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Almost 35 years have passed since J. W. Forester published 
his paper "Industrial Dynamics" in 1958, which was the first paper 
in this field and which later became "system dynamics." While 
many books and articles in the field raised its methodology, most 
of them have described models and discussed applications of 
system dynamics to specific areas. As a result, evaluation of 
system dynamics has been obscured by inconclusive debate about 
particular models. The efforts of many practitioners are leading 
system dynamics to a better understanding and more comprehen­
sive presentation:. But, its methodology needs further development 
and codification for revealing general characteristics of complex 
systems. Particularly, stronger links are necessary to the control 
theory and to enhance the system's mathematics. 

This paper constructs a mathematical theory for thoroughly 
and precisely analyzing such general models as produced by 
system dynamics. First, we formulated mathematically, as the 
axioms of system dynamics, all principles of systems from which 
"general" characteristics of complex systems are generated. 
Secondly, we attempted to adequately express the essential mathe­
matics of system dynamics, based on the axioms mentioned above. 
That is, we investigated the structural stability and the disconti­
nuity of dynamic behavior of complex systems using the concepts 
in the Catastrophe Theory. And we mathematically explained some 
important results described in past articles of system dynamics 
such as the characteristics of complex systems initiated by Forest­
er. Furthermore, we describe a new theoretical method to eluci­
date structural characteristics in SD models using concepts of 
Combinatorial Topology. 

1. INTRODUCTION 
Nearly 35 years have passed since Forrester (1958) presented the first 

paper in the field of system dynamics. This paper studied about a system 
theory which grasps an objective as a system, makes its characteristics clear, 
designs a policy to control the objective and assesses it. The first interest in 
this field was in industrial dynamics (ID). Thereafter, it was expanded to a 
general system such as urban dynamics (UD), world dynamics (WD), natural 
dynamics (ND), health dynamic (HD), etc. Thus, as an application area this 
methodology has become much broader, and the field has become to be called 
system dynamics (SD). Presently SD methodology is also applicable to very 
broad areas such as problems in education, global environmental change and 
moon resource exploitation (Yamagiwa et al. 1990), etc. 

System dynamics has also been criticized, critics maintain that SD is 
only a defective simulation technique. These arguments have been continuing 
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since 1968 especially those between Ansoff et al. (1968) and Forester (1968(b)). 
The criticisms which they have raised has improved methodology, and several 
projects to produce a more comprehensive presentation of system dynamics 
methodology have been undertaken. It is hoped that the improvements made 
in these projects will give not only impetus but also support a more rigorous 
resolution of the criticisms (Legasto et al. 1980; Randers 1980). 

However the real problems of system dynamics methodology have not yet 
been resolved: "System dynamics literature still does not adequately convey 
the essential mathematics of the field nor expose the principles which should 
guide judgment in modeling of systems, nor does it provide an adequate 
number of examples to be used as guides in system structuring" (Forrester 
1968(a)). This paper intends to fundamentally resolve these methodological 
problems. By formulating concepts and principles in. system dynamics mathe­
matically, defining and analyzing theoretically the dynamic and structural 
characteristics which are the two main pillars in system dynamics, and de­
scribing some significant results obtained. 

2. NATURE OF PROBLEMS 
When formulating a system of SD theory, it is necessary to have a 

clear-cut system philosophy, understanding of the model's nature, and funda­
mental characteristics of real world systems as an object of study in SD theo­
ry, beforehand. Here we intend to present only the fundamental characteristics 
of real world systems. 
2.1 FUNDAMENTAL ASPECTS OF SYSTEMS 

In SD theory, policy design and its assessment are also studied and its 
real world system is limited to one with the following characteristics. 
1) the change of status in the system is controlled by a feedback of informa­
tion. 
2) its dimension is generally large, it has nonlinear, multiple and posi­
tive/negative feedback loops, and it has no common measuring scale. 
2.2 FUNDAMENTAL CHARACTERISTICS OF SYSTEMS 

When studying a system's characteristics, it is. convenient to divide them 
into two fundamental aspects such as dynamic and structural characteristics . 

. Here, dynamic characteristics refers to the diachronic aspects which is related 
to the dynamic change of a system's status, and structural characteristics 
which refers to synchronic aspects which in turn is related to the feedback 
loops of information. 
2.3 METHODS FOR THE ANALYSIS OF DYNAMIC CHARACTERISTICS 

In chapter 3 of this paper we studied the dynamic behavior of a system. 
The term, "dynamic behavior of a system", is often used as a fundamental 
concept in SD methodology. However, this dynamic behavior has not been 
clarified. It is also said that the proposition: - "dynamic behavior of a system 
is insensitive to fluctuation of many system parameters and structural varia­
tions of equations", is maintained, and therefore, it is not necessary to intro­
duce precise system parameters. However, the meaning of the word, "insensi­
tive", has not been clarified, and the proposition has not been theoretically 
proved and such phenomena are only noticeable by SD model simulations. 
Critics of SD methodology are not satisfied by the results above mentioned. 
By actually constructing and simulating a SD model, the phenomena may be 
observed, which indicates that the proposition is acceptable. In this paper, 
using the results from the Catastrophe Theory (Poston 1978) we define the 
concept of dynamic behavior of a system and mathematically prove the propo­
sition. 
2.4 METHODS FOR THE ANALYSIS OF STRUCTURAL CHARACTERISTICS 
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For the analysis of structural characteristics of SD models using caus­
ality loops, flow diagrams, structural equations, etc. have been generally used. 
However these methods are lacking in objectivity, precision and logicality. 
For example, in cases where all the feedback loops are analyzed, it is very 
complicated to enumerate completely all the loops by a total flow diagram, and 
it is also difficult to find all the loops with divided sectors. In chapter 5, we 
intend to elucidate fundamental structures in SD models using concepts of 
combinatorial topology (MacLane 1967). 

3. PREPARATION OF CONCEPTS AND SYMBOLS 
It is desirable to develop SD theory axiomatically for establishing SD 

methodology as an acceptable theory. As a starting point of such a develop­
mEmt is to compile the all SD principles into a group of axioms. Such an 
axiom compilation is called an "F-dynamical system," defined as follows. 
3.1 F-DYNAMICAL SYSTEM 

F-dynamical system is a pack D(t) which satisfies the axiom 1,2,3 and 4 
described below: 

D(t)=[n, L(t), M, S, F, G, <I?] 
where t e R+=[O, ~) and 
(1) n is an integer, which is called a system dimension. 
(2) L(t)={L1 (t),L2(t), ... ,Ln(t)} is a set consisting of n sets L1 (t). Here each 
L1 (t) is called a level and depends upon t e R+. 
(3) M={m11m2,. .. ,mn} is a set consisting of n set-functions m1:B(L1 (t))~R. Here 
each m1 is a measurement. 
(4) S={s11s 2, ... ,sn} is a set consisting of n real numbers s 1. Here each s 1 is 
called an initial value of the level L1 (t). 
(5) F={f11f 2, ... ,fn} is a set consisting of n functions f 1:R+ xU~R+. Here each f 1 
is called an input rate and U is an open subset of the Euclidian space Rn. 
(6) G={g11 g 2, ... ,gn} is a set consisting of n functions g 1:R+xU~R+. Here each 
g 1 called an output rate. 
(7) <I?=(¢ jk) is a (l,m)-matrix, whose element ¢ jk:R+ X U j ~ R (j=1,2, ... ,1: 
k=1,2, ... ,m: m ;::: 2n) is not more than a "third class function" which is called a 
structural equation. U j is an open subset of the Euclidian space R<J-l)+n. 
[AXIOM 1] (LADDER AXIOM) 

For any t e R+ and x=(x11x2, ... ,xn) e U, 
Yo1=X1 (i=1,2, ... ,n), Yo=(YovYo2•····Yon), 
Yjk=¢ jk(t,Yo.Yl•···•Yj-1 ) (j=1,2, ... ,1: k=1,2, ... ,m), 
YJ=(yJl•YJ2•···•Yjm) (j=1,2, ... ,1) 

are defined and the following relationship is satisfied. 
= { f 1 (t,.x) if k=2i-1, 

Y1k g1 (t,x) if k=2i (1 s; k s; 2n). 
[AXIOM 2] (FEEDBACK AXIOM) 

Set <i,j>=O if the difference fJ(t,x1,x2, ... ,xn)-gJ(t,x1,x2, ... ,xn) is always 
constant with regards to the variable x1 and <i,j>=1 if otherwise. For any ,i,j 
where <i,j>=1, there are the natural numbers j 1,j2, ... ja which are less than or 
equal to n and satisfy the following relationship: 

<i,j> · <j,jl> · <jl,j2> · <j2,j3> · · · <ja-ltja> · <ja,i>=l. 
[AXIOM 3] (INTEGRATION AXIOM) 

For any t e R+, the following -relationship is satisfied: 
m1 (L1 (t) )=s1+ g {f1 (u, I L I (u) )-g1 (u, I L I (u))}du (i=1,2, ... ,n) 
where I L I (t)=(m1 (L1 (t) ),m2(L2(t)), ... ,mn(Ln(t)) ). 

[AXIOM 4] (BOUNDED AXIOM) 
The difference f 1(t,x)-g1(t,x) and m1(L1(t)) (i=1,2, ... ,n) are bound on the 

definition domain. 
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In the above axioms, <I>=(¢ jk) is called a structure matrix of D(t). In 
axiom 2, the n degree matrix A=(a1j) where a 1 j=<i,j> is called an adjoining 
matrix of <I>. When a 1 j=1; a cross-linkage (i,j) is said to exist, and when i=j, a 
self-linkage said to exist. 
3.2 F-DYNAMICAL SYSTEM AND SD PRINCIPLES 

The principles of system dynamics which are under consideration in this 
paper include all of the 31 principles enumerated in Forester's publication 
(1968(c)). An SD model is considered one that conforms to all of these 31 
principles. 

Nonnegative real number t E R+ in the F-dynamical system (F-d.s.) repre­
sents time. If we consider a real system to be momentarily changing, a level 
set L1 (t) consists of elements determining the status of a system. Each ele..,. 
ment m1 in a measurement set M represents its dimension and a method numer­
izing its corresponding level. The measuring principles of SD described in 
Forester's publication are as follows. 
1) Definition of system boundary. Necessary constants, variables and func­
tions have to be defined in its model as self-contained terms for representing 
causal relations among dynamic behavior of variables in the system under 
consideration. This corresponds to the definition of L, M, S, F, G, <I> in F-d.s. 
2) Organization of feedback loops. A casual relationship between variables 
dynamic behavior has to be formulated in loop-form which consist of chains of 
structural equations. This corresponds to the ladder axiom and the feedback 
axiom. 
3) Classification of variables in the SD model into levels, rates and auxiliary 
variables and definition of those functions and their mutual relationship. The 
level represents an accumulation of activities in the system. The input/output 
rate represents a variable to control the level variation. Auxiliary variables 
lay between composite functions into which these rates are resolved. These 
variables correspond to Yjk of the integration axiom and the ladder axiom in 
F-d.s. 
4) Elucidation of decision making framework. A decision making framework has 
to be formulated into a rate equation, regarding the framework as a "behavior 
revising difference" between objective and actual values. a)Objective values, 
b)observed values, c)the difference between these values and its revised 
behavior have already been abstracted by structural equation ¢ jk in F-d.s. 

Furthermore, each level and rate can never reach positive/negative 
infinity. This corresponds to the bounded axiom. To compute all values of 
variables in the model constructed with an F-d.s. framework, all variables of 
the model should be kept discrete. Thus, the integration values in the inte­
gral axiom may be computed with the Euler formula in numerical analysis. The 
discrete model obtained here is a so-called SD model and programmed using 
computer languages such as DYNAMO, CSMP, etc. 

4. ANALYSIS OF DYNAMIC BEHAVIORS IN F-DYNAMICAL SYSTEMS 
Concepts playing important roles in SD methodology such as the charac­

teristics of dynamic behavior in a system, the insensitivity of a system against 
changes of parameters and structural equations, etc. are not clearly formed in 
usual SD theory. This fact points to the immaturity of the present SD meth­
odology. It is necessary to construct the mathematical representation of such 
concepts at the creation of a system abiding by a strict SD theory. 
4.1 DYNAMIC BEHAVIOR AND ITS FORM 

In the integration axiom of F-d.s., let xi (t)=mi (Li (t)) (i=1,2, ... ,n) and 
x(t)=(x1 (t),x2(t), ... ,xn(t) ), then 

dx1/dt=f 1 (t,x)-g1 (t,x), xi (O)=s1 (i=1,2, ... ,n) (1) 
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As the values of variables Yjk are decided by (t,x(t)) and the ladder axiom, 
each status of the system is determined by an orbit x(t) in differential equa­
tion (1). The shape of the graphical expression of each variable based on the 
results of simulation of a SD model can then be said to be a kind of "form" in 
the Catastrophe Theory with orbit x(t) or its component functions xi (t), there­
fore using information obtained from the theory, the characteristics of sys­
tem's dynamical behavior in F-d.s. can be mathematically discussed. 
4.2 MATHEMATICAL DEFINITION OF FORMS IN F-DYNAMICAL SYSTEMS 

The orbit x(t) determined by the differential equation (1) varies accord­
ing to the initial value of si and changes of structural equation. A mathemat­
ical space including all of the changes is defined as follows. Let r be a 
nonnegative integer and cr(t11t 2 ) be the whole mapping f:[t1,t2] ~ R which is· 
continuously differentiable r times. Suppose that Whitney topology (Wr topolo­
gy) is applied to cr(t11t 2). The orbit x(t), if limited over the closed interval 
[t11t 2] always belongs to cr(t1,t2 ). Suppose two of the orbits x(t), y(t) given 
over the closed interval [t1,t2] and if two topological isometry h and h' exist 
and the following diagram (Figure 1) is commutative, x(t) and y(t) are defined 
to have the same forms over [t1,t2]. 

X (t) 
----~-----------~•Rn 

h h' 

Figure · 1 Map Diagram 

4.3 MATHEMATICAL DEFINITION OF INSENSITIVITY 
When in SD methodology the dynamic behavior of a system is insensitive 

against changes of parameters and structure equations, this indicates that the 
difference between graphical shapes of before and after changes explained in 
equation (1) is small. In terms of the Catastrophe Theory regarding the forms 
mentioned above, the form is considered structurally stable, and is mathemati­
cally defined as follows. 

The orbit x(t) in equation (1) is structurally stable directly above and 
below [t1,t2] indicates that N(x) exists in the neighborhood of x(t) based on 
the Whitney topology wr and that all mappings belonging to N(x) has the same 
form as x(t). According to this definition the proposition of SD methodology 
described above indicates that the orbit x(t) in F-d.s. is also structurally 
stable. This definition regarding form and structural stability is also applied 
to the component function xi (t) of x(t). 

Based on this definition, the main results obtained in this chapter are 
as follows (Mawatari 1983). 
[THEOREM 4.1] 

The orbit x(t) in F-d.s. 
interval with no singular point. 
points do not exist, is generic. 

is structurally stable over any finite closed 
Furthermore, the condition that x(t) singular 
II 
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[THEOREM 4.2] 
Each level curve xi (t) in F-d.s. is structurally stable over any finite 

closed interval where xi (t) is a Morse function. Furthermore, the condition 
that xi (t) singular points do not exist, is generic. I I 
[THEOREM 4.3] 

Assuming that the orbit x(t) in F-d.s. is defined over finite closed 
interval [t1,t2] with no singular point. Then the orbit y(t) obtained by vary­
ing each structure equation ¢ Jk in a sufficiently small neighborhood of x(t) 
based on Whitney topology wr produces the same form as the original orbit 
x(t). I I 
[THEOREM 4.4] 

Assume that a level curve xi (t) in F-d.s. is defined over a finite closed 
interval [t1,t2] and is a Morse function. Then a level curve Yi(t) obtained by 
varying each structure equation ¢ jk in a sufficiently small neighborhood of 
Xi(t) based on W2 topology produces also the same forms as the original level 
curve xi(t). I I 
4.4 SENSITIVE PARAMETERS 

A parameter Pj that is sensitive to a level curve xi(t), is indicated as, 
that parameter vector p with components p J belongs to a bifurcation set B of 
mapping x1:R+ x Rn~R. If Po is a sensitive parameter, the form of a level 
curve x1 (t,p) continuity changes drastically in the case of letting the parame­
ter Po vary in the neighborhood of p 0 • This is a so called Catastrophe occur­
rence. 
4.5 DYNAMIC CHARACTERISTICS OF A COMPLEX SYSTEM 

Forrester explains about dynamic characteristics of complex system in SD 
methodology in his publication as follows: -

"Complex systems have many important behavior characteristics that we 
must understand if we expect to design systems with better behavior. Com­
plex systems: (1) are counter intuitive; (2) are remarkably insensitive to 
changes in many system parameters; (3) stubbornly resist policy changes; (4) 
contain influential pressure points, often in unexpected places, from which 
forces will radiate to alter system balance; (5) counteract and compensate for 
externally applied corrective efforts by reducing the corresponding internally 
generated· action (the corrective program is largely absorbed in replacing lost 
internal action); (6) often react to a policy change in the long run in a way 
opposite to how they react in short run; (7) tend toward low performance." 
(Forrester 1969) 

Also the above behavior characteristics are presented by using natural 
languages (in the above case; English) or a. simulation using an SD model, but 
has never been strictly proved theoretically. Furthermore these expression 
formats are very ambiguous. And these ambiguous characteristics directly 
influence SD methodology. In the following we intend to elucidate how to 
explain these characteristics based on the result of this chapter. 

(1) it is obviously clear by axiomatizing SD principles as F-d.s. in 
chapter 3. Now, the object of SD study is established as F-d.s. This dynami­
cal system is high dimensional and nonlinear, and has multiple and dipolar 
feedback loops. It is certain that behavior of a dynamic system with such 
fundamental characteristics are beyond our intuitive insight. 

(2) it has been mathematically proved that after insensitivity is defined 
as the structural stability of a form. 

Policy in (3) presents a rule representing how to use the available 
information for behavioral determination, and consists of structure equations 
and parameters, therefore change of policy is a change of structural equations 
and parameters, and the stubborn resistance is, in other words, insensitivity. 
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Then, as in (2), the structural stability of (3) is clearly explained in section 
4.3. 

Pressure points in (4) means where behavior is sensitive to the system. 
Then, (4) points out that there may exist a few points which are sensitive 
owing to the change of structural equations and parameters. Sensitivity of 
parameters is described as the Catastrophe occurrence in section 4.4. Struc­
tural equations are closely related to characteristics so called generic. That 
is, characteristics that the orbit doesn't have singular points or the level 
curve is of the Morse function is generic and structurally stable as proved in 
the theorem 4.1 and 4.2. Therefore, in many cases a small changes of struc­
tural equations are insensitive, however, in the ingeneric cases the structural 
stability is not always held. This means that in a very few cases it is sensi­
tive. 

In (5), if a modification program is given to a system from outside, at 
least one of structure equations causes alternations. These alternations give 
further alternations in structure equations, and finally· in level equations by 
the ladder axiom. Then, the first alternations are effected less in time and 
magnitude by the integration axiom. Next, the consequences reaches other 
levels by the feedback· axiom. Here, broader structural equations are given 
effect by the ladder axiom. The consequence of a modification program given 
from outside sometimes propagates the creation of a feedback loop described 
in 2.3. A detailed consideration will be presented in the following chapter 
where the working of feedback loops is studied. 

(6) is related closely to the integral axiom and the bounded axiom in F­
d.s. Because dynamic behaviors of the integrated function: 

Hi(u)=fi(u,x(u))-gi(u,x(u)) (u e R+t i=1,2, ... ,n) (2) 
is bonded by axiom 4, the dynamic behaviors between long and short term 
projects are different; When a policy in SD methodology is changed at a time 
u 0 , the sign of Hi (u) sometimes changes or its absolute value greatly varies 
after a specified time passes. Otherwise the change of policy is small. As the 
SD model is structurally stable, such a little change has often no meaning. 
After all, in the case that the change is significant, the dynamic behavior of 
an orbit obtained by the integration of each Hi (u) is noticeably different 
between long term and short term projects. This is a mathematical explanation 
of (6). 

(7) is caused by the results that controllable variables are changed 
incorrectly by intuitive judgment concerning (1) and by the short term im­
provement concerning (6). To avoid a bad policy design the control analysis 
should be done under free consideration of the structural stability of the 
form, the high and low development, the occurrence of Catastrophe, the effect 
of feedback loops, etc. The assertions in SD described above in simple ex­
pression formation by Forrester can be now strictly proved. 

5. ANALYSIS OF STRUCTURE CHARACTERISTICS IN F~DYNAMICAL SYSTEM 
A mathematical area which regards an objective as a polyhedron and 

pursues its topological nature using "complex" obtained by decomposing the 
objective into "simplex" is the combinatorial topology (MacLane 1967). This 
paper uses some of the essential concepts in this area, for example, simplex, 
oriented simplex, simplical decomposition, complex, subcomplex, connected 
complex, polyhedron, s-chain group, s-cycle and Betti number. Here we show a 
geometrical expression of an SD model and some important results obtained 
using these concepts (Mawatari 1985). 
5.1 GEOMETRICAL EXPRESSION OF SD MODEL 

Set t at a certain time and define a sequence ai with Yjk in the ladder 
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axiom. 
Cl.mJ+k=YJk (j=O,l, ... ,l; k=1,2, ... ,Ib) where Yok=O (n < k ~ m) (3) 

For each BniJ+k• let V(mj+k) be a set of its essential independent variables. For 
each BmJ+k• let S(mj+k) be the simplex that is defined as the set obtained by 
arranging elements of V(mj+k) in order of their subscripts, the last element of 
which is BmJ+k· Here BmJ+k is called a main vertex of S(mj+k). 
[PROPOSITION 5.1] 

Let K1={S(i):dimS(i) ~ 1, 1 ~ i ~ J} where J=m(l+l). 
and K(n,l,m)={S(i),face of S(i):S(i) E K1} 
Then K(n,l,m) is the complex. I I 

(4) 

Then SD terminologies correspond well to terminologies in the geometri­
cal expression, as follows: -

Terminology in SD 
real system 

system analysis 
sn model 
structure equation 
feedback loop 
valid SD model 

Terminology in the geometrical expression 
intricate and high dimensional geometrical 
space 
simplical decomposition 
complex, polyhedron 
simplex 
!-cycle 
complex and polyhedron well holding character­
istics of the space under consideration 

If we geometrically construct a process of analyzing a real system and 
construct the SD model using the terminology above, that process is one which 
decomposes the intricate and high dimensional geometrical space into the 
simplex, and construct the complexes properly maintaining "original space 
characteristics." This means to create a structural analysis method which is 
intuitively easy to be understood and is not ambiguous. The main results 
obtained are as follows. 

Let subscripts of the vertex of a simplex S (i) which belong to K1 in the 
equation (4), which are arranged in order be b 10 ,b 11 , ••• ,b1k where k depends 
upon i, indicated as k 1 if necessary. Define the sets as follows. 

S(i,j)=(biJ bik) (0 ~ j ~ ki-1) 
L1={S(i,j) : S(i) E K1} 
L(n,l,m)={S(i,j), vertexes of S(i,j):S(i,j) E L1}. 

Then, L(n,l,m) is a subcomplex of K(n,l,m) and is a geometrical expression of 
the total flow diagram under consideration. 

Consider !-chain group G(L,l) consisting of all !-chains with integer 
coefficients of L(n,l,rn). A propagation of variation of variables in SD model is 
expressed using !-chains with integer coefficients as follows: -

C1 =S (i 11i2)+S(i2,is)+ ... +S Cis-l,is) ( 5) 
If is=i1, then equation (5) represents a feedback loop. This is a !-cycle in 
G(L,l). If 0-sirnplex s L(n,l,m) which does not correspond to a level joining a 
positive direction with the vertex corresponding to any level, a vertex s is 
called normaL~ Otherwise it is called abnormal. To define the following sets. 

L2={tf{a_?):a,b E L(n,l,m), b is the main vertex a_nd a"Qnqrmal.} 
L3=L (n;l,m)-L2 
L4=L3U{-S(i,j):S(i,j) E L3} (6) 

If the set L4 is a connected complex, L(n,l,m) is called normal. Otherwise it is 
called abnormal. 
[THEOREM 5.2] 

Necessary and sufficient conditions, where L(n,l,m) is the normal com­
plex, is that a finite sequence j 1,j 2,. .. ,jr exists, which satisfies the following 
conditions (1) and (2). 
(1) {j1,j2,. .. ,jr}={1,2, ... ,n} 

} 
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(2) <jl,j2> · <j2,j3> · · · <jr-l,jr>=l. I I (7) 
When applying any policy change to an SD model its change is repre­

sented as a change of parameters and the structure equations in an SD model. 
This change only effects some levels, it also effects all the other variables 
(level, rate, auxiliary equation,etc.) based on theorem 5.2. As a result a policy 
change it effects all variables sooner or later. 

To investigate structural characteristics, first it may be necessary to 
enumerate all the feedback loops in an SD model and analyze these effects. 
Then, some contrivance is necessary to analyze skillfully the effect over all 
feedback loops. But it is considered difficult because there may be many 
feedback loops in an SD model. This problem can be solved by computing the 
Betti numbers and linearly independent 1-cycles of the complex L(n,l,m). 
[PREPOSITION 5.3] 

Let L(n,l,m) be the normal complex. And let a 0-simplex and !-simplex of 
L3 be a and {3 respectively. Then the Betti numbers N(3,0,p) and N(L3,1,p) of 
L3 are represented as follows. 

N(L3,0,p)=1, N(L3,1,p)=1-a + /3. I I . (8) 
In the following, if L(n,l,m) is the normal complex its corresponding SD 

model is to be called normal, and if otherwise, abnormal. 
[THEOREM 5.4] 

Let L(n,l,m) be a general expression of a total flow diagram in a normal 
SD model, and let F(n,l,m) be the whole of geometrical expression of feedback 
loops in this SD model and r be the Betti number N(L3,1,p) in the equation (8). 
Then, linearly independent cycles C1,C2,. .. ,Cr of F(n,l,m) exist and any element 
"C" of F(n,l,m) be the total sum of C11C2, ••• ,Cr. II 

According to theorem 5.4 it is shown that all feedback loops in a normal 
SD model are decided by the Betti number r=N(L3,1,2) and r linearly independ­
ent 1-cycle in L3. It is shown here that all feedback loops are represented as 
a sum of fundamental feedback loops. The number of these loops is deter­
mined by the Betti number. Therefore, the policy controlling the system 
under consideration may be analyzed by introducing these fundamental feed­
back loops. Hence, the structure analysis method in SD methodology may be 
concluded as follows. 
[THE ALGORITHM FOR STRUCTURE ANALYSIS OF AN SD MODEL] 
(1) The construction of a complex K(n,l,m) which is a geometrical expression of 
an SD model. 
(2) The construction of a subcomplex L(n,l,m) of K(n,l,m) which is a geometrical 
expression of a total flow diagram of an SD model. 
(3) The construction of a subcomplex L3 which excludes abnormal vertexes in 

L(n,l,m). 
(4) To investigate whether L3 is connected. If L3 is connected, execute (5) 
and (6) in its present state. If L3 is not connected, all components of L3 
should execute (5) and (6) as separate components. Here we describe the case 
where L3 is connected. 
(5) To compute the Betti number r=N(L3,1,2) of L3 and obtain linearly inde­
pendent 1-cycles C11 C2, ... ,Cr. (These 1-cycles are called a basis of feedback 
loops.) 
(6) To analyze various properties (such as sign, sensitivity, position, etc.) of 
feedback loops and their mutual relationship for 1-cycles C1,C2,. .. ,Cr· 

6. CONCLUSION 
In this paper, it is shown that the two main areas of concern in SD 

methodology is the dynamic characteristics and structure characteristics of a 
system, that can be strictly analyzed in a mathematical framewo.rk of F-d.s. 
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Here system analysis based on F-d.s. leaves much more room for progress. 
When analyzing a system using optimal coordination in hierarchical formulation 
discussed by Mesarovic(1970), the knowledge in this area can be applied to an 
SD model as F-d.s. Furthermore, if regarding F-d.s. as a kind of nonlinear 
dynamics and using the theory of "nonlinear dynamics and chaos" by Thomp­
son, et al. (1986) in F-d,s., an assessment of policies can be discussed theoret­
ically. Hence most of the criticisms on SD methodology, for example that SD 
cannot be called a system theory, are essenti~ly nullified. It is also possible 
to deduce some important facets which could not be deduced from traditional 
system theories. 
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