updated continually, and most frequently lowered .I This accomp­
lishes the same thing as the long time constant ~ut for 
different, and more appropriate, reasons. I 

Time plots of the residuals and the original series are shown in 
Figure 1 for the 16 month time constant with andlwithout 
filtering active. Without filtering, the residuJls are simply 
the actual forecast less the simulated forecast. The residuals 
when filtering is active are smaller and less sy tematic in 
nature. In both cases, however, the model consi~tently over 
predicts what the inflation forecast should in f~ct be. The 
filtering equations tries to correct this and to !some extent do. 
Tho fact that tho bias is still there indicates lhat the problem 
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is not transient, not the effect of incorrect initial conditions 
or some unexpected change that was not modeled. Rather the error 
seems to be systematic and thus an indication of specification 
problems with the model being used. 

----FILTE ---- NOFILTE 
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Figure 1 Errors with (FILTE) and without (NOFILTE) filtering. 

SECTORIZATION 

Full feedback estimation is best viewed as a tool that can be 
combined with a number of others in a complete tuning process. 
The process of tuning requires parameter adjustment, model 
reformulation and in some cases extensive reconceptualization. 
For many stages of the tuning process it is neither feasible nor 
desirable to proceed with the complete feedback structure. An 
important technique for tuning a model involves tuning a variety 
of components of the model. Homer (1983) discusses some of the 
issues in tuning by the more traditional approaches in System 
Dynamics. Eberlein and Wang (1985) suggest utilization of 
readily available statistical techniques on model equations and 
subsectors wherever possible. 

In this section we will outline some procedures for breaking down 
a model into different subsectors. The important feature of work 
on a subsector of a model is that feedback links are cut. This 
is valuable because serious problems in one area will not 
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compound themselves to yield worthless results in other areas. 
In addition, where tuning requires repeated simulation, working 
with a small subsector can be much faster. Given such a sector-

,ization the full feedback estimation techniques can be applied to 
the partial model. When this approach to tuning is taken there 
are some potential problems that need consideration. 

The procedures we consider for breaking down a model are based on 
a straightforward analysis of the feedback structure of the model 
which, because it is comprehensive yields a clean, orderly and 
easily reproducible sectorization of a model. We will generate a 
sectorization that is complete in the sense that the sector 
developed will give the same simulation results as the original 
model. This, in most circumstances, will require that time 
series for variables used by, but not part of, a sector be 
generated. These time series will form part of the exogenous 
input into the sector. 

The technique that is employed for sectorization is the exact 
analogue of going to the stock and flow diagram and cutting links 
between variables. What is to be retained within a sector is 
determined by first looking at all the things that are desired 
for consideration, and then at all the links that have been cut. 
All variables continuing to lie within a feedback path among the 
desired variables are retained. Any variables not in the 
feedback path but directly affecting a retained variable will be 
made exogenous. An exogenous variable will be kept as an input 
into the sector, but it will not be generated w;~hin the sector. 
Variables that are not part of the feedback structure and are not 
needed as exogenous inputs are simply discarded. 

The dynamic feedback structure of the model is the one that is 
used to determine what variable should be kept. Variables that 
are part of the initialization structure for any included 
variables are also kept, but any variable retained only for the 
purpose of initialization can be made nondynamic (if this is not 
already the case) . This approach allows a complete feedback 
model except that some exogenous variables are added. If all 
exogenous variables are given the same values as they had in the 
original model, the sector thus arrived at will yield the same 
simulation results as the original model for all retained 
variables. As we shall discuss, for the purposes of tuning, 
retaining the original model values is not desirable and the use 
of historical data is preferable. In either case though, the 
subsector derived can be simulated and should be easier than the 
full model to tune. 

Applying Full Feedback Estimation to a Sector 

Though there is a sense in which a model sector intrinsically 
lacks full feedback, the tools of full feedback estimation can be 
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applied. The application of such tools in this setting needs 
some discussion since the idea behind full feedback estimation is 
that nothing is left out. The direct application of the tools we 
have discussed is subject to some caveats and these are worth 
considering even when the full model is being used. In this 
section we give some guidelines as to the nature and seriousness 
of the errors that may arise when using full feedback estimation 
in a partial feedback framework. 

The model upon which the techniques of full feedback estimation 
are based is given in equations (1) . The noise term (E) is 
assumed to display no serial correlation. A sectorization of the 
model effectively breaks the state variable vector x into two 
components. We can rewrite equation (1) with this break in mind 
as 

~11 
~21 

~12 
~22 II (9) 

The sectorization of this set of equations concentrati~g on the 
first sector yields 

~1 (10) 

with the - on ~ denoting the fact that ~ is now an exogenous 
variable. Equation 10 is different from equation 1 only in that 
some of the exogenous variables were part of the original model. 
To the e.xtent that these variables are known exactly, this does 
not cause any difficulty. However, if it is necessary to 
introduce exogenous variables which can be known no more than 
approximately, then equation 10 is not an exact analogue of 
equation 1. 

The problem in using incorrect exogenous variables is very 
intuitive. If the inputs into a model are not correct, the model 
with the right parameters will not appear to be well tuned. It 
is possible, and likely, that a model with incorrect parameters 
will appear to be better tuned. This is true for the model of 
equation 1 as well as that of equation 10. However, if the 
errors in the exogenous variable measurements are not related to 
the endogenous variables the only parameters affected will be 
those for the exogenous variables. That is, the manner in which 
the exogenous variables influence the model will be incorrect, 
but the variables affecting the feedback structure of the model 
will not. Model tuning will tend to adjust the parameters on the 
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exogenous variables to compensate for their incorrect measurement 
(Thiel 1971 section 12.2). 

When the errors in exogenous variables are related to the 
endogenous variables the results are less reliable. It is 
possible in this case to attribute the effects 9f an endogenous 
variables to an exogenous variable. This problem can be 
accentuated by the use of a full feedback estimation technique, 
because errors in the exogenous variables may cause unneeded and 
incorrect adjustment of the endogenous variables. This will 
affect the endogenous feedback structure of the sector that 
results from parameter estimation. The severity of the error is 
difficult to predict, and the consequences of integrating sectors 
with such errors for full model simulation are also 
unpredictable. 

The full feedback estimation of a model sector will do a 
reasonable job of identifying the endogenous feedback structure 
of that sector if the needed exogenous variables do not have 
errors correlated with the endogenous variables. This will 
likely be the case if the exogenous variables needed have 
historical values available. If there are no historical data 
available it is necessary to generate values by some means. One 
obvious method is through simulation of the full model. If this 
is done, however, the stronger the dependence of the exogenous 
variables being created on the endogenous variables, the less 
reliable the results will be. For this reason it may be 
preferable to make up plausible values (possibly based on a model 
simulation) for important unmeasured quantities in the early 
tuning stages. At later stages in the tuning these values can be 
made endogenous. 

Even when exogenous values are not suspected of having errors 
correlated with the endogenous variables coefficients determining 
the impact of these exogenous variables may be incorrect. The 
errors in the exogenous variables introduce a bias in parameters 
determining their impact. The simplest example of this would be 
an exogenous variable always measured 20% higher than its actual 
value. Parameters on this variable would be scaled down 
accordingly. When the variable becomes endogenous and takes on 
lower values, the parameters thus arrived at will no longer be 
valid. 

All of the discussion of errors in exogenous variables can be 
applied to equation 1. To the extent that the kinds of problems 
likely to exist in a model sector are to be found in the full 
model there will be difficulties. As long as the exogenous 
variables are not measured with an error that is correlated with 
the endogenous model variables this problem is restricted to the 
direct effects of the exogenous variables. The parameters on 
these direct effects are essentially adjusted to compensate for 
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the errors. As long as new values for the exogenous variables 
continue to have these properties, their effect on the endogenous 
variables will be appropriate. 

CONCLUSIONS 

We have outlined a series of rules that can be used to specify 
the stochastic nature of a dynamic system. These rules allow the 
determination of a gain that can be used to get improved 
estimates of all model variables over the course of a simulation. 
Using the improved estimates of the models variable over the 
course of the simulation the error made by the model is 
calculated. The model parameters are then chosen so as to 
minimize this error. This technique can aid in the determination 
of model parameters and has the advantage of being easily 
reproducible. 

The development of a model normally proceeds in a number of steps 
and it is important to know the role of full feedback estimation 
in these steps. We have set out some guidelines for isolation of 
sectors and structures within a model for the purposes of 
parameter determination. In the context of these sectors there 
are some cautions necessary as to·the meaning of parameters 
resulting from the tools discussed. 

The theory underlying full feedback estimation is based on strong 
assumptions of linearity and normality of errors. We have 
extended the rules to deal with nonlinear problems essentially by 
analogy. The results will not have the optimal properties that 
will be the case for linear models. However, the results are 
likely to be a substantial improvement over less sophisticated 
techniques that make no attempt to correct for the fact that a 
model may be off track at any time. 
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