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Summary 

A necessary part of any system dynamics analysis is the estimation of parameter values 
which best correspond to the real system. The method of estimating parameters for a typical 
system dynamics model usually involves two steps (with potentially multiple iterations in the 
second!): 

1. Make an a priori estimate based on direct observation, educated guesses by managers, or 
similar parameters in other settings (Graham [ 1980] refers to this as data "at or below the 
level of aggregation); and 

2. Revise those estimates in the process of calibrating the model to aggregate data. 

The calibration of the model (i.e., the adjustment of parameters in order to improve the 
correspondence of simulated and data) is typically done "by hand." The entire parameter 
estimation process therefore relies on the expertise and experience of the modeler. 

The "hand" method of parameter estimation has been criticized for a number of reasons: 

1. Given the complexity of high-order, multi-loop, non-linear feedback systems, parameter 
estimation and calibration are oftentimes very difficult; the process relies considerably on the 
experience and intuition of the modeler -- it appears to be "art" rather than "science"; 

2. The process and results are not replicable -- different modelers are likely to come up with 
different parameterizations (this is particularly true where the calibration process leads to the 
modification or addition of model structure); 

3. The modeler cannot be certain that the final calibration is the best that can be achieved (i.e., 
that it is not a local optimum); and 

4. Hand-calibration makes the generation of sensitivity analyses and confidence bands more 
cumbersome and less robust (in those cases where the procedures require re-calibrating the 
model to the revised set of parameters). 

A number of statistically-based, automated parameter estimation/calibration approaches 
are common in other disciplines: econometrics (e.g., ordinary least squares, nonlinear least 
squares); engineering-based full-information maximum-likelihood estimation (and its derivatives); 
and nonlinear optimization algorithms. In addition to offering to overcome some or all of the 



above shortcomings, automated approaches offer an additional benefit: the use of automated 
techniques may allow those with little experience to set up and calibrate a model. This would be 
most appropriate for "packaged" models, that is, models with generic applicability such as project 
models which have been set up to allow easy adaptation to new situations. An inexperienced 
modeler should be able to set up a generic project model for a specific project, and have the 
software automatically calibrate the model to available data. 

This paper discusses a series of experiments in which the same model is first calibrated by 
several professionals, and then by nonlinear optimization software. The model was a relatively 
simple model of the design phase of a design and build project, based on the rework cycle 
[Cooper, 1994], with dynamic productivity and quality driven by four effects: experience of staff, 
prior work quality, organizational size, and customer disruption. In total, the model contains 10 
levels and 70 active equations. Synthetic "data" were produced by taking simulated output from 
the calibrated model and applying noise to staffing, initial issues, drawing revisions, and scheduled 
completion date to produce four "hard" data streams, and bias to the effects on productivity and 
quality to produce "management observations" for eight effects. Consequently, the structure of 
the model and the system are identical. 1 This removes one source of error in estimating 
parameters. 

Results of the Experiments-- "Hand" v. Automated Calibration 

Hand-Calibration 

The "hand" experiment was conducted as a part of internal staff development at Pugh
Roberts in which an experienced modeler worked with a more junior staff person. Five teams 
took part in the exercise. They had about one and one-half hours to calibrate the model. Table 1 
provides summary calibration statistics for the five teams. 2 Given the limited time available, and 
the fact that the primary purpose of the exercise was training, the hand-calibrators did remarkably 
well. The best three teams came within 10-12% of the hard data (given the noise in the data, the 
best possible fit is around 6% ). They were further off for the observations because fitting this 
data typically occurs later in the calibration process, and time ran out. 

Table 1 Calibration Statistics for Hand-Calibration Teams 
, ....................................................................................................................................................................... 1 ......................... . 
! Initial Team 1 i Team 2 Team 3 ! Team 4 Team 5 i 
! Hard Data 26.08 10.10 ! 12.15 12.88 i 19.18 18.97 ! 
i Observations 48.79 12.26 i 17.22 24.28 i 42.74 23.48! 
r_·_-A99.r.~9~~~-·.-.-.-.-.-.·.·_·_·_·_·.-.·. -.-.-.-.-.-.-.-.-.~_fz~·.-. -.-.-.-.-.-.-.-.-.-j_'9.·.:_~4.'.T:.-.-.-.-.-.-.-.-I~-A?.:.- .-.-.-.-.-.-.-.-.-5:§_;-z~·.-.r.-.-.-.-.-.-.-.-.?.-$_~·9.?..'.'. -.-.-.-.-.-.-.-.-.-.?.§.3_§.-:J 

1 In practice, discrepancies between real life and simulated life can occur for three reasons: (1) there are errors in 
measuring the values of "real life" (e.g., because of sampling or accounting errors, or because of inconsistencies in 
which groups of people charge to a project); (2) the model does not correspond exactly to the real system (e.g., 
attrition rates may be represented as a constant fraction, when in fact they vary); and (3) there are differences 
between the inputs which affect real life and simulated life (e.g., variations in the impact of weather on 
productivity). 
2 Statistics given are weighted values of mean absolute percent error statistics to the "hard" and "soft" data streams 
[see Reichelt, et. al1996 for further discussion.] 
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Some additional observations: 

1. Experienced calibrators followed very similar paths in calibrating the model. While a certain 
element of "art" will always remain, hand-calibration follows a logical, predictable, and 
transferable sequence. 

2. The parameters developed by the hand calibrators were remarkably close to each other. The 
coefficient of variation for the key parameters was 10-14% (the automatic calibration software 
was only marginally more consistent, ranging from 7-12% ). Hand-calibration is replicable. 

3. Experienced calibrators achieved relatively consistent results quickly. In the time allotted, the 
calibrators performed between 13 and 25 simulations. Another hour or so of work would 
have produced very polished results. 

Automated Calibration 

In the "automated" component of the experiment, nonlinear optimization algorithms were 
applied to the same model and starting point. 3 Numerous experiments were conducted, using 
different error calculations and components, different starting conditions, and different calibration 
"handles." In addition, various tests were conducted using the optimization algorithms to 
"polish" the hand calibrations, and following an "expert system" approach. The bottom line is 
that, with the right conditions, automated calibration can work. For example, from three different 
starting conditions, the DYNAMO software produced the improvement in aggregate fit statistics 
given in Table 2. 

Table 2 Fit Statistics Before and After for Different Starting Conditions 

I Start 1 Start 2 Start 3 
I Before After Before After Before After 

Hard Data 26.084 5.857 52.174 5.355 40.157 5.388 
Observations 48.789 10.927 95.394 10.294 119.862 11.503 
Aggregate 31.76 7.125 62.979 6.59 60.083 6.917 

However, there are a number conditions necessary for the software to work: 

1. The choice of error calculation is critical. We tested three different statistics: modified mean 
absolute percent error (MAPE); modified root mean square percent error (RMSPE), and 
average absolute error as a percentage of the mean of the data (AAE) (see Reichelt, et. al 
[1996]). AAE was the only statistic for which the software was able to reliably calibrate the 
model. For the other statistics, the software reached a local optimum far from the true 
optimum, and was not able to break out. 

3 The automated calibration package incorporated in Professional DYNAMO (developed by Alexander L. Pugh, 
III) was used for these experiments. Additional experiments were conducted with the software incorporated into 
VENSIM (developed by Robert Eberlein). 



2. The software must be given an error function which includes all of the data. In order to 
reliably calibrate the model, the error function must include every data stream for which there 
is hard or qualitative data. While a hand-calibrator can mentally include and exclude specific 
data streams as the calibration progresses, this is not possible for automated calibration 
(unless an "expert" system approach is adopted). Unfortunately, the more components 
included, the less important any one becomes, and the more compromises/tradeoffs there are. 
While the AAE statistic did not have a problem with this, it may help to explain while MAPE 
and RMSPE had a hard time breaking out of local optima. 

3. The software must be given a complete set of tuning handles, and cannot compensate for or 
detect incorrect/incomplete structure. Again, a hand calibrator can focus in on different 
elements of behavior, and the calibration handles pertinent to those behaviors, as the 
calibration progresses. The software, however, must be given all the possible handles at the 
beginning. Unfortunately, including all possible handles dramatically increases the number of 
simulations required to calibrate the model (the DYNAMO software took 900-1000 
simulations to calibrate this simple model). Without a complete set of calibration handles, in 
effect the model structure is incomplete. The software attempts to tune the model anyway, 
but cannot do so accurately. Only visual inspection can determine the nature and cause of the 
problem. Clearly human interaction is required. 

Conclusions and Future Research 

Hand calibration works, and is less of an art and more replicable than might be expected. 
Moreover, it produces results which are as close to the true values as automated calibration, and 
are typically close enough to make no significant difference to the outcome of policy 
interventions. 

However, automated calibration offers great promise. While it has proven, with the 
proper error function and sufficient parameter "handles," are able to calibrate a model from 
scratch, the computational requirements may prove prohibitive for realistic models until computer 
power increases further. Therefore, in the short-term it can most effectively be used to "polish" 
the efforts of hand-calibration, and for recalibration during would-have sensitivity analysis. In the 
intermediate term, an expert system approach offers to reduce the computational requirements 
and thereby speed the overall calibration process. 

The combination of the best parameter estimation practices from system dynamics (i.e., 
use of a priori estimation and qualitative information), with statistical approaches, offers to 
improve the efficiency and reliability of system dynamics practice. The next steps in this research 
are to begin applying the software on larger models, and to address the tolerance and expert 
system issues. 
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