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Abstract

While several methods aimed at understanding the causes of model behavior have been proposed in recent
years, formal model analysis remains an important and challenging areain system dynamics. This paper
describes a mathematical method to incorporate eigenvectors to the more traditional eigenvalue analysis of
dynamic models. The proposed method derives basic formulas that characterize how a changein link (or loop)
gain influence state behavior in linear dynamic systems. Based on the insights developed from linear theory, |
extend the method to nonlinear dynamic systems by linearizing the system at every point in time and eval uating
theimpact to the derived formulas. The paper concludes with an application of the method to alinear system.

1. Introduction

Forma model analysis remains animportant and challenging areain system dynamics.
Several methods aimed at understanding the causes of model behavior have been proposed in
recent years (Kampmann 1996; Mojtahedzadeh 1997; Goncalves, L ertpattarapong and Hines
2000; Saleh and Davidsen 2001; Saleh 2002; M ojtahedzadeh, Richardson and Andersen 2004;
Oliva 2004; Olivaand Mojtahedzadeh 2004; Guneralp 2005; Hines 2005; Kampmann and Oliva
2005; Saleh, Davidsen and Bayoumi 2005). These methods trace back two threads in model
analysis. the loop dominance work of Richardson (1995) and eigenvalue elasticity work of
Forrester (1982). Mojtahedzadeh (1997) and Mojtahedzadeh, Richardson and Andersen (2004)
extend the loop dominance work first proposed by Richardson (1995). The research proposes
pathway participation metrics (PPM) to find the structure that most influences the time path of a

givenvariable. The method provides alocal assessment of how changes in a state variable of

interest influence the net change of the same variable ( d%, ix, ). While the method has the

advantage of being computationally smpleit is not well suited for systems that oscillate, since
the analysisislocal and cannot capture global modes of behavior.

Most of the remaining research traces back to eigenvalue elasticity theory proposed by
Forrester (1982). The method calls for the computation of el genvalues and then explores how
the eigenvalues change as link gains change, that is, link gain elasticities. Forrester showed that a

complete description of link elasticities alows one in principle to calculate loop elasticities. This



suggestion though never implemented in software, promised to provide an answer to how model
structure, that is a set of feedback loops, determines model behavior. The particular calculation
that Forrester suggested is actually not feasible. As he redlized later, Forrester’ s suggested
approach results in a system of equations that is over-determined — an effect of the fact that the
number of loops increases much faster than the number links. Kampmann discovered that a small
subset of loops is sufficient to uniquely describe eigenvalues (i.e. the behavior) of a system
dynamics model (Kampmann 1996). Using an Independent Loop Set (ILS) produces a smaller
system of equations, a system that can be solved. The Independent loop set (ILS) method has the
important advantage of alowing us to calculate loop gains from link gains, where the number of
linksin amodel is often small. However, it has the disadvantage of relying on an ad hoc
procedure to select the independent loop set (ILS). Gongalves, Lertpattarapong and Hines
(2000) use Mason’s rule to express the characteristic equation and its solutions (eigenvalues) in
termsof loop gains (instead of link gains), which alows them to obtain loop gain elasticities
directly. While the method sidesteps the problems associated with an arbitrary selection of loops
it has the shortcoming of requiring the computation of al loops in the model, a number that rises
quickly even with moderate size models. Oliva (2004) provides an extension to the method
selecting first the shortest loops. The shortest independent loop set (SILS) provides a systematic
representation of the feedback complexity in its simplest componentsand it is the most granular
description of the structure in a cycle partition. Oliva and Mojtahedzadeh (2004) compare the
results obtained with the SILS approach to that of PPM and find that the loops generating the
main dynamics are often included in the SILS. More recently, Kampmann and Oliva 2006
explore the application of loop eigenvalue elasticity to three models to assess the potential of the
method and find that the insights depend on the character and dynamics of the model.

Thework of Saleh, Davidsen and Bayoumi (2005) is most akin to oursin its interest in
understanding the contribution of both eigenvalues and eigenvectors on model behavior. While
we focus on the analytical computation of the influence of elgenvalues and eigenvectors on
model behavior, Saleh et al. (2005) provide a computational method (implemented in Matlab) to
calculate such influence. The motivation for this paper is to provide a mathematical framework

for future work on eigenvector and eigenvalue analysis. This work follows the research tradition
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of Forrester (1982). Similarly to previous research, our interest between structure and behavior
is expressed in terms of understanding how changes in links or loops gain affect the time path
behavior of a state variable. Our work departs from previous efforts in terms of its focus on
analytical results and emphasis on the impact that first time derivatives of eigenvalues and

eigenvectors have on model behavior, instead of eigenvalue elagticities.
2. Behavior in Linear Dynamic Systems

The formal structure of alinear system dynamics model with avector of state variables x(t),

where x(t) = (X1, X2, ..., Xn)", @ vector of first time derivatives of the state variables x (t), where
X (1) = (%, %,...,X,)", again matrix J capturing the partial derivatives of the net change of a state
variable with respect to another (the matrix J,,, =1 X/1 x is commonly known as the Jacobian

of the system), and a constant vector b, can be represented compactly in the following way:
Xx=Jx+b 1)

Consider now the solution to the homogeneous system. A standard result in linear systems
theory isthat the eigenvalues (1 ) of the matrix J describe the behavior modes inherent in the

model and are the solutions of the characteristic polynomial (P(l )), where (P(l ) = |I l, - J| =0).

Assume for simplicity that the system matrix J,xn has a complete set of n linearly independent
eigenvectors (r1, ra,...,rn) with corresponding eigenvalues (I 1, | 2,..., 1 n ), where eigenvalues may
or may not be distinct. Since the eigenvectors are linearly independent, they span the n
dimensional space, therefore an arbitrary value of the state x(t) can be expressed by the linear

combination of the eigenvectors:

x(t)=z(t), + z(t), + ..+ 7,(t), @

where z(t),i=1, 2, ..., nare scalars.
Using the fact that by definition multiplication of the system matrix by their eigenvectors
results in the product of the eigenvectors by eigenvalues (Jri=l ir;), we can rewrite equation (2)

by multiplying it by the system matrix Jnxn.

Ix(t) = x(t) = z(t)ar, + z,(t)ar, + ...+ z,(t)ar,

X(t)= 200, + (0] or, 4+ 2,01 €



Since equation (2) defines the state vector x(t), we can take its first time derivative. In
addition, using the fact that eigenvalues and eigenvectors are constant in linear systems, we can
rewrite (2) to get:

x(t) = z(t)r, + (), + ...+ 2 (t)r, (4)
Comparing the right hand side of (4) and (3), we obtain:

2, + (), + ..+ 2, (), =z (), + 2, + .+ (), (5)
And since the eigenvectors are linearly independent, the equality can only hold if:

5(t)=z(t), ©)

The system above can be represented in matrix form as:

ey ¢, 0 .. oueth
gZZ(t)g: SO |2 OBSZ ()3 (7)
é .0 é. 08 .. 4
2.ta 80 0 . 1.5&,(k

The solution of the homogeneous system of decoupled equations presented above is known:

ez(thy & 0 0 véz (0)u

&2t)g_a0 €= .. 03z oy

e..u e . LU L 3t)=¢2(0) ®)
€ U

&t 80 0 .. &gz (0d

Substituting the result in (8) in our original equation (2) yields:?

x(t)=€'"z(0), + €2z, (0), +...+ € 'z (O, )

! Note that we rewrite the results above more compactly in matrix form defining V as the nxn matrix whose n
columns are the eigenvectors of J and defining the column vector z(t) with components (z(t), z(t), ... zy(t)).
Defining V that way allows us to write equation (2) as x(t) =Vz (t) We can interpret the new equation as a change

in variable and useit to rewrite the dynamic system, which yields: Vz(t) = JVz(t) or simply: z(t) =V’ lJVz(t) ,
where the computation of the inverse of the matrix of eigenvectors (V) depends on the value of all the system
eigenvectors. The new system ((t)) isrelated to the original one ( x(t)) by achange of variable. The new system
matrix  (V"2JV) corresponds to the system governing the z(t) state equations, where the change in each state ( Z (t))
depends only on the product of the associated eigenvalue (1) and the own state ( z (t))- Accordingly, we can write
V1JIV=L , whereL isthe diagonal matrix with the eigenvalues of J in the diagonal.



2 Theinitial values of z(0) can be obtained in terms of x(0) from the change in variable definition: z(0) =V -x(0)-



3. How Links Influence System Behavior

We focus our attention on equation (9) to understand how changesin link gains (i.e., the
strength of model parameters) influence system behavior. The behavior of each state in the

system x;(t) can be described by:
x(t)=r,é*2(0)+r,€%2,(0)+...+1,6"z,(0) (10)

wherer; isthei-th component of the first eigenvector.
The equation suggests that the dominant behavior mode of the state variable x;(t) will be

determined by the relative size of each i-th component of each eigenvector r;, wherej=1ton.

We can rewrite equation (10) above in matrix form:

gxl( )3 S CPRNN PYRRS rnluee 21(0)u
éxz (t)q: é'lz PP nzu@ 'z (0) (12)
gl o v
e, u
gxn(t)ﬂ éln r2n nnl.@ Z ( )

Equation (9) highlights that the behavior of each state is influenced both by eigenvalues (| i)
and eigenvectors (rj). Inaddition, both eigenvalues (1 ;) and eigenvectors (r;ji) depend on the
values of link gains (i.e., parameters in the model), because eigenvalues are solutions to the
characteristic polynomial (P(l )), where P(l ) = |I [, - J|: 0 and the entries of the Jacobian (J)

arethe partial derivatives or the link gains (ay) in a system dynamics model. Therefore, achange
in the gain of an arbitrary link (ay) resultsin a new Jacobian and different values for both
eigenvalues (I ;) and eigenvectors (rj)). To understand the nature of the impact of changesin link
gains on system behavior, we take the partial derivative of each state in the system x;(t) with
respect to itslink gains. From equation (10), we obtain the change in behavior of each state x;(t)
due to changesin link gain (ay) as:



and taking the derivative of individual components, we obtain:®

ez, .
fla,  Tay ' 12 Ta, fla, 7, Tay

We can rewrite equation (13) in a more compact way as:

x (t) :me"itzl(O) 1e* 13 0)+ RS 0)+r, Te> ﬁ;ﬁ(o) (13)

) -4 &gy, 17 T89 14
ﬂakl ]a:.lgﬂaki € rjl ﬂ,) ﬂa,d ( ) ( )

If we are interested in how changes in one link affect al state variables, we can write:

M)y g, T ROy g, T TR0
& faq g o, MR g T Ua, ", YA 4 o ()3 5
a ()= € : A e

e'”é Xn(t)g &, Cqe 136 Hr -, e 1?2, 605 (0 )u

2 ) e +rln . g—e" +rnn —ng

g2 i gfa, 1" T &, 12 Y2 g

Because the elgenvalues and eigenvectorsin liner systems are constant, the derivative of the
exponential of thei-th eigenvalue (€) with respect to its eigenvalue (l ;) yield a term that

depends on time (te'™). Therefore, we can rewrite equation (15) to yield:

eﬂxl(t)g %-[rll +r 1-r?l tge"l’[ aTrnl +r ﬂ n t_e"nt u

M, J Efa T 5 fa, "o, 5 ga0)
éﬂxn(t)ﬂzgm[r ﬂ 5 - ﬂ ll_]jé 0 (16)
e?—g gﬁjﬂ +1, —>tze™ m 4y —Otie™ u@%(o)l?l

eﬂakl u & ﬂaH ﬂak| 7] ﬂakl (%] g

Equation (16) suggests that for each component j (withj =1 to n) characterizing the behavior
of state x;(t), the contribution to the change in behavior of state x;(t) due to the change in link
gain (ay) is composed of two terms corresponding to:

1. The contribution of the derivative of rj , thei-th component of the j-th eigenvector, with

respect to link gain (ay); and

® Note that the computation of the partial derivative of each term r,e"'z,(0) assumesthat theinitial state , (o) does
not depend on thelink gain. State z,(0) isanew state variable — obtained after the change of variables— given by
(40) =V x(0)) where z(0) istheinitial position vector of the new state variables and x(g)is theinitial position vector
of the original state variables. The inverse of the matrix of eigenvectors (v-t) depends on the value of all

eigenvectors and thus varies with changesin the link gain. However, we do not differentiate it with respect to the
loop gains because we can simply interpret it as a change in the initial position.



2. The contribution of the product of ther;i, the i-th component of the j-th eigenvector, the
derivative of the i-th eigenvalue (| ;) with respect to link gain (aw), and time (t).

Thefirst term captures a change in intensity in the mode of behavior due to the contribution
of the partia derivative of the the i-th component of the j-th eigenvector with respect to link gain
(ax). Analogousdly, the second term captures a change in intensity in the mode of behavior, but it
is more complicated. Here, the change in intensity grows with time, the i-th component of the j-
th eilgenvector and the partial derivative of the i-th eigenvalue (I ;) with respect to link gain (aw).
Note that, if eigenvalues (I ) and eigenvectors (r) are complex their derivatives will also be
complex. In such cases, the exponentials will be multiplied by complex values which will
influence not only the amplitude of the behavior mode, but will aso lead to a phase shift.*

The equation above suggests that early in time (t € 0), the behavior mode will be mainly
influenced by the first term, i.e., the derivative of the eigenvector with respect to the link gain;
and later on (as t ® ¥ ), the behavior mode will be more influenced by the second term, i.e., the
derivative of the eigenvalue with respect to the link gain. Therefore, the behavior of a linear

system will be highly determined by the second component at a high value of t and the dominant

o
mode of behavior will be determined by the relative size of each r;, % . Since the mgority of

the research in model analysis has dealt with eigenvalue elaticity — closely associated with the
derivative of the eigenvalue with respect to alink (or loop) — we have focused myopically at long
term behavior impact, that is, how changes in links (or loops) affect the long term behavior of a
state variable. These results may not play a significant role in the short term behavior of states of
linear systems. This research can help differentiate the contribution of both eigenvectors and

eigenvalues to the overall behavior of a state due to changesin link or loop gains.

3.1. Interpreting the Impact on Behavior Modes

To understand and interpret the impact that a change in link gains has onthe original
behavior of a state variable, it is useful to consider the ratio of the behavior of that stete after a
change in the link gain to the original one. Since each state is given by alinear combination of
different behavior modes, we must also investigate the impact of the link change in each

behavior mode component. The real part of the ratio (of changed state behavior to original one)



determines a factor that multiplies the original behavior mode, either amplifying or dampening it.
The complex part determines a phase gain to the origina behavior mode. To obtain the behavior
mode impact, we must divide each component in equation (14) by the corresponding component

in equation (10):

aﬂrji ﬂf)j C’?‘t
+r,—t=e"z(0
ﬂ&;(t)/ﬂau _ gﬂaH "oy o A )= 1A, 17 ¢ (17)
Xij(t) rjie-itzj(o) ri Ta,  Yla,

Equation (17) reemphasizes the role that the first time derivatives of both eigenvector and
eigenvalue with respect to the link gain have on the new behavior of state xi(t). Since the ultimate
goal of thisformal model analysisis inform policy, it isimportant to compute the overall impact
of changes by alink (or loop) gain to the overall behavior of astate. This overall impact requires
addition of the individual impacts of different modes. Since the behavior modes are composed
by amix of oscillatory modes, exponential growth and decay and the coefficients change with
time an automated implementation of the method will provide a mechanism to easily visuaize

the result and select the links or loops to change to obtain the desired behavior.

3.2. System Behavior: Link Eigenvalue and Link Eigenvector Sensitivi ties

Returning to equation (16), we observe that the partial derivatives of the eigenvalue (I ;) and
? r.
eigenvector (rji) with respect to alink gain (a), respectively % and 1‘% can be understood
in the context of previous work on link gain eigenvalue elasticity (Forrester 1982, 1983). In his
research Nathan Forrester (1982, 1983) suggested measuring the sensitivity of an eigenvalue
with respect to a specific link (aw) by simply computing the partial derivative of the eigenvalue
with respect to that link gain (ay). This would alow one to understand how the strength of alink

could impact specific modes of behavior.

LN

= Ta, (18)

S

In addition we could normalize the sensitivity measure to isolate the effect of the change in

link gain from the magnitude of the eigenvalue and link gain. This normalization could be

* See derivation in appendixA.



obtained multiplying the sensitivity by the ratio of the magnitude of the link gain (ay) to the
magnitude of the eigenvalue (I ;). He defined this measure eigenval ue elasticity with respect to
link gain or link gain (eigenvalue) elasticity.

1, Jal
et T 19
e |1
where Jay| is the absolute value of the link gain and ||l || is the Euclidean norm of a

potentially complex eigenvalue (I ;). Note that the partial derivative of the eigenvalue (1 ;) with
respect to that link gain (ay) is present in the second term of equation (16) characterizing how a
change in alink gain would affect the overall behavior of state xi(t).

While it has been suggested that eigenvector easticity would be required to understand how
structure ultimately influences behavior, no previous research other than ours and Saleh et .
(2005) hasimplemented it. To do so, define the eigenvector elasticity (r;i) with respect to alink
gan (ay) in asimilar way asthe link gain eigenvalue elasticity. First, we can measure the
sensitivity of an eigenvector component (r;i), the i-th component of the j-th eigenvector, with
respect to a specific link (ay) by smply computing the partial derivative of the eigenvector
component (rj;) with respect to that link gain (aw), alowing one to understand how the strength

of alink gain impactsthe intensity of the eigenvector component.

S = (20)
Second, we could normalize the eigenvector sensitivity measure to isolate the effect of the
change in link gain fromthe magnitude of the eigenvector component and link gain. This
normalization could be obtained by multiplying the sensitivity by the ratio of the magnitude of
the link gain (aw) to the magnitude of the eigenvector (rj;). Third, instead of considering a
specific eigenvector component we can account for the whole eigenvector (rj) and define this

measure as the eigenvector elasticity with respect to link gain or link gain eigenvector elasticity.

_ 11 ayl
Er- =__ 1 "l (21)
RN

where |ay| is the absolute value of the link gain and ||rj || is the Euclidean norm of the

eigenvector (r;). Note that the partial derivative of the i-th component of the j-th eingevector (rij)

10



with respect to the link gain (aw) is present in the first term of equation (16) characterizing how a
change in alink gain affects the intensity of in the mode of behavior of eigenvaluei (I ;).

While the notion of link gain eigenvalue and eigenvector elasticities are useful, note that
equation (16) provides an integrated way to assess how eigenvalue and eigenvector sensitivities
(i.e., the partial derivatives with respect to alink gain) work together to influence system

behavior. Rewriting equation (16) using eigenvalue and eigenvector sensitivities, we obtain:

g,

r
- Eigenvector sengitivity § W= % captures a change in intensity in the mode of

behavior (e7'z,(0)) due to achange in alink gain (aw)
12
« Eigenvalue sengitivity S W= E captures the change in the behavior mode (i.e.,
| {) dueto achangein thelink gain (a).
e The contribution of the eigenvalue sensitivity changes withtime and it becomes

the main determinant of behavior astime increases.

4. Behavior in Nonlinear Dynamic Systems

It is important to mention that the method of analysis as described so far applies only to
linear systems, representing a very small subset of typical system dynamic models. Traditional
system dynamics models are nonlinear, with eigenvalues and eigenvectors varying with time.
Assuming that we could find a solution to the state vector x(t), the first time derivative of a
nonlinear system (represented in the description of the method by equation 2) would also include

the derivatives of the eigenvectors, leading to:

X(t) =2, )+ 20 0] + 20 () 2 @F 0]+ .+ [z 0 0+ 2 0L 0] 23

Note that the equation above is much more complicated that equation (4). Since the
eigenvectors are linearly independent they span the n-dimensional space and we could write each

derivative of an eigenvector . (t) as the linear combination of its projections on different

eigenvectors. However, this prevents us from getting the desired separable state result of

11



equation (6). Therefore, when we consider a nonlinear system the analysis becomes much more
complicated.

Despite these complications, a possible way to still use the methodology derived above isto
linearize the nonlinear system of equations. Since the linearized solutions are a good
approximation of nonlinear systems solutions close to the operating point, the insights obtained
locally (through linearization) cannot be generalized to the rest of the system. Nevertheless, we
can circumvent this shortcoming by linearizing the system at every point in time (in practice,
every time step in the smulation) and computing its eigenvalues and eigenvectors. Applying the
methodology to the linearized system at every point in time allows us to compute how a change
in link gains influence a change in the behavior of interest. Equation (22) provides a compact
way to represent how changesin alink affect a state variable for alinear system, for alinearized

system we could write asimilar solution:

-t o 2 (t- to
ﬂ%ﬂ( )_ 3 (Srijkl . jklt)e.J( )zj t,) (24)
Ay =1

where each z(to) refers to the position of the system at the linearization time (to).
Since the linearized system provides a good approximation to the nonlinear system only

close to the operating point, we only care about solutions to equation (24) that happenearly in
time (t @,). Theresult of equation (24) at later times (t ® ¥ ) departs too far from where the

system is a close approximation to the nonlinear system. Hence, for nonlinear systems that are
linearized at every point in time, the impact of a change in link gain on system behavior can be
smplified by substituting t @, in equation (24). Equation (25) provides a good approximation
of the impact of a change in link gains to the behavior of state x;.

I (t J
: a(% ) a (S, +1,5 uto)2, o) (25)

Despite the additional complexity of nonlinear systems, by linearizing the system at every
point in time and then considering the impact of the link gains, we arrive at a genera solution
that issimilar to that of alinear system with exception to the exponential multiplier. Equation
(25) suggests that eigenvector sensitivity aso plays an important role in determining the impact

that a change in structure has on model behavior in nonlinear systems and it provides a

12



framework to include it in theresearch in model analysis. We hope that follow up research
implementing this method to nonlinear systems canshed more light on its usefulness to
traditional system dynamics models.

5. Application to a Linear System: The Inventory-Workfor ce Oscillator

We illustrate the concepts above with a version of the familiar workforce inventory model.
The model captures a ssmple production system. The model attempts to maintain desired
inventory by adjusting production via hiring and firing workers. More precisely: Inventory
integrates the difference between production and shipments. Shipments are determined by
demand reduced by stock-outs, should inventory fall too low. Production depends on the
workforce. And the workforce is “anchored” to the level necessary to meet expected demand.
The workforce is increased above this anchor if inventory is too low and conversely workforceis
decreased below the anchor if inventory istoo high. Expected demand is a smooth of actual
demand.

A stock and flow diagram of the mode! is shown below. The model is composed of three

state variables, four flows, three auxiliary variables, two exogenous variables, and five constants.

Minimun Sales
Time (MST)
53=X=> Inventory 8

| —
Producing O Sales
] S
) ) Desired Demand
Correction Inventory
Time (CT) \ DI)
Inventory/
Correction
(lC)
Productivity De'fﬁgfgt@%)
(PDY) Change in
Expected
Workforce De5|red Demand
W) Producmg (CED)
Hiring/Firing
Rate HFR) b 4
Time to Change
Deslred Expectations
Workforce (TCE)
Hire/FireTime
(HFT)

Figure 1 — Diagram of alinear system dynamics model.

| = P- S=PDYXW- D IC=(DI - 1)/CT
W = HFR= (DW - W)/ HFT DP=I1C+ED
DW= DP/PDY

ED=CED=(D - ED)/TCE
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The Jacobian (J) of the system above leads to the following relation:

é 0 PDY 0 o
J=§ YHFT>PDY CT -1/HFT J/HFT DYy
& 0 0 -1/ TCE §

The results above represent the characteristic polynomia and the eigenvalues in terms of link
gains. Analogously, we could have written the characteristic polynomial and eigenvaluesin

terms of loop gains. Since thissystem hasonly three loops:
Loop 1. A minor balancing loop associated with Workforce (W) with g;= -1/HFT.
Loop 2. A minor balancing loop associated with Expected Demand (ED), g,= -1/TCE.
Loop 3. A major balancing loop linking Inventory (1), Workforce (W), gg=-1/(CT HFT).

it is straight forward to see that the characteristic polynomial reduces to:®

¢ 0  PDY 0 o
J=%,/PDY g, - g,/PDYy
g o 0 9 #
¢ | -PDY 0
I1-J=§ g,/PDY | -g, g/PDYj
é 0 0 | - 9 g

P()=1(-ag)I - 9,)- gl -9,

PU)=1%+(-g- )" +(aQ - &) +0,8
And, the eigenvalues, for the example, in terms of the loop gains are:

=0,
1
lzz%' E 912"'493
1
|3:%+§ g12+4g3

We can easily compute the eigenvectors of the system using either link or loop gains, let us

proceed with loop gains. The eigenvectors are given by:
(Jl'i=| il’i),

® Theinterested reader can also verify the derivation of the characteristic polynomial in terms of the loop gainsin
Gongalves, Hines, Lertpattarapong (2000)

14



0 PDY 0 ¥nU &

u_ u
e 3/PDY G - gl/PDY ::’5’120 - 92312(1
0 0 9, s SEELS) 810
PDYr, = 0,1,

g g _
ﬁrll T Ol - ﬁrls =0,0;

g2r13 = 92r13

™D %(‘D) [N

gz .93+glgz'922r — gl

r.=1r,= I =
BT oppy Y PDY * PDY
g 9 4 ¢ (g1 +4g? +4g3)PDY9 g( g, ++/92 + 4g, )PDYF,’
A (gl - gzjgz *+ 0 o 3 u X u
é a é 29, a é 29, a
rh=2 9.9, Gr,=é 1 Ur, =@ 1 u
(0. - 9.)9, +9,)PDYU * & 0 ’e u
¢ 1 i e 0 Qe ° !
& qa 8 H & H
We can then represent the system behavior in matrix form:
¢ 9, o+ Jo7+4g, oy [ g+ g7+ 49, POV ‘o \
ci)a & ©- o+ 29, 29, € ez U
ewi(t)U=3 %9, 1 1 LeB VR E, (o)
gED t)lJ é((gl - 9,)9, +7,)PDY # 1 T 7
E=DUH o 1 0 0 & EEA
e u
e u
Expanding the equations above, we obtain the system below:
I (t) - O egztzi(o)_ (91 +ng2 +4ga)PDY e—;g’gl-dgf+4gggzz(o)+ (— g, + ’glz +493 )PDY e%g'glh,ngrAgS%ZS(o)
(91 -0, jgz + gs 293 293
L LN o 8 L 1 g0 o
W(t) — 0.9, % 21(0) + e_zgg i+ 22(0)+ e?éag 4+49s z (0)
((gl -0, )gz + gs)PDY

ED(t)=e%7(0)
The system of equations above permits us to compute the dominant behavior modes by

comparing the eilgenvector components for each behavior mode that influence a state. With this
purpose, we allow the time constants for inventory correction time (CT), hire-firetime (HFT),

and change demand expectations (TCE) to equa (e.g. 2 months), we obtain that g,= -1/HFT=-
1/2, g= -UTCE=-1/2, g3= -1/(CT HFT)=-1/4, and PDY =10, providing us with the following

eigenvectors:

15



é2 0 210+i10\/§@ g 0- i10-/30
N (. u_  _ u
rl-go.lurz-é 1 @I‘ —e 1 u
eltg & o H § o

Substituting them in the equations describing the behavior of state variables

I (t) = 2e°%z(0) + ( 10+i10+/3 )e (1'& ( 10- iloﬁ)e_%(l_iﬁ)t%(o)

Z (0)

W(t) =0.1e%% 21(0) + e—%‘(lﬂ. ) z (0) + e—%‘(li e

ED(t) = e %'z (0)

gt

Or in matrix form: eift)u ¢2 -1ch- i\B) 1((1+|\/§ ﬁ)t(o) G
M)f=g o1 1 uee 20

Ent)g § 1 0 o 4§ (€ i (0)3

@ d

The dominant behavior of state ED(t) is the exponential decay with rate g,(= — 0.5).
Comparing the magnitudes of the coefficients of the exponentia termsin I(t) and W(t), we
observe that the dominant behavior of those states is a decaying exponential, determined by the
pair of complex eigenvalues. Note also that in this simple system, only loop gains 1 (g;) and 3
(g3) influence the dominant behavior of 1(t) and W(t); and only loop gain 2 (g,) influences the
behavior of ED(t). To understand how the state variables are impacted by changes in loop (or
link) gains, we need to compute both the derivatives of eigenvalues and eigenvectors with
respect to the loop (or link) gains. In the derivation that follows we use loop gains. Equation

(31) provides a framework to integrate these impacts and tables 1 and 2 presents the necessary

derivatives.
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Table 1 — Derivatives of eigenvalueswrt loop gainsfor inventory -wor kfor ce example.

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3
1 1
|, =g, 2-% SVG +4g |3=%+—\/gf+493
Loop 1 . _ o) 1. 12 0
Hiring (gy) 19, = ——g —7 =29+ ;
o 2 ,’gl +4%g 9, ZE ng +4936
L00p2 ﬂll_l m:o h:
Demand Adj. (g.) 10, 99, 19,
Loop 3 L = L = 1 & :‘I—l
Inventory-wkforce (gs) 19, o o'+, oo o’ +4g

First, note that the derivative of the eigenvalue 2 and 3 are not influenced by loop gain 2 (the

derivatives are equal to zero.) Second, loop 3 does not affect the dampening of the complex

eigenvalues. In addition, note that increasing g; decreases the frequency (increases the period) of

oscillation. The complex part in the derivative has a different sign than the sign of the

eigenvalue' s complex part (b). Therefore, a changein g; decreases the complex part of the

eigenvalue and since f=2pb (or T = 2p/b) a lower value of b leads to slower frequency (or, a

longer period.) Analogoudly, increasing gs increases the frequency of oscillation, since the

complex part of the derivative has the same sign as the sign of the eigenvalue’s complex part (b).

Table 2 — Derivatives of eigenvectorswrt loop gainsfor inventory-wor kfor ce example.

Eigenvector 1 Eigenvector 2 Eigenvector 3
r :g % 00: ]UU g ( +[g? +4g, )PDY o . e( ,+4[07 +4g, )PDY o
do.- 9,)9,+95 (9.- 9.)g, +g,)PDY g & 29, % & 29, g
Loop 1 ¥, é + Sgi+ v é ® u 6 U
Hiing | 125 szggi @ | ¥ %g)%iPDY | In_grovg, T_go, o ?o g
(gl) gl 2 2 g3 - 9:)9% T9; g T9. 8 Os 8 ;;gl b} 8 O 8 :;gl +40, & H
Loop 2 I _ g -0,(0,-29) a(gf+g) { :1”2 =[o o o] s <o 0 0]
Demand | 1o, g0~ 0.)o.+a.) ((0.- 0.)o, +a.FPDY . :
Adi. (92)
:_oopt3 AL S 9% ___ LZEPDY?; 6i+29, @ o off | T POYE  ¢i+20, 9 03
nventory- | fg, @((gl' gz)gz+93) ((91' gz)gz +93) PDY g dg, 82g3 \Igl +4g; 4 ﬂ H dg, ng g ]91 +4g, 5 ﬂ ¢
wkforce
(9a)

Before we proceed, we should consider the impact of the changes of loop gainsin the

eigenvectors. Focusing mainly on the oscillatory eigenvalues let us consider the derivative of ra;

with respect to g;. First, the real part suggeststhat every incremental change in g; causes a
multiplication of (-PDY/gsz). The complex part of the derivative suggests a reduction in the



complex vaue b, reducing the phase lag that it could have on the system behavior. Since the real
and complex parts have the same sign the phase lag is positive. Loop 3 has a similar impact on
the phase lag. Incorporating the results from tables 1 and 2 in equation (21) provides an

integrated way to assess how the partial derivatives of the states with respect to a loop gain
influence system behavior.

] L€ -g+g PDY PDY
cal)u & gl+,/gf+4g +2g¢ G- 19 +4g, +20d)g
gﬁg s lo-g)oraf 2gf +493( 23 20,g; +4 ( )ue ¢z(0 U
é ué 9 y
Sl (ol i, g5 g, of
%TET%E g(gl 9,)0,+9. PDY 28 [j+ 28 ;}gl +4ggg e NS 3
& ‘nglt)":J é 0 %?A &
6% 4 é a

é G
(?1“ t l;j g g:" - gl(gl' Zgz) =+ 9 2 0 OH
e, 0 ¢ (9 92)9.+ @) (0,- 9.)9,+9s 5 e e*z(0) @
ewla_ % oflore) 9,0, 2 0 og ee“?" T8 4 o)
€ ﬂgz u é((gl_ gz)gz+gs)2 PDY ((gl gz)gz+gg)PDY @ +y oF +4g, & u
Sgen(t)d @ t 0 ouee??l " 2,0)d
= -~ e
6 M9, 0 2 g

g H

enfjue -6 POV, g OB o S PovEh g 0B o G5
STJEH ¢ lo-olarof 2 égz 90 +40, 5 & 97+4g, 2% §93 oo+ & gl+4g@‘z’tt§ e,—gzt
eMi)u_e  -gg, L Jl—t ok
€ 1g, U §(g- g)o,+a,fPDY Jo/ +4g, o' +4g; R
set £ : : fﬁf@
6f%: g e

& U

Each mode of behavior (e?"t) ismultiplied by a (potentialy complex) factor
Al 2, . . . . : .
g— +r;, —t—, influencing the intensity of the original behavior mode and potentially the
To. "o o
phase lag. The results may be easier to interpret after we substitute values for each of the loop
gains. Substituting the values for each loop gain (g1, 92 ahd gs) and productivity (PDY) suggests

that the oscillatory modes remain dominant.

5 . € @ 20/30 aezq/éo %2 20/50 aego/éou é ) a . .
€ft) U &8 20+|——+| e & s Ea—L é X 0
gﬂ\lgt 0e AR otk ¢72(0 3;‘?.[[\11\%)@ da+r2) 0 ol -iw%:(O) G,
i), .1 .ﬁg PO B R R C
g fg o e 2 26 35 @i, 08mka Bt 0 O Sk U
JED(); €o 0 G2 (0 STED(t); e H@ 23(0)
6o 6 g : dg Yo, .
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ént)u g g §4o+|40f §20 ziﬁ’-t §4o 4039 - Bo- |2L/§’-tue & u
gﬂ\‘[lgzﬂg 3ra zLeezlo)u
e : y a
?—t)g=é 04 |§t - |ist (1 ﬂtz (o)
eﬂg3 u a 3 2\7/
2 a s 0 o 0 ue iU
Ml} € UEAE 3(0)L,J
8% g g u

We can make sense of the impact introduced by changes in the loop gains by comparing the
cells of each of the three matrices above with cells in the original solution matrix (reproduced

below), according to the result from equati on (17).

u

It) o ¢ 1d1 |J§) 1((l+|«/§ () u
? )4 § 01 1 @'1(”” (o)g
D() e 0 0 %4(1 "f)zs(o)é

For instance, it is possible to see that a changein gain 2 (g2) does not have an impact on the
oscillatory mode of behavior. The result makes intuitive sense because loop 2, a minor
balancing loop associated with Expected Demand (ED), does not contribute to the generation of
the oscillatory mode, as can be seen from eigenvalues 2 and 3. Nevertheless, achangein g
impacts al states in the system, increasing the amplitude associated with the exponential decay.
Note also that the size of the change is dependent on time, resulting from the amplification of the
change over time due to the change in loop gain.

The equations above a so suggest that changes in loop gain 1 (g1) do not impact the behavior

of expected demand (ED), which can be seen by arow of zeros in the respective gain matrices.

1
Furthermore, the change in g; amplifies the original exponential decay (e Et) by afactor of four

while also changing its sign. Perhaps more difficult to understand is the impact on the

: . . - -Lsiva) - iv3)
oscillatory mode of behavior, seenin the coefficients for both e 4 ade*

. Again, the
real part of the ratio (of the changed state behavior to the original one) determines a factor that
multiplies the original behavior mode; and the complex part determines a phase gain to the

origina behavior mode. Consider first the impact of a changein g; on inventory (1)’ s behavior

i)

mode e ** ', theratio between changed and original state resultsin t 243 V3,0 The result

2 §3 6 4
suggests that the impact depends on time. The complex coefficient contributes to the

amplification with the square root of the sum of squares of the real and complex parts
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( \/gg ¢ +§? /3. £ ") and to the phase shift by the inverse tangent of the ratio of the real by the
6

complex parts (52 ggﬂf «/5 0 géoo) When time is close to zero (t € 0), the amplification to
6 e2;zjﬂ

the oscillatory mode is given by afactor of 2¥3 and the phase shiftisof _ P . To compute the
3 2

impact on the inventory (I) behavior at a specific timet, it would be required to substitute the

adequate value of time. For instance, at t = 4 the change in g1 causes an amplification to the

oscillatory mode by a factor of 3.05 (since ,|¢ = \/2_? =3.05) and a phase shift of

approximately -49° (since tan-l(. 245/3) »-49°). Itisnecessary to proceed in asimilar way to
compute the impact on different behavior modes. To inform policy it is still required to compute
the overall impact of changes in aloop gain to the overall behavior of a state, by adding the

individual impacts of different modes and selecting the desired behavior modes.

5. Discussion

The motivation for this paper is to provide a mathematical framework to understand the
contribution that changes in link (or loop) gains have on the time path behavior of state variables
in linear dynamic systems. Our research focuses on the analytical computation of the influence
of eigenvalues and eigenvectors on model behavior. This work follows closely the research
tradition established by Forrester (1982). Our work departs from previous efforts in terms of its
focus on analytical results and emphasis on the impact that first time derivatives of eigenvalues
and eigenvectors have on model behavior, instead of eigenvalue elasticities.

The method discussed above has the advantage of introducing ananaytical understanding of
the role of eigenvectors to influence behavior in linear systems; it is precisg, it is reproducible;
and it provides a standard way to analyze linear dynamic models. Second, the method provides a
direct measure of the impact of different loopson the behavior response of the system. Third,
the method characterizes measures and enumerates how different loops influence different
modes of behavior. Fourth, the method contributes to understanding of transient analysis instead
of simply steady state analysis. Finally, by linearizing a nonlinear system at every point in time,
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we arrive at a general solution that provides a good approximation of the impact of achangein
link gains to the behavior of state x;.

The method also has a number of shortcomings. First, solutions to the behavior of statesin
the system are required to obtain the analytical results. Also, the derivations aimed at the impact
of a change in structure to the behavior of linear systems. While linear systems are used to
derive the main results, consecutive system linearization extends the application to nonlinear
systems. Thisresult is stated but no exampleis provided. Further research that implements the
computation of eigenvalues, eigenvectors and the first derivatives with respect to the link (and
loop) gains and test different nonlinear models are required to assess the usefulness of the
proposed method. Asthe linear example suggests, the method poses challenges in terms of
interpreting and evaluating the impact of eigenvector and eigenvalue contribution to behavior
modes.

Despite its current challenges and limitations, we are hopeful that the method provides a
useful step to the analysis of how structure influences behavior as well as a new direction for

future research on the analysis of nonlinear dynamic systems.
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Appendix A — The Product of a Complex Number by Complex Exponentials

To understand the implication of multiplying a complex exponential by a complex number,

consider the following example: (@ +bi)ee+e)
we can rewrite the exponentia as: derd) = e
and by definition e =cos(d)+isin(d)

S0 we can rewrite the equation above as: & (a+bi)(codd) +isin(d))
(aec (cos(d) +i sin(d)) + (ber )i cos(d) - sin(d))
&[(acodd)- bsin(d))+i(bcog(d)+asin(d))

Multiplying by 1( «/—VZ:E) and defining E=tan(f ), we observe that ra+ = = cosff )and
b . . .
———=gn(f ) we can rewrite the equation above as:
Ja? +b’? €) .
b . 0 & b a . )
. — D an@)2+i& 2 codd)+—2sin(d)%
b s o) e sl B e o) i

[a? +b? <[(coslt ) cosld) - sint )sin(d))+i(sinf )cos(d) + cosff )sin(a))]
Since codd +f ) =(codf )cog(d)- sinff )sin(d)) and sin(d +f )= (sin(f )cos(d)+ codff )sin(d)), we
obtain;
( a’ +b2) e[codd +f ) +isin(d +f )]

) e

12 60

(\/m) ec+igd+tan 5555
Therefore, the complex number multiplying the exponential contributes to the amplification

with the square root of the sum of squares of the real and complex parts, and to the phase shift by

the inverse tangent of the ratio of the complex by the real parts. The inverse tangent of (X) is

defined intheinterval _ P o <P F’ . The inverse tangent takes a value of zero when x is zero; and
2

it takes a positive (negative) vaue when x is positive (negative).
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Appendix B - How loops influence system behavior?

To understand how changes in loop gains (i.e., the strength of a feedback loop) influence
system behavior, we follow a derivation analogous to the onein section3. The behavior of each
state in the system x;(t) is described by equation (10), which demonstrates that the behavior of

each state is influenced both by eigenvalues (I i) and eigenvectors (fi).

x(t)=r,€*2(0)+r,€ “z,(0)+ .. +1,€""2,(0)

While it is more common to write the characteristic polynomial (P(l )) and eigenvalues in
terms of the link gains (ay)), it is aso possible to write them in terms of loop gains (gx). Loops,
and their gains, may be a more comprehensive (better) way to describe structure, since modelers
often decide to include (or exclude) loops based on the dynamic hypotheses that they believe are
important in a system. Since we are ultimately interested in how structure drives behavior,
understanding how changes in loop gains influence system behavior may be more appropriate
than looking at how changes in links influence behavior. To capture how loops influence system
behavior, we take the partial derivative of each state in the system x;(t) with respect to its loop
gains. Therefore wetake a partial derivative of equation (10), characterizing the behavior of
state x;(t), with respect to aloop gain (gk).

L

r.e’z(0)+...+r ez (0 B1
o ﬂgk[h 2,(0) + ...+ 1,%2,(0)] (B1)

Which for linear systems, we can write equation as:

() _ 8 e, by 1?2, .0 o
Y T 0 B2
f9. ,al To. "9 o L (B2)

Equation (B2) suggests that for each component j (withj =1 to n) characterizing the behavior
of state x;(t), the contribution to the change in behavior of state xi(t) due to the change in loop
gain (gk) is composed of two terms. The first term captures a change in intensity in the mode of
behavior due to the contribution of the partial derivative of the the i-th component of the j-th
eigenvector with respect to loop gain (gk). Analogoudy, the second term captures a change in
intensity in the mode of behavior dueto (a) time, (b) the i-th component of the j-th eigenvector

and (c) the partial derivative of the i-th eigenvalue (I ;) with respect to loop gain (gy).
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With his suggestion of finding the characteristic polynomial in terms of the loop gains,
Forrester (1983) extended the results of link sensitivity and link elasticity to loop sensitivity and
loop eladticity.

Mg e =T ad

ST, M BT )

(B3)

In addition, we can extend the concept of link eigenvector sensitivity and elasticity
introduced in the previous section to loop elgenvector sensitivity and eigenvector easticity with
respect to loop gain or loop gain eigenvector elasticity.

AL T lad

and E , = = (B4)

S g, T BT g

Equation (B2) provides an integrated way to assess how |loop eigenvalue and eigenvector
sengitivity (i.e., the partial derivatives with respect to aloop gain) work together to influence

system behavior. In particular, we can rewrite equation (B2) as:

™ (t) = én_ (S%ijk +1,S jkt)e?"tzj (0) (B5)

r.
« Loop eigenvector sensitivity S %J captures a change in intensity in the mode
k

of behavior (€7'z,(0)) due to a change in aloop gain (g);

« Loop eigenvalue sensitivity § , = % captures the change in the behavior mode

k
(i.e., | i) dueto achange in the loop gain (g«); and
« The contribution of the eigenvalue elasticity changes with time, becoming the
main determinant of behavior over time.

Loop gain eigenvalue elasticity captures changes in the mode of behavior, that is, it measures
whether the state will have faster or ower growth, decay, or oscillations. In turn, loop gain
eigenvector easticity capture changes in the intensity of that behavior mode, that is, it measures
the importance of that behavior mode to the overall behavior of the state. To compute the
eigenvalues in terms of loop gains readers are directed to Forrester (1983), Kampmann (1996),
Goncalves, Hines and L ertpattarapong (2000) and Kampmann and Oliva (2006).
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