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Abstract 
 
While several methods aimed at understanding the causes of model behavior have been proposed in recent 
years, formal model analysis remains an important and challenging area in system dynamics. This paper 
describes a mathematical method to incorporate eigenvectors to the more traditional eigenvalue analysis of 
dynamic models. The proposed method derives basic formulas that characterize how a change in link (or loop) 
gain influence state behavior in linear dynamic systems.  Based on the insights developed from linear theory, I 
extend the method to nonlinear dynamic systems by linearizing the system at every point in time and evaluating 
the impact to the derived formulas. The paper concludes with an application of the method to a linear system.  
 
 

1. Introduction 

Formal model analysis remains an important and challenging area in system dynamics.  

Several methods aimed at understanding the causes of model behavior have been proposed in 

recent years (Kampmann 1996; Mojtahedzadeh 1997; Gonçalves, Lertpattarapong and Hines 

2000; Saleh and Davidsen 2001; Saleh 2002; Mojtahedzadeh, Richardson and Andersen 2004; 

Oliva 2004; Oliva and Mojtahedzadeh 2004; Güneralp 2005; Hines 2005; Kampmann and Oliva 

2005; Saleh, Davidsen and Bayoumi 2005). These methods trace back two threads in model 

analysis: the loop dominance work of Richardson (1995) and eigenvalue elasticity work of 

Forrester (1982).  Mojtahedzadeh (1997) and Mojtahedzadeh, Richardson and Andersen (2004) 

extend the loop dominance work first proposed by Richardson (1995).  The research proposes 

pathway participation metrics (PPM) to find the structure that most influences the time path of a 

given variable. The method provides a local assessment of how changes in a state variable of 

interest influence the net change of the same variable (
k

k
dx

xd & ). While the method has the 

advantage of being computationally simple it is not well suited for systems that oscillate, since 

the analysis is local and cannot capture global modes of behavior.  

Most of the remaining research traces back to eigenvalue elasticity theory proposed by 

Forrester (1982).  The method calls for the computation of eigenvalues and then explores how 

the eigenvalues change as link gains change, that is, link gain elasticities. Forrester showed that a 

complete description of link elasticities allows one in principle to calculate loop elasticities.  This 
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suggestion though never implemented in software, promised to provide an answer to how model 

structure, that is a set of feedback loops, determines model behavior. The particular calculation 

that Forrester suggested is actually not feasible.  As he realized later, Forrester’s suggested 

approach results in a system of equations that is over-determined – an effect of the fact that the 

number of loops increases much faster than the number links. Kampmann discovered that a small 

subset of loops is sufficient to uniquely describe eigenvalues (i.e. the behavior) of a system 

dynamics model (Kampmann 1996).  Using an Independent Loop Set (ILS) produces a smaller 

system of equations, a system that can be solved.  The Independent loop set (ILS) method has the 

important advantage of allowing us to calculate loop gains from link gains, where the number of 

links in a model is often small.  However, it has the disadvantage of relying on an ad hoc 

procedure to select the independent loop set (ILS).  Gonçalves, Lertpattarapong and Hines 

(2000) use Mason’s rule to express the characteristic equation and its solutions (eigenvalues) in 

terms of loop gains (instead of link gains), which allows them to obtain loop gain elasticities 

directly.  While the method sidesteps the problems associated with an arbitrary selection of loops 

it has the shortcoming of requiring the computation of all loops in the model, a number that rises 

quickly even with moderate size models.  Oliva (2004) provides an extension to the method 

selecting first the shortest loops.  The shortest independent loop set (SILS) provides a systematic 

representation of the feedback complexity in its simplest components and it is the most granular 

description of the structure in a cycle partition.  Oliva and Mojtahedzadeh (2004) compare the 

results obtained with the SILS approach to that of PPM and find that the loops generating the 

main dynamics are often included in the SILS.  More recently, Kampmann and Oliva 2006 

explore the application of loop eigenvalue elasticity to three models to assess the potential of the 

method and find that the insights depend on the character and dynamics of the model.  

The work of Saleh, Davidsen and Bayoumi (2005) is most akin to ours in its interest in 

understanding the contribution of both eigenvalues and eigenvectors on model behavior. While 

we focus on the analytical computation of the influence of eigenvalues and eigenvectors on 

model behavior, Saleh et al. (2005) provide a computational method (implemented in Matlab) to 

calculate such influence. The motivation for this paper is to provide a mathematical framework 

for future work on eigenvector and eigenvalue analysis. This work follows the research tradition 
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of Forrester (1982).  Similarly to previous research, our interest between structure and behavior 

is expressed in terms of understanding how changes in links or loops gain affect the time path 

behavior of a state variable.  Our work departs from previous efforts in terms of its focus on 

analytical results and emphasis on the impact that first time derivatives of eigenvalues and 

eigenvectors have on model behavior, instead of eigenvalue elasticities.   

2. Behavior in Linear Dynamic Systems 

The formal structure of a linear system dynamics model with a vector of state variables x(t), 

where x(t) = (x1, x2, …, xn)’, a vector of first time derivatives of the state variables x& (t), where 

x& (t) = ( nx,...,x,x &&& 21 )’, a gain matrix J capturing the partial derivatives of the net change of a state 

variable with respect to another (the matrix xxJ nx  n   ∂∂ &=  is commonly known as the Jacobian 

of the system), and a constant vector b, can be represented compactly in the following way:  

bJxx +=&  (1) 

Consider now the solution to the homogeneous system. A standard result in linear systems 

theory is that the eigenvalues (λ) of the matrix J describe the behavior modes inherent in the 

model and are the solutions of the characteristic polynomial (P(λ)), where ( P(λ ) = λIn − J = 0 ). 

Assume for simplicity that the system matrix Jnxn has a complete set of n linearly independent 

eigenvectors (r1, r2,…,rn) with corresponding eigenvalues (λ1, λ2,…, λn ), where eigenvalues may 

or may not be distinct.  Since the eigenvectors are linearly independent, they span the n 

dimensional space, therefore an arbitrary value of the state x(t) can be expressed by the linear 

combination of the eigenvectors:   

( ) ( ) ( ) ( ) n21 rrrx tz...tztzt n+++= 21  (2) 

where zi(t), i=1, 2, …, n are scalars.  

Using the fact that by definition multiplication of the system matrix by their eigenvectors 

results in the product of the eigenvectors by eigenvalues (Jri=λiri), we can rewrite equation (2) 

by multiplying it by the system matrix Jnxn. 

( ) ( ) ( ) ( ) ( ) n21 JrJrJrxJx tz...tztztt n+++== 21&  

( ) ( ) ( ) ( ) n21 rrrx nn tz...tztzt λλλ +++= 2211            &  (3) 
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Since equation (2) defines the state vector x(t), we can take its first time derivative. In 

addition, using the fact that eigenvalues and eigenvectors are constant in linear systems, we can 

rewrite (2) to get: 

( ) ( ) ( ) ( ) n21 rrrx tz...tztzt n&&&& +++= 21  (4) 

Comparing the right hand side of (4) and (3), we obtain: 

( ) ( ) ( ) ( ) ( ) ( ) n21n21 rrrrrr nnn tz...tztztz...tztz λλλ +++=+++ 221121 &&&  (5) 

And since the eigenvectors are linearly independent, the equality can only hold if:  

( ) ( ) iii tztz λ=&  (6) 

The system above can be represented in matrix form as: 1   
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The solution of the homogeneous system of decoupled equations presented above is known: 
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 or ( ) ( )0i
t

i zetz iλ=  (8) 

Substituting the result in (8) in our original equation (2) yields:2  

( ) ( ) ( ) ( ) n21 rrrx 000 21
21

n
ttt ze...zezet nλλλ +++=  (9) 

                                                 
1 Note that we rewrite the results above more compactly in matrix form defining V as the nxn matrix whose n 
columns are the eigenvectors of J and defining the column vector z(t) with components (z1(t), z2(t), …  zn(t)). 
Defining V that way allows us to write equation (2) as ( ) ( )tt Vzx = . We can interpret the new equation as a change 

in variable and use it to rewrite the dynamic system, which yields: ( ) ( )tt JVzzV =&  or simply: ( ) ( )tt JVzVz 1−=& , 
where the computation of the inverse of the matrix of eigenvectors (V-1) depends on the value of all the system 
eigenvectors. The new system ( ( )tz& ) is related to the original one ( ( )tx& ) by a change of variable. The new system 

matrix    (V-1JV) corresponds to the system governing the z(t) state equations, where the change in each state ( ( )tzi& ) 

depends only on the product of the associated eigenvalue (λi) and the own state ( ( )tzi
).  Accordingly, we can write 

V-1JV=Λ , where Λ  is the diagonal matrix with the eigenvalues of J in the diagonal.  
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2 The initial values of z(0) can be obtained in terms of x(0) from the change in variable definition: ( ) ( )00 xVz 1−= . 
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3. How Links Influence System Behavior 

We focus our attention on equation (9) to understand how changes in link gains (i.e., the 

strength of model parameters) influence system behavior.  The behavior of each state in the 

system xi(t) can be described by: 

( ) ( ) ( ) ( )000 2211
21

n
t

ni
t

i
t

ii zer...zerzertx nλλλ +++=  (10) 

where r1i is the i-th component of the first eigenvector.   

The equation suggests that the dominant behavior mode of the state variable xi(t) will be 

determined by the relative size of each i-th component of each eigenvector jr , where j=1 to n.  

We can rewrite equation (10) above in matrix form: 
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Equation (9) highlights that the behavior of each state is influenced both by eigenvalues (λi) 

and eigenvectors (rji).  In addition, both eigenvalues (λi) and eigenvectors (rji) depend on the 

values of link gains (i.e., parameters in the model), because eigenvalues are solutions to the 

characteristic polynomial (P(λ)), where P(λ ) = λIn − J = 0  and the entries of the Jacobian (J) 

are the partial derivatives or the link gains (akl) in a system dynamics model. Therefore, a change 

in the gain of an arbitrary link (akl) results in a new Jacobian and different values for both 

eigenvalues (λi) and eigenvectors (rji).  To understand the nature of the impact of changes in link 

gains on system behavior, we take the partial derivative of each state in the system xi(t) with 

respect to its link gains.  From equation (10), we obtain the change in behavior of each state xi(t) 

due to changes in link gain (akl) as: 
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and taking the derivative of individual components, we obtain:3 
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We can rewrite equation (13) in a more compact way as:  

( ) ( )∑
=












∂
∂

∂
∂

+
∂
∂

=
∂

∂ n

j
j

kl

j

j

t?

ji
t?

kl

ji

kl

i z
a
?

?
e

re
a
r

a
tx j

j

1

0  (14) 

If we are interested in how changes in one link affect all state variables, we can write:  
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Because the eigenvalues and eigenvectors in liner systems are constant, the derivative of the 

exponential of the i-th eigenvalue (eλit) with respect to its eigenvalue (λi) yield a term that 

depends on time (teλit).  Therefore, we can rewrite equation (15) to yield: 
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Equation (16) suggests that for each component j (with j =1 to n) characterizing the behavior 

of state xi(t), the contribution to the change in behavior of state xi(t) due to the change in link 

gain (akl) is composed of two terms corresponding to: 

1. The contribution of the derivative of rji , the i-th component of the j-th eigenvector, with 

respect to link gain (akl); and 

                                                 
3 Note that the computation of the partial derivative of each term ( )0j

t?
ji zer j  assumes that the initial state ( )0jz  does 

not depend on the link gain.  State ( )0jz  is a new state variable – obtained after the change of variables – given by 

( ( ) ( )00 xVz 1−= ) where ( )0z  is the initial position vector of the new state variables and ( )0x is the initial position vector 
of the original state variables.  The inverse of the matrix of eigenvectors ( 1V− ) depends on the value of all 
eigenvectors and thus varies with changes in the link gain.  However, we do not differentiate it with respect to the 
loop gains because we can simply interpret it as a change in the initial position. 
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2. The contribution of the product of the rji , the i-th component of the j-th eigenvector, the 

derivative of the i-th eigenvalue (λi) with respect to link gain (akl), and time (t).  

The first term captures a change in intensity in the mode of behavior due to the contribution 

of the partial derivative of the the i-th component of the j-th eigenvector with respect to link gain 

(akl).  Analogously, the second term captures a change in intensity in the mode of behavior, but it 

is more complicated.  Here, the change in intensity grows with time, the i-th component of the j-

th eigenvector and the partial derivative of the i-th eigenvalue (λi) with respect to link gain (akl). 

Note that, if eigenvalues (λ) and eigenvectors (r) are complex their derivatives will also be 

complex.  In such cases, the exponentials will be multiplied by complex values which will 

influence not only the amplitude of the behavior mode, but will also lead to a phase shift.4  

The equation above suggests that early in time ( 0≅t ), the behavior mode will be mainly 

influenced by the first term, i.e., the derivative of the eigenvector with respect to the link gain; 

and later on (as ∞→t ), the behavior mode will be more influenced by the second term, i.e., the 

derivative of the eigenvalue with respect to the link gain.  Therefore, the behavior of a linear 

system will be highly determined by the second component at a high value of t and the dominant 

mode of behavior will be determined by the relative size of each 
kl
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.  Since the majority of 

the research in model analysis has dealt with eigenvalue elasticity – closely associated with the 

derivative of the eigenvalue with respect to a link (or loop) – we have focused myopically at long 

term behavior impact, that is, how changes in links (or loops) affect the long term behavior of a 

state variable.  These results may not play a significant role in the short term behavior of states of 

linear systems.  This research can help differentiate the contribution of both eigenvectors and 

eigenvalues to the overall behavior of a state due to changes in link or loop gains.  

3.1. Interpreting the Impact on Behavior Modes 

To understand and interpret the impact that a change in link gains has on the original 

behavior of a state variable, it is useful to consider the ratio of the behavior of that state after a 

change in the link gain to the original one. Since each state is given by a linear combination of 

different behavior modes, we must also investigate the impact of the link change in each 

behavior mode component.  The real part of the ratio (of changed state behavior to original one) 
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determines a factor that multiplies the original behavior mode, either amplifying or dampening it.  

The complex part determines a phase gain to the original behavior mode.  To obtain the behavior 

mode impact, we must divide each component in equation (14) by the corresponding component 

in equation (10): 
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Equation (17) reemphasizes the role that the first time derivatives of both eigenvector and 

eigenvalue with respect to the link gain have on the new behavior of state xi(t). Since the ultimate 

goal of this formal model analysis is inform policy, it is important to compute the overall impact 

of changes by a link (or loop) gain to the overall behavior of a state.  This overall impact requires 

addition of the individual impacts of different modes.  Since the behavior modes are composed 

by a mix of oscillatory modes, exponential growth and decay and the coefficients change with 

time an automated implementation of the method will provide a mechanism to easily visualize 

the result and select the links or loops to change to obtain the desired behavior.  

3.2. System Behavior: Link Eigenvalue and Link Eigenvector Sensitivi ties 

Returning to equation (16), we observe that the partial derivatives of the eigenvalue (λi) and 

eigenvector (rji) with respect to a link gain (akl), respectively 
kl
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in the context of previous work on link gain eigenvalue elasticity (Forrester 1982, 1983).  In his 

research Nathan Forrester (1982, 1983) suggested measuring the sensitivity of an eigenvalue 

with respect to a specific link (akl) by simply computing the partial derivative of the eigenvalue 

with respect to that link gain (akl). This would allow one to understand how the strength of a link 

could impact specific modes of behavior. 

kl

i
kl a

S
i ∂
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λ =  (18)  

In addition, we could normalize the sensitivity measure to isolate the effect of the change in 

link gain from the magnitude of the eigenvalue and link gain. This normalization could be 

                                                                                                                                                             
4 See derivation in appendix A. 
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obtained multiplying the sensitivity by the ratio of the magnitude of the link gain (akl) to the 

magnitude of the eigenvalue (λi). He defined this measure eigenvalue elasticity with respect to 

link gain or link gain (eigenvalue) elasticity.  

i
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E
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=  (19) 

where |akl| is the absolute value of the link gain and ||λi|| is the Euclidean norm of a 

potentially complex eigenvalue (λi).  Note that the partial derivative of the eigenvalue (λi) with 

respect to that link gain (akl) is present in the second term of equation (16) characterizing how a 

change in a link gain would affect the overall behavior of state xi(t).   

While it has been suggested that eigenvector elasticity would be required to understand how 

structure ultimately influences behavior, no previous research other than ours and Saleh et al. 

(2005) has implemented it.  To do so, define the eigenvector elasticity (rji) with respect to a link 

gain (akl) in a similar way as the link gain eigenvalue elasticity.  First, we can measure the 

sensitivity of an eigenvector component (rji), the i-th component of the j-th eigenvector, with 

respect to a specific link (akl) by simply computing the partial derivative of the eigenvector 

component (rji) with respect to that link gain (akl), allowing one to understand how the strength 

of a link gain impacts the intensity of the eigenvector component. 
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Second, we could normalize the eigenvector sensitivity measure to isolate the effect of the 

change in link gain from the magnitude of the eigenvector component and link gain. This 

normalization could be obtained by multiplying the sensitivity by the ratio of the magnitude of 

the link gain (akl) to the magnitude of the eigenvector (rij).  Third, instead of considering a 

specific eigenvector component we can account for the whole eigenvector (rj) and define this 

measure as the eigenvector elasticity with respect to link gain or link gain eigenvector elasticity.  
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where |akl| is the absolute value of the link gain and ||rj || is the Euclidean norm of the 

eigenvector (rj ).  Note that the partial derivative of the i-th component of the j-th eingevector (rij) 
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with respect to the link gain (akl) is present in the first term of equation (16) characterizing how a 

change in a link gain affects the intensity of in the mode of behavior of eigenvalue i (λi). 

While the notion of link gain eigenvalue and eigenvector elasticities are useful, note that 

equation (16) provides an integrated way to assess how eigenvalue and eigenvector sensitivities 

(i.e., the partial derivatives with respect to a link gain) work together to influence system 

behavior. Rewriting equation (16) using eigenvalue and eigenvector sensitivities, we obtain: 

( ) ( ) ( )∑
=

+=
∂
∂ n

j
j

t?
kljiklr

kl

i zetSrS
a

tx j

jij
1

0λ  (22) 

• Eigenvector sensitivity 
kl

ji
klr a

r
S

ij ∂
∂

=  captures a change in intensity in the mode of 

behavior ( ( )0j
t? ze j ) due to a change in a link gain (akl)   

• Eigenvalue sensitivity 
kl

j
kl a

?
S

j ∂
∂

=λ  captures the change in the behavior mode (i.e., 

λi) due to a change in the link gain (akl).   

• The contribution of the eigenvalue sensitivity changes with time and it becomes 

the main determinant of behavior as time increases. 

4. Behavior in Nonlinear Dynamic Systems 

It is important to mention that the method of analysis as described so far applies only to 

linear systems, representing a very small subset of typical system dynamic models.  Traditional 

system dynamics models are nonlinear, with eigenvalues and eigenvectors varying with time. 

Assuming that we could find a solution to the state vector x(t), the first time derivative of a 

nonlinear system (represented in the description of the method by equation 2) would also include 

the derivatives of the eigenvectors, leading to:   

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]ttzttz...ttzttzttzttzt nn nn2211 rrrrrrx &&&&&&& ++++++= 2211   (23) 

Note that the equation above is much more complicated that equation (4).  Since the 

eigenvectors are linearly independent they span the n-dimensional space and we could write each 

derivative of an eigenvector ( )tir&  as the linear combination of its projections on different 

eigenvectors.  However, this prevents us from getting the desired separable state result of 
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equation (6).  Therefore, when we consider a nonlinear system the analysis becomes much more 

complicated.   

Despite these complications, a possible way to still use the methodology derived above is to 

linearize the nonlinear system of equations.  Since the linearized solutions are a good 

approximation of nonlinear systems solutions close to the operating point, the insights obtained 

locally (through linearization) cannot be generalized to the rest of the system.  Nevertheless, we 

can circumvent this shortcoming by linearizing the system at every point in time (in practice, 

every time step in the simulation) and computing its eigenvalues and eigenvectors.  Applying the 

methodology to the linearized system at every point in time allows us to compute how a change 

in link gains influence a change in the behavior of interest.  Equation (22) provides a compact 

way to represent how changes in a link affect a state variable for a linear system, for a linearized 

system we could write a similar solution:  

( ) ( ) ( ) ( )∑
=

−+=
∂

∂ n

j
j

tt?
kljiklr

kl

i tzetSrS
a

tx j

jij
1

0
0

λ  (24) 

where each zj(t0) refers to the position of the system at the linearization time (t0). 

Since the linearized system provides a good approximation to the nonlinear system only 

close to the operating point, we only care about solutions to equation (24) that happen early in 

time ( 0tt ≅ ).  The result of equation (24) at later times ( ∞→t ) departs too far from where the 

system is a close approximation to the nonlinear system.  Hence, for nonlinear systems that are 

linearized at every point in time, the impact of a change in link gain on system behavior can be 

simplified by substituting 0tt ≅  in equation (24).  Equation (25) provides a good approximation 

of the impact of a change in link gains to the behavior of state xi. 

( ) ( ) ( )∑
=

+=
∂

∂ n

j
jkljiklr

kl

i tztSrS
a

tx
jij

1
00

0
λ  (25) 

Despite the additional complexity of nonlinear systems, by linearizing the system at every 

point in time and then considering the impact of the link gains, we arrive at a general solution 

that is similar to that of a linear system, with exception to the exponential multiplier.  Equation 

(25) suggests that eigenvector sensitivity also plays an important role in determining the impact 

that a change in structure has on model behavior in nonlinear systems and it provides a 
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framework to include it in the research in model analysis.  We hope that follow up research 

implementing this method to nonlinear systems can shed more light on its usefulness to 

traditional system dynamics models.  

5. Application to a Linear System: The Inventory-Workforce Oscillator 

We illustrate the concepts above with a version of the familiar workforce inventory model.  

The model captures a simple production system. The model attempts to maintain desired 

inventory by adjusting production via hiring and firing workers.  More precisely: Inventory 

integrates the difference between production and shipments.  Shipments are determined by 

demand reduced by stock-outs, should inventory fall too low.  Production depends on the 

workforce.  And the workforce is “anchored” to the level necessary to meet expected demand.  

The workforce is increased above this anchor if inventory is too low and conversely workforce is 

decreased below the anchor if inventory is too high.  Expected demand is a smooth of actual 

demand.  

A stock and flow diagram of the model is shown below. The model is composed of three 

state variables, four flows, three auxiliary variables, two exogenous variables, and five constants.  

Inventory
(I)

Workforce
(W)

Producing
(P)

Hiring/Firing
Rate HFR)

Desired
Inventory

(DI)

Inventory
Correction

(IC)

Correction
Time (CT)

Desired
Producing

(DP)

Sales
(S) Demand

(D)

Expected
Demand (ED)

Desired
workforce

(DW)Hire/FireTime
(HFT)

Time to Change
Expectations

(TCE)

Productivity
(PDY) Change in

Expected
Demand
(CED)

Minimun Sales
Time (MST)

 
Figure 1 – Diagram of a linear system dynamics model. 

 

I
•

= P− S = PDY ⋅ W − D

W
•

= HFR = (DW − W) / HFT

ED
•

= CED = (D − ED) / TCE

   

IC = (DI − I)/ CT
DP = IC + ED
DW = DP/ PDY
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The Jacobian (J) of the system above leads to the following relation: 

 

















−
⋅−⋅⋅−=

TCE/
PDYHFTHFT/CTPDYHFT

PDY

100
111

00

J  

 
The results above represent the characteristic polynomial and the eigenvalues in terms of link 

gains.  Analogously, we could have written the characteristic polynomial and eigenvalues in 

terms of loop gains.  Since this system has only three loops:  

Loop 1. A minor balancing loop associated with Workforce (W) with g1= -1/HFT. 

Loop 2. A minor balancing loop associated with Expected Demand (ED), g2= -1/TCE. 

Loop 3. A major balancing loop linking Inventory (I), Workforce (W), g3=-1/(CT*HFT). 

it is straight forward to see that the characteristic polynomial reduces to:5 
















−=

2

113

00

00

J
g
PDYggPDYg

PDY

 

















−
−−

−

=

2

113

00

0

J-I
g

PDYggPDYg

PDY

λ
λ

λ

λ  

)())(()( 2321 ggggP −−−−= λλλλλ  

P(λ ) = λ3 + (−g1 − g2)λ2 + (g1g2 − g3)λ + g2g3  

And, the eigenvalues, for the example, in terms of the loop gains are: 

λ1 = g2  

3
2

1
1

2 4
2
1

2
gg

g
+−=λ  

3
2

1
1

3 4
2
1

2
gg

g
++=λ  

We can easily compute the eigenvectors of the system using either link or loop gains, let us 

proceed with loop gains.  The eigenvectors are given by: 

(Jri=λiri), 

                                                 
5 The interested reader can also verify the derivation of the characteristic polynomial in terms of the loop gains in 
Gonçalves, Hines , Lertpattarapong (2000) 
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
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


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


=
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
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



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


















−

13

12

11

2

13

12

11

2

113

00

00

r
r

r

g
r
r

r

g
PDYggPDYg

PDY

 

132132

12213
1

12111
3

11212

rgrg

rgr
PDY

g
rgr

PDY
g

rgPDYr

=

=−+

=

 

PDY
g

r
PDY

gggg
r

PDY
g

rr 1
11

2
2213

11
2

1213 ;;1 =
−+

==  

( )

( )( )

( ) ( )





















 ++−

=





















 ++
−

=























+−

+−

=
0

1
2

4

0

1
2

4

1

3

3
2
11

3

3
2

11

3221

21

3221

1

g
PDYggg

;
g

PDYggg

;
PDYgggg

gg
gggg

g

321 rrr
 

We can then represent the system behavior in matrix form: 

( )
( )
( )

( )
( ) ( )

( )( )

( )
( )

( )









































+−

++−++
−

+−

=





















 ++




 +−

0

0

0

001

11

2

4

2

4

3

4
2

1
2

4
2
1

1

3221

21

3

3
2
11

3

3
2

11

3221

1

3
2
11

3
2
11

2

ze

ze

ze

PDYgggg
gg

g

PDYggg

g

PDYggg

gggg
g

tED

tW
tI

tggg

tggg

tg

 

Expanding the equations above, we obtain the system below: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0
2

4
0

2

4
0 3

4
2
1

3

3
2

11
2

4
2
1

3

3
2

11
1

3221

1 3
2
113

2
11

2 ze
g

PDYggg
ze

g

PDYggg
ze

gggg
g

tI
tgggtgggtg 





 ++





 +− ++−

+
++

−
+−

=

  ( ) ( )( ) ( ) ( ) ( )000 3

4
2
1

2

4
2
1

1
3221

21 3
2

113
2
11

2 zezeze
PDYgggg

gg
tW

tgggtgggtg 




 ++





 +−

++
+−

=  

( ) ( )01
2 zetED tg=  

The system of equations above permits us to compute the dominant behavior modes by 

comparing the eigenvector components for each behavior mode that influence a state.  With this 

purpose, we allow the time constants for inventory correction time (CT), hire- fire time (HFT), 

and change demand expectations (TCE) to equal (e.g. 2 months), we obtain that g1= -1/HFT=-

1/2, g2= -1/TCE=-1/2, g3= -1/(CT*HFT)=-1/4, and PDY =10, providing us with the following 

eigenvectors: 
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













 −−
=















 +−
=
















=

0
1

31010

0
1

31010

1
10

2 i
;

i
;. 321 rrr  

Substituting them in the equations describing the behavior of state variables 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )03101003101002 3

31
4
1

2

31
4
1

1
50 zeizeizetI

titit. −−+−− −−++−+=  

 ( ) ( ) ( ) ( ) ( ) ( )00010 3

31
4
1

2

31
4
1

1
50 zezeze.tW

titit. −−+−− ++=  

( ) ( )01
50 zetED t.−=  

Or in matrix form: ( )
( )
( )

( ) ( ) ( )
( ) ( )
( ) ( )







































−
+−−−

=
















−−

+−

−

0

0

0

001

1110
311031102

3

31
4
1

2

31
4
1
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2
1

ze

ze

ze

.
ii

tED

tW
tI

ti

ti

t

 

The dominant behavior of state ED(t) is the exponential decay with rate g2(= – 0.5).  

Comparing the magnitudes of the coefficients of the exponential terms in I(t) and W(t), we 

observe that the dominant behavior of those states is a decaying exponential, determined by the 

pair of complex eigenvalues.  Note also that in this simple system, only loop gains 1 (g1) and 3 

(g3) influence the dominant behavior of I(t) and W(t); and only loop gain 2 (g2) influences the 

behavior of ED(t).  To understand how the state variables are impacted by changes in loop (or 

link) gains, we need to compute both the derivatives of eigenvalues and eigenvectors with 

respect to the loop (or link) gains.  In the derivation that follows we use loop gains. Equation 

(31) provides a framework to integrate these impacts and tables 1 and 2 presents the necessary 

derivatives. 
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Table 1 – Derivatives of eigenvalues wrt loop gains for inventory-workforce example. 
 Eigenvalue 1 

 
λ1 = g2  

Eigenvalue 2 

3
2

1
1

2 4
2
1

2
gg

g
+−=λ  

Eigenvalue 3 

3
2

1
1

3 4
2
1

2
gg

g
++=λ  

Loop 1 
Hiring (g1)  

0
1

1 =
∂
∂
g
λ  















+
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∂
∂

3
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2
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Loop 2 
Demand Adj. (g2) 

1
2

1 =
∂
∂
g
λ  0

2

2 =
∂
∂
g
λ  0

2

3 =
∂
∂
g
λ  

Loop 3 
Inventory-wkforce (g3) 

0
3
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∂
∂
g
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3
2

13

2

4

1

ggg +
−=

∂
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3
2

13

3

4

1

ggg +
+=

∂
∂λ  

 

First, note that the derivative of the eigenvalue 2 and 3 are not influenced by loop gain 2 (the 

derivatives are equal to zero.)  Second, loop 3 does not affect the dampening of the complex 

eigenvalues. In addition, note that increasing g1 decreases the frequency (increases the period) of 

oscillation. The complex part in the derivative has a different sign than the sign of the 

eigenvalue’s complex part (b). Therefore, a change in g1 decreases the complex part of the 

eigenvalue and since f= 2πb (or T = 2π/b) a lower value of b leads to slower frequency (or, a 

longer period.) Analogously, increasing g3 increases the frequency of oscillation, since the 

complex part of the derivative has the same sign as the sign of the eigenvalue’s complex part (b).  

 
Table 2 – Derivatives of eigenvectors wrt loop gains for inventory-workforce example. 

 Eigenvector 1 
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Before we proceed, we should consider the impact of the changes of loop gains in the 

eigenvectors. Focusing mainly on the oscillatory eigenvalues let us consider the derivative of r21 

with respect to g1. First, the real part suggests that every incremental change in g1 causes a 

multiplication of (-PDY/g3). The complex part of the derivative suggests a reduction in the 
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complex value b, reducing the phase lag that it could have on the system behavior. Since the real 

and complex parts have the same sign the phase lag is positive. Loop 3 has a similar impact on 

the phase lag.  Incorporating the results from tables 1 and 2 in equation (21) provides an 

integrated way to assess how the partial derivatives of the states with respect to a loop gain 

influence system behavior.   
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ji ,  influencing the intensity of the original behavior mode and potentially the 

phase lag. The results may be easier to interpret after we substitute values for each of the loop 

gains. Substituting the values for each loop gain (g1, g2 and g3) and productivity (PDY) suggests 

that the oscillatory modes remain dominant. 
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We can make sense of the impact introduced by changes in the loop gains by comparing the 

cells of each of the three matrices above with cells in the original solution matrix (reproduced 

below), according to the result from equation (17). 
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For instance, it is possible to see that a change in gain 2 (g2) does not have an impact on the 

oscillatory mode of behavior.  The result makes intuitive sense because loop 2, a minor 

balancing loop associated with Expected Demand (ED), does not contribute to the generation of 

the oscillatory mode, as can be seen from eigenvalues 2 and 3.  Nevertheless, a change in g2 

impacts all states in the system, increasing the amplitude associated with the exponential decay. 

Note also that the size of the change is dependent on time, resulting from the amplification of the 

change over time due to the change in loop gain.  

The equations above also suggest that changes in loop gain 1 (g1) do not impact the behavior 

of expected demand (ED), which can be seen by a row of zeros in the respective gain matrices.  

Furthermore, the change in g1 amplifies the original exponential decay (
t

e 2
1

−
) by a factor of four 

while also changing its sign.  Perhaps more difficult to understand is the impact on the 

oscillatory mode of behavior, seen in the coefficients for both 
( )ti

e
31

4
1

+−
and 

( )ti
e

31
4
1

−−
.  Again, the 

real part of the ratio (of the changed state behavior to the original one) determines a factor that 

multiplies the original behavior mode; and the complex part determines a phase gain to the 

original behavior mode.  Consider first the impact of a change in g1 on inventory (I)’s behavior 

mode 
( )ti

e
31

4
1

+−
, the ratio between changed and original state results in 









+− ti

t
6
3

3
32

2
. The result 

suggests that the impact depends on time. The complex coefficient contributes to the 

amplification with the square root of the sum of squares of the real and complex parts 
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ttan ).  When time is close to zero ( 0≅t ), the amplification to 

the oscillatory mode is given by a factor of 
3
32  and the phase shift is of 

2
π

− . To compute the 

impact on the inventory (I) behavior at a specific time t, it would be required to substitute the 

adequate value of time. For instance, at t = 4 the change in g1 causes an amplification to the 

oscillatory mode by a factor of 3.05 (since 053
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 ) and a phase shift of 
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o
 (since ( ) o1 49332 −≈−−tan ).  It is necessary to proceed in a similar way to 

compute the impact on different behavior modes.  To inform policy it is still required to compute 

the overall impact of changes in a loop gain to the overall behavior of a state, by adding the 

individual impacts of different modes and selecting the desired behavior modes.  

 
5. Discussion 
 

The motivation for this paper is to provide a mathematical framework to understand the 

contribution that changes in link (or loop) gains have on the time path behavior of state variables 

in linear dynamic systems. Our research focuses on the analytical computation of the influence 

of eigenvalues and eigenvectors on model behavior.  This work follows closely the research 

tradition established by Forrester (1982).  Our work departs from previous efforts in terms of its 

focus on analytical results and emphasis on the impact that first time derivatives of eigenvalues 

and eigenvectors have on model behavior, instead of eigenvalue elasticities.  

The method discussed above has the advantage of introducing an analytical understanding of 

the role of eigenvectors to influence behavior in linear systems; it is precise, it is reproducible; 

and it provides a standard way to analyze linear dynamic models.  Second, the method provides a 

direct measure of the impact of different loops on the behavior response of the system.  Third, 

the method characterizes measures and enumerates how different loops influence different 

modes of behavior.  Fourth, the method contributes to understanding of transient analysis instead 

of simply steady state analysis.  Finally, by linearizing a nonlinear system at every point in time, 
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we arrive at a general solution that provides a good approximation of the impact of a change in 

link gains to the behavior of state xi.  

The method also has a number of shortcomings. First, solutions to the behavior of states in 

the system are required to obtain the analytical results.  Also, the derivations aimed at the impact 

of a change in structure to the behavior of linear systems.  While linear systems are used to 

derive the main results, consecutive system linearization extends the application to nonlinear 

systems.  This result is stated but no example is provided.  Further research that implements the 

computation of eigenvalues, eigenvectors and the first derivatives with respect to the link (and 

loop) gains and test different nonlinear models are required to assess the usefulness of the 

proposed method.  As the linear example suggests, the method poses challenges in terms of 

interpreting and evaluating the impact of eigenvector and eigenvalue contribution to behavior 

modes.  

Despite its current challenges and limitations, we are hopeful that the method provides a 

useful step to the analysis of how structure influences behavior as well as a new direction for 

future research on the analysis of nonlinear dynamic systems.  
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Appendix A – The Product of a Complex Number by Complex Exponentials 
 

To understand the implication of multiplying a complex exponential by a complex number, 

consider the following example:   ( ) ( )ii dceba ++  

we can rewrite the exponential as:   ( ) ii dcdc eee =+  

and by definition    ( ) ( )dsindcosed ii +=  

so we can rewrite the equation above as:  ( ) ( ) ( )( )dsindcosbaec ii ++  

( ) ( ) ( )( ) ( ) ( ) ( )( )dsindcosbedsindcosae cc −++ ii  

( ) ( )( ) ( ) ( )( )[ ]dsinadcosbdsinbdcosaec ++− i  

Multiplying by 1(
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 we can rewrite the equation above as: 
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Since ( ) ( ) ( ) ( ) ( )( )dsinsindcoscosdcos φφφ −=+  and ( ) ( ) ( ) ( ) ( )( )dsincosdcossindsin φφφ +=+ , we 

obtain: 
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Therefore, the complex number multiplying the exponential contributes to the amplification 

with the square root of the sum of squares of the real and complex parts, and to the phase shift by 

the inverse tangent of the ratio of the complex by the real parts. The inverse tangent of (x) is 

defined in the interval 
22
πφπ <<− . The inverse tangent takes a value of zero when x is zero; and 

it takes a positive (negative) value when x is positive (negative). 
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Appendix B - How loops influence system behavior? 
 

To understand how changes in loop gains (i.e., the strength of a feedback loop) influence 

system behavior, we follow a derivation analogous to the one in section 3.  The behavior of each 

state in the system xi(t) is described by equation (10), which demonstrates that the behavior of 

each state is influenced both by eigenvalues (λi) and eigenvectors (rji).   
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ii zer...zerzertx nλλλ +++=   

While it is more common to write the characteristic polynomial (P(λ)) and eigenvalues in 

terms of the link gains (akl), it is also possible to write them in terms of loop gains (gk).  Loops, 

and their gains, may be a more comprehensive (better) way to describe structure, since modelers 

often decide to include (or exclude) loops based on the dynamic hypotheses that they believe are 

important in a system.  Since we are ultimately interested in how structure drives behavior, 

understanding how changes in loop gains influence system behavior may be more appropriate 

than looking at how changes in links influence behavior.  To capture how loops influence system 

behavior, we take the partial derivative of each state in the system xi(t) with respect to its loop 

gains.  Therefore we take a partial derivative of equation (10), characterizing the behavior of 

state xi(t), with respect to a loop gain (gk).  
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Which for linear systems, we can write equation as:  
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Equation (B2) suggests that for each component j (with j =1 to n) characterizing the behavior 

of state xi(t), the contribution to the change in behavior of state xi(t) due to the change in loop 

gain (gk) is composed of two terms. The first term captures a change in intensity in the mode of 

behavior due to the contribution of the partial derivative of the the i-th component of the j-th 

eigenvector with respect to loop gain (gk).  Analogously, the second term captures a change in 

intensity in the mode of behavior due to (a) time, (b) the i-th component of the j-th eigenvector 

and (c) the partial derivative of the i-th eigenvalue (λi) with respect to loop gain (gk).  
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With his suggestion of finding the characteristic polynomial in terms of the loop gains, 

Forrester (1983) extended the results of link sensitivity and link elasticity to loop sensitivity and 

loop elasticity. 
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In addition, we can extend the concept of link eigenvector sensitivity and elasticity 

introduced in the previous section to loop eigenvector sensitivity and eigenvector elasticity with 

respect to loop gain or loop gain eigenvector elasticity. 
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Equation (B2) provides an integrated way to assess how loop eigenvalue and eigenvector 

sensitivity (i.e., the partial derivatives with respect to a loop gain) work together to influence 

system behavior. In particular, we can rewrite equation (B2) as: 
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• Loop eigenvector sensitivity 
k

ij
kr g

r
S

ij ∂
∂

= captures a change in intensity in the mode 

of behavior ( ( )0j
t? ze j ) due to a change in a loop gain (gk); 

• Loop eigenvalue sensitivity 
k

i
k g

S
i ∂

∂λ
λ = captures the change in the behavior mode 

(i.e., λi) due to a change in the loop gain (gk); and 

• The contribution of the eigenvalue elasticity changes with time, becoming the 

main determinant of behavior over time. 

Loop gain eigenvalue elasticity captures changes in the mode of behavior, that is, it measures 

whether the state will have faster or slower growth, decay, or oscillations. In turn, loop gain 

eigenvector elasticity capture changes in the intensity of that behavior mode, that is, it measures 

the importance of that behavior mode to the overall behavior of the state. To compute the 

eigenvalues in terms of loop gains readers are directed to Forrester (1983), Kampmann (1996), 

Gonçalves, Hines and Lertpattarapong (2000) and Kampmann and Oliva (2006).  


