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ABSTRACT 

Much of the work done in system dynamics has been criticized for making 
insufficient use of statistical estimation techniques. There have been 
various responses to this criticism concentrating on the other sources of 
information available to the model builder. One of the major hurdles to 
the use of statistical estimation techniques is an understanding of when 
they are likely to be useful in system dynamics modeling. In this paper 
we consider different estimation techniques and how useful they can be in 
system dynamics modeling. The work is meant to be a pratical guide that 
will allow the modeler interested in statistical estimation to gain some 
understandng of the different approaches available. We concentrate or 
attention on the special problems that the system dynamics modeler is 
likely to encounter in estimation. 
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INTRODUCTION 

In this paper we consider the problem of determining some or all of the 
parameters in a model through the use of statistical techniques. The 
paper is meant to be a practical introduction to the techniques available 
and the merits of these techniques relative to system dynamics models. 
The paper should be valuable as a guide for the system dynamics modeler 
who is either considering the use of statistical techniques, or simply 
trying to assess the value of existing statistically based estimates of 
parameters of concern. In order to give a good overview we have kept the 
notation to a minimum and sacrificed rigor. The reader is referred to 
the appropriate literature for a more complete discussion of the topics 
considered. 

The paper is divided into four sections. The first section considers 
briefly the place of statistical parameter estimation and model 
validation techniques relative to the alternatives available. The 
second section discusses the modifications of a model that are required 
in order to apply statistical techniques. The third section gives a 
review of the commonly employed single equation estimation techniques as 
they apply to system dynamics models. The techniques considered in this 
section are widely used by economists and there are a plethora of 
efficient programs available to implement them. The final section 
considers slightly more involved estimation techniques that take greater 
advantage of the dynamic structure of system dynamics models. 

This paper is meant to give an overview of the different techniques 
available for statistial estimation as they relate to system dynamics 
models. It is not meant to substitute for the study of statistical 
estimation techniques. To apply any statistical technique one should 
have a fairly good understanding of the assumptions underlying that 
technique and the properties of the resulting estimator. The purpose of 
this paper is essentially to help the reader decide where to look for 
estimators that might be applicable. 

MODELS AND DATA 

There have been strong criticisms leveled against system dynamics models 
because the models have been alleged to have no basis in existing data 
(Nordhaus 1973). The response of researchers in system dynamics to this 
criticism has been that recorded numerical data represent only a tiny 
fraction of the information upon which system dynamics models are based 
(Forrester, Mass and Senge 1974, Forrester 1980). The real disagreement 
comes about not because there are two definitions, but simply in the 
emphasis placed on the different stages of the model validation process. 
These deserve a brief review here. 

The process of model testing and validation is extremely important and 
requires a very broadly based scrutiny of a model and its results. 
Forrester and Senge (1980) and Richardson (1981 chapter 5) discuss in 
some detail the problem of model validataion. There are a number of 
different issues that must be addressed in testing and assessing the 
validity of a model. These include: the sensitivity of the model to 
different parametric and structural changes, the adequacy of the model 
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boundry, tests of extreme conditions and policies, the plausability of 
assumptions, and the ability of the model to accord with data. Of these 
we concentrate on the last. 

The ability of the model to accord with data is a very broad concept and 
includes such things as: The ability of the model to predict changes in 
behavior modes, the ability of the model to predict the results of 
changes in policies and the ability of the model to produce behavior 
consistent with historical behavior. Relevant to the consideration of 
the last of these are the evaluation of periodicites, relative variable 
phasings and different apparent modes and patterns of behavior. The 
methods for evaluating the ability of a model to accord with the data 
include both visual evaluation of model output and the application of 
statistical tools. 

Thus we see that the application of statistical tools is only one element 
in a variety of procedures aimed at assessing the validity of a model. 
In this paper we are concentrating on this one tool, and specifically, on 
how this one tool may be used in the estimation of parameters. The above 
discussion is meant to place the use of statistical tools in the overall 
context of model evaluation. In applying statistical estimation 
techniques to a model we are asserting that the ability of the model to 
accord with the data is an important aspect of the validity of a model. 
And though this assertion is in accord with the conventional practice of 
system dynamics it must be recognized that there are many other issues in 
assessing validity. 

There are a number of different ways in which to estimate the parameters 
of a system dynamics model. Richardson and Pugh (1981 section 4.6), and 
Graham (1980) discuss the many available techniques for parameter 
estimation. Often it is possible to simply measure parameters. For 
example the number of toy cars that a machine will turn out in one hour 
could be measured. Other parameters often have managerial 
interpretations and simply asking the managers what they think is a 
reasonable value of the parameter will work. Introspection and guesswork 
are often required in setting parameters. Finally, statistical 
estimation techniques can be used in the determination of parameters. It 
is worth noting that some of the other estimation techniques may 
incorporate statistical estiamation. For example is a parameter can be 
measured, but only with noise, it may be necessary to take an average, a 
form of statistical estimation. 

Where the line is drawn in the application of the different parameter 
estimation techniques is very much a matter of personal choice. There 
are no right or wrong methods for arriving at the parameters of a model. 
The tendency in the system dynamics literature has been to use 
statistical estimates only when the parameter in question was not easily 
enough interpretable to give a good idea of its appropriate value. The 
general position we take is that this is a justified procedure as long as 
a reasonable and replicatable verification of the model against available 
numerical data takes place. For more on this the reader is referred to 
Eberlein and Wang (1983). 

In this paper we are concentrating on the statistical estimation of model 
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parameters. This is not to advocate that all parameters be estimated in 
this manner. All of the techniques we will discuss can be implemented 
with some of the parameters in the model given predefined values. And 
this, in fact, is probably the preferable method for the estimation of 
parameters. It is most often the case that only a subset of the 
parameters in the model should be estimated through statistical 
techniques. It is also often true that it is not possible to estimate 
all the parameters from avaialble numerical data, and this will be 
touched on briefly. 

To summarize, we see that the estimation techniques that we are 
concentrating on in this paper comprise only a small portion of the 
parameter estimation tecniques available to the system dynamics modeler. 
And we also see that the notion of statistical model validataion and 
statistical parameter estimation are closely linked, and that formal 
statistics are again only a small piece of the story. 

STOCHASTIC DYNAMIC MODELS 

System dynamics models are formulated in a continuous time setting but, 
for obvious reasons, must be estimated using discrete data. In addition, 
the general statistical model is based on the assumption that there is 
some amount of uncertainty in the system while this is not always the 
case in a system dynamics model. For these reasons it may be necessary 
to alter a system dynamics model slightly in order to apply statistical 
estimation techniques. Though these alterations will not always be of 
great importance in terms of the actual use of the model, they have 
important conceptual implications which need to be recognized. In this 
section we will discuss the principal characteristics of stochastic 
dynamic models and some of the ways that system dynamics models can be 
transformed to contain these characteristics. 

One of the first issues that needs consideration is the question of 
continuous versus discrete time models. Most system dynamics models are 
conceptualized as continuous time models. However, they are both written 
and, for the most part, simulated as discrete time models. In general, 
this is not a serious problem as long as the integration interval (DT) is 
small enough to make the continuous time and discrete time solutions very 
close. We are going to take a similar approach in addressing the issues 
of estimation. However, in this case we are not free to choose the 
integration interval, but are constrained by the frequency with which 
data is available. 

An important issue that arises in this is the problem of aliasing. As an 
example suppose that we were to observe the position of the sun in the 
sky every 36 hours starting at noon on the first day. Our observations 
of the suns position would alternate between completely up and completely 
set (noon and midnight). The sun is up, thirty six hours later it is set 
and thirty six hours later it is again up; we could conclude from this 
that the sun goes up and down with a 72 hour period. If it were not for 
the fact that we actually observe the sun more often than once every 36 
hours we could not be sure that this was not the case. Any phenomena 
that has a period shorter than 72 hours will be subject to the same sorts 
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of problems. Observing things only once every 36 hours we cannot 
distinguish phenomena with periods less than 72 hours from another 
phenomena with some period equal to or greater than 72 hours (Box and 
Jenkins 1976). 

The problem that is described above is analagous to the problem of having 
a DT that is too large in a model. If this occurs then the model 
variables will behave erratically, taking on values far away from the 
last value at each successive DT. The solution to this problem is to 
simply shorten DT. And indeed the best solution to the problem of 
aliasing is to decrease the observation interval. However, this option 
is rarely open to us. The lack of frequently sampled numerical time 
series represents an obstacle for any modeler dealing with dynamic 
problems. 

The general issue of using discrete time observations relative to a 
continuous time model will not be dealt with in detail in this paper. 
The aliasing problem described above is indicative of the kinds of 
problems that can be expected to arise. By assuming that the model is a 
discrete time model we are sidestepping these issues. The issues of 
estimating continuous time models are considered more fully in Bergstrom . 
(1976) and Gandolfo (1981). For many practical problems assuming a 
discrete time model should not cause any real difficulties: The changes 
in the varaibles will often be slow enough relative to the observation 
interval to give reasonable results. 

If the variables move quickly relative to the observation interval, 
either in the sense that there is oscillatory behavior of high frequency, 
or that there is extremely fast adjustment to new conditions (for example 
a smooth with a very short time constant) then there can be severe 
problems. However, it will often be true that these problems can be 
localized. One of the most obvious examples of this type of localization 
would be the extraction of an auxiliary or rate equation from the model. 
Because such an equation defines the value of a variable in terms of 
other variables at the same time, the specific equation may be suitable 
for estimation with the sampled data. (There may be problems in doing 
this if some of the variables are observations on levels such as 
inventory while others are average of rates such as the production rate.) 
In addition it may be possible to estimate selected dynamics of the model 
while imposing certain others. One method of doing this is discussed in 
section IV with respect to simultaneous equation estimators. 

We have said that it may be possible to isolate certain dynamics in order 
to allow partial estimation. This requires that certain dynamics be 
related to certain equations. This will generally not be the situation, 
and it is useful to look at the reason why this is. Consider a 
continuous time dynamic model of the form 

x = Ax , 

with x the set of states and A a square matrix. The discrete time 
approximation to this equation would be given by 
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X = Cl + dt!)~ 
t t-dt 

with dt the integration interval. Now suppose that we observe x every 
n(dt) units of time. Then we would be able to consider empirically an 
equation of the form 

X = ( l + dtA) 
t 

n 
X 
-t-(ndt) 

If dtA is small and n is not too large we can approximate fairly well the 
above-expression by expanding the power of Cl + dt!) and ignoring all but 
the first first term which is n(dt)A. This is simply a statement of the 
notion of the dynamics not being too fast relative to the observation 
interval in terms of some more precise notation. But we want to use the 
notation to make the following point. It is the whole A matrix that must 
be small when raised to a power and multiplied by (n(dt)) raised to the 
same power. Thus even if an individual equation seems to imply 
reasonably slow movement, the estimation of that equation will yield good 
results only if the fast movement in the other equations does not 
influence the equation of interest, a strong requirement. 

For the discussion that follows we will assume that the time between 
observations is equal to the integration time (DT) and for convenience 
choose time units so that DT is equal to 1. We will briefly touch on the 
issues raised above with respect to fast dynamics in section IV. For 
section III we will assume that the equations considered are reasonable 
in terms of the sampling interval. 

The other aspect of a statistical model that may differ from a system 
dynamics model is that a statistical model inherently has a degree of 
uncertainty associated with it. For example, consider a difference 
equation of the form 

X 

t 
= Ax 

--t-1 

a stochastic version of this equation (there could be others) is given by 

X 

t 
Ax 

t-1 
+ e 

t-1 

with e an error term. 

The aspect of a system dynamics model that needs our special attention is 
the noise term e. In the first model given above this term was taken to 
be zero. That is, only the deterministic behavior of the model was being 
considered. It is quite common in work in system dynamics to consider 
only deterministic model behavior. On the other hand, statistical models 
assume that there is noise entering the system at one or more points. 
Clearly it is possible to simply introduce noise into a system dynamics 
model at any number of points and then apply statistical techniques. 
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Though this method is often implicitly resorted to, some consideration of 
the sources of the noise is really called for. 

There are a number of reasons why a relationship would not be expected to 
hold exactly in a model of interest. Perhaps the most important reason 
is the fact that the model is, by its nature, an abstraction, and can 
only be representative of the system under consideration. For. example, 
consider a simple milk inventory model that assumes constant weekly milk 
output for each cow. It is clear that the quantity of milk a cow 
produces in a week will vary depending on the quality of the pasture the 
cows have been grazing in, water available, excercize and other factors. 
Yet, for a simple model it is not desirable to have many of these factors 
enter. Thus the equation determining the milk production rate could be 
written in the form · 

MP.K=DHS.K*MPC+El.K 

MP - Milk Production (litres per week) 
DRS - Dairy Herd Size (cows) 
MPC - Milk Per Cow (litres per cow per week) 

with El some error term. The value that the error term takes on is 
determined by the numerous factors affecting a cows productivity that 
have not been included in the model. The type of argument that we have 
applied to productivity could easily be applied to a large number, if not 
all, of the equations in any given model. To do so explicitly would not 
necessarily be that informative for either the purposes of simulation or 
estimation. However, because in the process of estimation.it is 
necessary to introduce error terms, it is desirable to consider the major 
source of the error and, given this source, the likely properties of the 
error. 

The second source of error in a model is measurement error. The 
variables in a model are idealized concepts of variables which can often 
only be measured approximately, if at all. As a consequence it is ofen 
true that the empirical counterpart to a model equation can be expected 
to have different characteristics then the idealized equation. In the 
material that follows we will consider the implications that the source 
of the error has for the characteristics of esti~ated parameters. 

SINGLE EQUATION ESTIMATION TECHNIQUES 

In this section we will consider the most commonly applied estimation 
tools. These tools are very easy to apply and there are a very large 
number of statistical and econometric software packages available to 
implement them. Because the tools are so readily available and cheap to 
use they are potentially very useful, but their apparent simplicity has 
its pitfalls and these will be discussed. 

The simplest case of a single equation is the linear equation of the form 

z = (w ).Q_ + e 
t t t 
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where w is a (column) vector of predetermined variables and e is an error 
term that is not correlated with any element of w. It is further 
supposed that the expected value of e is zero and the variance of e is 
constanL over time. Given these assumptions the value of b that 
minimizes the sum of squared errors is given by the usual formula 

with 

z . 
t 

T -1 T 
b = (W W) W Z 
ols 

the t'th row of W given 

The estimate b has 
-ols 

T 
by (~ ) and the t'th element of Z given by 

t 
the property that it is a consistent 

estimator of b in the sense that as the number of observations gets large 
the value of the estimate goes to the actual value of ~ (Johnston 1972, 
Pindyck and Rubinfeld 1976, Theil 1971). 

The question that the modeler must face in applying ordinary least 
squares is how near to being satisfied are the assumptions likely to be. 
The major problem is, of course, the determination of whether the error 
term~ is likely to be uncorrelated with the explanatory variables w. 
The assumption that the error term e and the predetermined variables ~ 
are not correlated has traditionally gone untested, though such tests are 
possible and becoming much more common (Hausman 1978). However, in a 
great many cases in system dynamics modeling there are strong a priori 
reasons to expect that this assumption will fail. We consider some of 
these reasons below and then point out the kinds of modifications 
necessary to make the estimation techniques applicable. 

Consider first the correlation over time (autocorrelation) of the error 
term e. By itself the existence of autocorrelation does not hurt the 
consistency of the ordinary least squares estimator. However, in system 
dynamics models all of the variables have a great deal of correlation 
over time as well. It is well known that if the predetermined variables 
contain a lagged value of z then the existence of autocorrelation in the 
errors yields an inconsistent estimate (Theil 1976 section 8.7). The 
reason for this is that the lagged value of z was partly determined by 
the lagged error, and the lagged error influences the current error, thus 
the lagged z and current error can be expected to be correlated. 

While the above argument was given for a lagged dependent variable, it 
will also apply if any of the explanatory variables are in part 
determined through a lagged value of the dependent variable. Given the 
rich feedback structure of most system dynamics models it is likely that 
more than one element of the right hand side variables w will be partly 
determined by the past values of z. It is for this reason that the 
existence of autocorrelated errors will almost always lead to 
inconsistent estimates in a model with a great deal of feedback (related 
to this is the work of Engle, Hendry and Richard 1983). It is common 
practice in system dynamics models to assume that noise entering a model 
has positive autocorrelation (Richardson 1981 pp. 371-373, Britting 
1973). The reason for this is that sources of errors are likely to have 
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some amount of momentum behind them. This alone casts into doubt the 
usefulness of the standard model as it was given. 

The problems associated with autocorrelated errors are relatively easy to 
overcome. Correction for first and second order autocorrelation is 
available in most existing software packages. Under certain 
circumstances the equation may not permit estimation, but normally this 
will not be a problem (see for example Theil 1971 section 8.2). There is 
another important point that must be made on the autocorrelation of the 
error terms. And this is that the degree of autocorrelation that exists 
over an observation interval will, in many cases, be small. Thus 
autocorrelation may not cause a great deal of problem, but it should be 
tested for. Because w is likely to have properties similar to a lagged 
value of z, the standard Durbin-Watson statistic is never a valid 
statistic. For this reason something such as the Durbin H-test (Durbin 
1970, Pindyck and Rubinfeld 1976) should be employed. 

The other source of error that was mentioned was measurement error. 
Measurement error in the elements of the w vector will cause the 
resulting estimator to be inconsistent. The reason for this can be 
intuitively explained as follows. Suppose that the correct model is 

z = (w' ).Q_ 
t t 

+ e 
t 

but that we have measurements on w = w'+e' where e' is some error term. - - -If e' is uncorrelated with w' the measured variables w will show 
substantially more movement (have a higher variance) than the actual 
variables w' will. As a rule of thumb we say in this case that the 
elements of the b vector will be biased toward zero. Senge (1977) 

-ols 
using the market growth model gives some indication of how great the bias 
can be. 

The measurement error problem in isolation is not that serious in most 
system dynamics models. The reason for this is that it is possible to 
derive a consistent estimator of b by the method of instrumental 
varaibles. The idea behind instrumental variables is quite simple and 
ingeneous. Find some variables (!) that are correlated with the actual 
variables w' but not correlated with the measurement errore'. Call 
these variables the instruments. Define the instumental variables 
estimator 

T -1 T 
b C!!) v z 
iv 

this estimator is consistent for b. The problem with the instrumental 
variables estimator thus defined is in the existence of the instruments 
V. However, for most system dynamics models the lagged values of the 
right hand side variables will work very well (that is v = w ). 

-t -t-1 

Because of the dynamics of the model lagged and unlagged variables will 
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generally be highly correlated, at the same time as long as the 
measurement noise is not highly autocorrelated the correlation with the 
measurement errors will be minimal. Morecroft (1977) employs this method 
on some synthetic data generated by a market growth model with quite good 
results. 

In the above discussion we have assumed that the equation to be estimated 
is essentially a model equation. This will not always be the case. It 
is often necessary to manipulate model equations so that they can be 
estimated statistically. For example, if an information or material 
delay exists in the model then we may replace the delayed value by an 
approximate formula in terms of lagged values of the actual variables 
(Hamilton 1980). Alternatively it may be necessary to amalgamate a 
number of equations by solving out for values of computed but unobserved 
variables. Deriving such transformations is something of an art and it 
is difficult to lay out any simple rules. One is referred to Hamilton 
(1980) and the references therein for a number of examples. 

The discussion so far has been with respect to a linear equation. In the 
case of nonlinear equations the same general points still remain true. 
Nonlinear least squares is a readily available tool for the estimation of 
nonlinear equations, and autocorrelation correction is usually available 
as well. Nonlinear instrumental variable estimators exist but are 
somewhat less common. 

FULL MODEL ESTIMATION 

We have considered the estimation of a single equation in a model. In 
many cases it may be desirable to consider more than one equation or all 
of a model. This is clearly more difficult than the single equation case 
and often the effqrt required to obtain estimates can be susbstantial. 
In this section we consider three basic classes of system estimators. 
The first is a relatively simple extension of the single estimation 
techniques considered above and is usually fairly straightforward to 
implement. The second estimation technique to be discussed is designed 
to work with simultaneous equations and is of only limited applicability 
in system dynamics modeling. The third technique to be considered is a 
method developed primarily in the control engineering fields that allows 
for estimation when only some of the variables are observed. 

The first system estimation method we consider is generalized least 
squares. Generalized least squares is an estimation technique that is 
designed to take account of the fact that the errors entering different 
equations may be closely related (Johnston 1972 chapter 7, Theil 1971 
chapter 6). For example an equation for agricultural production and an 
equation for ice cream sales may both have an error partly due to the 
weather. In this case the two equations are seemingly unrelated but, by 
virtue of the fact that the weather is an excluded influence on both, 
combining the two equations can improve our estimator. In this case 
improve simply means to decrease the variance in the estimated 
coefficients. 
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It is not difficult to implement the generalized least squares estimator. 
However, the gains from implementation are normally rather small. The 
real usefulness of the generalized east squares estimator is that it 
allows the same parameter to appear in more than one equation. In this 
manner we may use two or more equations in order to get a value of a 
parameter that appears in the equations. The alternative to doing this 
is to estimate the equations separately and take some average value of 
the estimated parameter. 

The second estimation method we consider is simultaneous equations 
estimation (Johnston 1972 chapters 12 & 13, Theil 1971 chapters 9 & 10). 
A great deal of effort has been devoted in econometric research to the 
development of simultaneous equation estimators. System dynamic models 
are generally built without any simultaneities. Strictly speaking, 
simultaneous equations are non-causal in the sense that a number of 
variables determine each other without any mechanism by which the 
influence can be transmitted. Nonetheless there are situations in which 
the use of simultaneous equations can be quite helpful. For example in 
the model used in N. Forrester (1982) the interest rate is determined by 
equating the demand and supply of liquid assets. This is a particular 
case of what might be refered to as fast dynamic simultaneities. 

We are all familiar with the multitude of behavior modes displayed by any 
given model. In many cases some of these behavior modes will be much 
faster than others. If we are not specifically intereseted in the fast 
behavior modes then we may choose to deliberately remove them from a 
model. The most obvious example of this is the removal of a smooth that 
adjusts to the input value so quickly as to be largely irrelevant to the 
purposes of the model. In this case we would set a perceived variable 
equal to the actual value even though it is known that there should be 
some sort of an information delay. 

If the observation interval is long relative to the time constants of the 
faster processes in a model and those processes are stable then 
simultaneous equation based estimates can be useful. The basic approach 
is quite simple. The fast stable dynamics are assumed to have 
approximately reached an equilibrium state. The remaining dynamics are 
then estimated from the avialable data. This approach is considered in 
Eberlein (1984 Chapter 5, see also Fisher 1961, Senge 1979). 

The final estimator we consider is the full information maximum 
likelihood via optimal filtering (or FIMLOF) estimator (Peterson 1975, 
1980, Peterson and Schweppe 1974, Schweppe 1973). This approach to 
estimation was developed by workers in control engineering and has not 
yet been widely employed in econometrics work. The method is expensive 
to use both in terms of human and computer time and has a number of 
limitations. These will be discussed, but first the basic approach will 
be introduced. 

The basic model for the discussion of filter based estimators is the 
following linear dynamic system. 
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X = Ax + Bu + e 
t t-1 --t-1 -t-1 

y = Cx + c 
t t t 

with x the state vector and L the set of variable that are observed. The 
two noise terms~ and£ are assumed to be uncorrelated with one another, 
and to display no autocorrelation. 

The major difference between the above model and the equations discussed 
earlier is that it is no longer assumed that all the variables are 
observed. Typically, L is some subset of the variables contained in the 
vector x. This is a strong and useful generalization of the more 
standard econometric models. Typically, system dynamics models will 
contain a large number of variables that cannot be observed. One can put 
a system dynamcis model into the above framework without having to do 
violence to the model. 

The first problem that one is faced with when given a model in the form 
of equation 5 is that the value of the state ~ at any time t is not 
known. If the value of the state vector x were known at all times then 
it would be possible to apply a least squares criterion in order to 
arrive at parameter estimates. The first step in developing an estimator 
is therefore to get values of the state vector~ at all times. Once this 
is done the minimization of the sum of squares can proceed much as in the 
single equation case. 

The estimation of the value of the state variable at time t proceeds by 
an iterative process first proposed and justified by Kalman (1960) and 
Kalman and Bucy (1961). This process has become known as Kalman 
filtering. The basic idea behind the Kalman filter is very simple and it 
is the fact that it has certain optimality properties that is the real 
difficult part of its derivation. We will give here only a heuristic 
explanation of the workings of the Kalman filter. For a more detailed 
discussion the reader is referred to (Anderson and Moore 1979, Gelb 1974, 
Sage and Melsa 1971 or Schweppe 1973). 

We suppose that we have some value for the different unknown parameters 
of the model we are considering. This is, of course, just a device that 
allows us to pick the best such set of parameters numerically. Given the 
parameters of the model suppose that we have a best guess of the value of 
x We want to use this to get a best estimate of ~ • One obvious 
-t-1 t 
guess for this is that 

X 
-t(first try) 

= Ax 
--t-l(best) 

+ Bu 
--t-1 

since the error term is assumed to be zero. 
that a good estimate of y would be given by 

This estimate of x 
t 

implies 
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L 
t(first try) 

= Cx 
--t(first try) 

However, we observe Land we can compare this observation to our first 
try estimate. If the value of the first try guess for x at time t is 
different from the actual value of x then we would expect the value of 
our guess for y to be different froi the actual value. And we can also 
work backwards from the value of L to that of ~· This is done through 
what is called the Kalman gain and in this manner we can adjust the first 
guess for ~ in order to arrive at the best guess. Now that we have x 
we can go onto to t+1. t 

Given these best estimates of x it is possible to evaluate the sum of 
squared errors. The errors that are used are the errors made in 
predicting L' since this is what is observed. It is important to note 
that the estimate of the values of x will depend on the parameters of the 
model. because of this for each different parameter choice considered 
the entire procedure outlined above has to be repeated. It is for this 
reason that the parameter estiamation technique FIMLOF is so expensive. 

The above discussion has been for a linear system. It is possible to 
apply the techniques to nonlinear systems through successive 
linearizations in order to derive the Kalman gain. Such a strategy has 
been employed in Peterson (1975, 1980, see also Sage and Melsa 1971 and 
Schweppe 1973). The resulting estimator will not have the optimal 
properties associated with the Kalman filter for the linear model, but 
the application of the technique is often successful. 

There are two very important issues that need to be addressed in the use 
of FIMLOF estimators. The first is the importance of noise to the 
resulting estimates and the second is the question of identification. In 
order to implement a FIMLOF estimator the way in which the noise enters 
the model must be carefully specified. Normally this means not only 
which equations the noise enters but also what the characteristics of the 
noise are. Changing the specified noise characteristics can have rather 
profound effects on the resulting estimate. This is because the Kalman 
gain that is used in the updating of the state estimates is strongly 
influenced by the characteristics of the noise entering the equations. 

The other related issue in the use of a FIMLOF esttmator is that of 
identification. Identification refers to the ability of the data to 
distinguish between different model parameters. (This is the econometric 
meaning of the term identification. In the control theory literature 
identification refers to the estimation of model parameters.) Suppose, 
for example, that two model parameters always appeared multiplying one 
another. Then doubling the first parameter and halving the second would 
alter nothing in the model. In such a situation the two parameters would 
not be identified, although their product might. There are potentially a 
very large number of parameters in a system dynamics model. These 
include the variances of the noise entering the model and the variances 
of the measurement noise, as well as all the regular model parameters 
that one might wish to estimate. If it is not possible to severely 
restrict the qualities of the noise entering the model it will not be 
possible to identify the model. This is because the approach considered 
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is capable of estimating the covariance structure of at most the same 
number of errors as there are observed variables (Mehra 1974). In the 
authors' own experience and that of Peterson (1975) this problem of 
identification has proved quite serious. 

We have discussed the Kalman filter in terms of its use in conjunction 
with parameter estimation. There are alternative uses for the Kalman 
filter that should also be pointed out. The first is that the Kalman 
filter can sometimes be used alone for parameter estimation. This is the 
case if the parameters can be treated as though the were states. If this 
is done then simply employing the Kalman filter one can sometimes arrive 
at good estimates (Sage and Melsa 1971). The other point is that the 
Kalman filter can be used in order to generate a sum of squares for a 
model. This is useful as a device for evaluating the performance of the 
model relative to the data. This is the approach used in Eberlein and 
Wang (1983). 

SUMMARY 

In this paper we have considered various techniques for the estimation of 
parameters in system dynamcis models. As is easily seen the parameter 
estimation techniques are all, strictly speaking, based on assumptions 
that are known to be false. This casts into doubt the strict 
interpretation of the results. However, it does not imply that using 
statistical estimation techniques will give any worse results than will 
making informed guesses. The real question here is one of expediency. 
Is the value to the user of a parameter obtained through statistical 
estimation sufficient to warrant the expense of such estimation. Again 
the answer to this will depend on both model purpose and the final 
consumer of the model. Certainly the value of statistical estimation 
(and model validation) in the academic and scientific community is quite 
large. And in such cases a good deal of effort is justified. 

If one is interested in the use of statistical parameter estimation then 
one must still choose the best method to apply. In this area the best 
plan is likely to use the cheapest thing available that is likely to 
yield reasonable restults. This means that if the variables in an 
equation are all available in some historical time series, or it is 
possible to solve out for unavailable variables, then the estimation of 
that equation through least squares or instrumental variables is probably 
the best method. If the variables are not observed, then it is necessary 
to resort to a estimation technique based on the Kalman filter or a 
similar approach. 

In applying the techniques considered (or other techniques) there is no 
substitute for a solid understanding of the tools being applied. In this 
paper we have tried to point out where such an understanding can be 
obtained. Many of the issues are quite subtle, and present the system 
dynamic modeler with some formidable barriers to statistical estimation. 
However, in time it can be hoped that improved software quality and 
availablility will make the task of evaluating and implementing a given 
estimation technique much simpler, and extremely practical. 
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