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Abstract—In its unparalleled wisdom nature creates adaptively complex self-organizing systems 
(SOS), which produce the dynamic (i.e., through-time) behavior patterns that physicists and life 
scientists see. A system is an organized group of interacting components working together for a 
purpose. Control over the system's organization is either centralized in a distinct subsystem, or 
distributed among evenly contributing components. Distributed control enables self-organizing 
systems to create globally coherent behavior patterns (i.e., dynamics) spontaneously out of local 
component interactions. 
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Introduction 

 What links embryos and hurricanes, the pattern of stripes on a zebra and the rhythmic 
contraction of your heart, or persistent cycles in real estate markets and neural networks, is that 
they are all self-organizing systems: their dynamics arise spontaneously from their internal 
structure. Their feedback-loop structure amplifies small perturbations (variations), generating 
behavior patterns in space and time that create path dependence. SOS dynamics is typically non-
linear because of the circular or feedback-loop relationships among system components. Positive 
feedback leads to explosive growth dynamics, which ends when all component behavior has 
been absorbed into a new configuration pattern (i.e., attractor), leaving the system in a stable, 
negative feedback state. 
 Intrigued by SOS ideas and processes, such as autocatalysis, autopoiesis, bifurcation, 
chaotic attractors and fractals, business researchers and practitioners eagerly adopt them. 
Evidently, SOS business applications fall into two unambiguous categories. The first is 
metaphorical and the second computational. 
 Challenged by today's accelerating economic, environmental, social and technological 
change, and by the growing complexity of the systems in which we live, managers borrow nearly 
arbitrarily fashionable scientific concepts. Philosophers, literary or art critics and mystics support 
metaphorical SOS connotations. Nobody can forbid metaphors, but simile and analogy alone 
describe SOS outcomes onlyneither why nor how their processes work, thereby treating self-
organizing systems as if they were a black box. 
 Much more conducive to effective decision making through high-level learning, the second 
applications category entails multi-loop translations among SOS language, pictures and models 
(mathematical and simulation). Its purpose is to make the black box transparent; to understand 
why and exactly how SOS generate magnificent patterns; how SOS structure causes behavior. 
 The metaphorical SOS treatment with examples linking business to nature captures the 
imagination of business managers and scholars, but demands maintaining a tolerant yet skeptical 
view of its connotations. Benefiting from SOS requires preserving their rigor through simulation 
modeling. Modeling SOS also helps avoid either being unduly metaphorical (i.e., hand waving), 
or blindly trying to import theories from the physical and life sciences to our domain's craft. 
Indeed, the benefit from computing SOS dynamics is understanding contemporary business 
phenomena, such as the emerging virtual enterprise networks (VENs) with their autopoietic 
industry value chains. 



The need for a new metaphor 

The madhouse rate at which business is changing today no longer bears any resemblance to some 
managers' internal models of reality. Consequently, full of stress, uncertainty and anxiety, they 
do not know how to act. Founder and CEO emeritus of VISA, Dee Hock (1998) sees three ways 
in which managers might respond: 
 First, they can try to impose their perception of reality on external circumstances to make 
reality behave the way it shouldwhat many institutions try to do today. The second alternative is 
for managers to go into denial, refuse to think, insulate themselves from reality or create another 
reality they do understand. The third alternative requires that managers examine their internal 
models of reality and try to change them. This is difficult because it (a) questions one's whole 
identity and sense of value in the world, and (b) requires high-level learning. Yet, this is the only 
alternative that works. 
 The internal or mental model of almost everyone in the world today shows in the machine 
metaphors we utter: he's a big wheel, she went ballistic, he's got a screw loose, the group is 
ticking like a clock, we need to get in high gear, let's reengineer the organization, etc. All these 
are machine metaphors and analogies. But you would die if you reengineered your body 
according to them. Where would the CEO of the immune system and the brain be? 
 Business leaders have built for years on Newton's mechanics principles, as if people were 
gears in a timepiece. And it worked, until modern life's speed of change and complexity began to 
overwhelm grand hierarchies, from the Soviet Union to the mainframe computer. The new 
framework for business is the biological world, where efficient actions produce robust results 
through autopoietic adaptation (Zeleny 2000). 
 Nature helps discover alternatives to mechanical organization. Focusing on nature's 
underlying system structures or processes explains the dynamics in living systems. Examples of 
such systems are human learning and intelligence, organizational adaptation and development, 
and the historical evolution of business firms. SOS ideas help organizational change efforts, such 
as business process (re)design. Self-organization entails spontaneous system change, however, a 
constant evolution enabled by distributed control and triggered by internal variations. 
Consequently, for a firm to exist, adapt, survive and evolve, it must integrate its suppliers and 
customers, and collaborate with competitorsa huge chunk of its business environment. 

SOS: The new science 

SOS have grown out of many disparate scientific fields, including physics, chemistry, biology, 
cybernetics, computer modeling, and economics. This has led to a quite fragmented approach, 
with many different concepts, terms and methods applied to seemingly different types of 
systems. A fundamental concepts and principles core has emerged, however, applicable to all 
self-organizing systems, from simple magnets and crystals to brains and societies. Salient SOS 
characteristics include: (a) bifurcations and symmetry breaking, (b) distributed control, (c) far 
from equilibrium dynamics, (d) global order from local interactions, (e) non-linearity and 
feedback, (f) organizational closure, hierarchy and emergence, and (g) robustness and resilience 
(Heylighen 1999). 
 Nature's spontaneous emergence of SOS dynamics is easy to see both in the laboratory 
and in our day-to-day world. A simple example is crystallization, the appearance of beautifully 
symmetric patterns of dense matter in solutions of randomly moving molecules. Other examples 
are certain chemical reactions, such as the Brusselator or the Belouzov-Zhabotinsky (BZ) 



reaction, where it suffices to pump ingredients into a solution in order to see dazzling, pulsating 
color spirals (Fig. 1). 
 Found by Belousov in 1958 and studied by Zhabotinsky (1973), the Belousov-
Zhabotinsky (BZ) chemical reaction shows nature's SOS tendency as wave patterns in a Petri 
dish. The three progressive stages of Fig. 1 entail propagating oxidation waves in an unstirred 
layer of ferroin-malonic acid. Spiral waves develop when a gentle airflow through a pipette 
breaks the layer. 
 
Figure 1 The Belousov-Zhabotinsky (BZ) reaction (Zhabotinsky 1973). 

 

 The oscillatory BZ reaction dynamics has implications not only for chemistry but also for 
biological systems. It contradicts the second law of thermodynamics, which says that the natural 
tendency of any system is to run down from a state of order to disorder, from enthalpy (energy) 
to entropy. Apparently, under certain conditions, homogeneous closed systems oscillate 
spontaneously around their expected stationary states when approaching equilibrium. 
 Reconciling SOS with thermodynamics is simple in the crystallization case. Molecules 
fixed within a crystalline structure pass on their energy to the liquid in which they were 
dissolved. An increase in the liquid's entropy compensates for the decrease in the crystal's 
entropy. The entropy of the whole system, liquid and crystal together effectively increases. 
 The solution is less obvious, however, when SOS do not reach equilibrium. Belgian 
thermodynamicist Ilya Prigogine received a Nobel Prize for his work on this problem. He and his 
colleagues at the Brussels school of thermodynamics have been studying dissipative structures 
(Prigogine & Strengers 1984). 
 Like the BZ reaction, dissipative structures show self-organization. Necessarily open 
systems, energy and/or matter flow through them. A system is continuously generating entropy 
that is actively dissipated, or exported, out of the system. Thus, it manages to increase its own 
organization at the expense of order in the environment. The system circumvents the second law 



of thermodynamics simply by getting rid of excess entropy. Living organisms show dissipative 
spontaneous dynamics. Plants and animals take in energy and matter in a low entropy form as 
light or food. They export it back in a high entropy form, as waste products. This allows them to 
reduce their internal entropy, thus counteracting the degradation implied by the second law. 
 Exporting entropy does not yet explain how or why self-organization takes place in non-
linear systems, far from their thermodynamic equilibrium. Fortunately, autonomous systems in 
cybernetics complement the thermodynamicists' observations. Independently of its type or 
composition, an autonomous system always evolves toward a state of equilibrium (attractor). 
This reduces uncertainty about the system's state and, thereby, statistical entropy. System parts 
mutually adapt to the resulting equilibrium. Paradoxically, the larger the random perturbations 
(noise) that affect a system, the more quickly it will self-organize (produce order). 

Figure 2 Aspen groves, shoals of fish and termite towers are magnificent SOS examples in nature 
(adapted from Wheatley, 1996; photographs by M. Jackson). 

 

 The idea is simple: the more widely a system moves through its state space, the faster it 
ends up in an attractor. No attractor is reached and no self-organization takes place if a system 
stays put. Generally, non-linear systems have several attractors. An attractor is either a stable 
equilibrium, i.e., a fixed point or a limit cycle, and thereby nonchaotic, or an unstable 
equilibrium, i.e., aperiodic or chaotic. When caught in between attractors, a system is in a chance 
variation, called fluctuation in thermodynamics, which pushes it into either one of its attractors 
(Prigogine & Strengers 1984). 



 Since the 1950s and 1960s, when SOS were first studied in thermodynamics and 
cybernetics, many examples and applications have been discovered. Prigogine generalized his 
observations to argue for a new scientific worldview. Instead of the Newtonian reduction to a 
static being framework, he sees the universe as an irreversible becoming, which endlessly 
generates novelty. 
 Cyberneticians apply self-organization to the mechanisms of mind, to understand how the 
brain constructs mental models without relying on outside instruction. A practical application is 
neural networks, simplified computer models of how the neurons in our brain interact. Unlike the 
central reasoning control used in artificial intelligence, there is distributed control in a neural 
network (NN). All neurons are connected directly or indirectly with each other, but none is in 
control. Yet, together they manage to make sense out of complex patterns of input. 
 Laser light is another SOS example. Atoms or molecules excited by an input of energy 
emit the surplus energy as photons, normally at random moments in random directions. The 
result is ordinary, diffused light. Under certain conditions, however, the molecules become 
synchronized, emitting the same photons at the same time in the same direction. The result is an 
exceptionally coherent, focused beam of light. 
 Plants and animals also provide examples of spontaneous collective behavior. An aspen 
grove in Utah, for example, is the largest known living organism on earth (Fig. 2a). Each tree is 
connected to all others by the same underground root systemone vast connection. 
 Flocks of birds, gangs of elk, herds of sheep, shoals of fish (Fig. 2b) and swarms of bees 
react in similar ways. When avoiding danger or changing course, they generally move together in 
an elegantly synchronized manner. Sometimes, the flock or shoal behaves as if it were a single 
animal. There is no head fish or bird leader, however, that tells others how to move. Computer 
simulations reproduce this behavior by letting individuals interact according to a few simple 
rules, such as keeping a minimum distance from others and following the average direction of 
neighbours' moves. A global coherent pattern emerges out of local interactions. 
 Similarly, the twenty-foot termite towers in the Australian savanna are the result of 
distributed control (Fig. 2c). Each termite colony is a magnificent example self-organization, 
producing intricate towers from the seemingly random movements of many individuals. Relative 
to the size of their builders, termite towers are the tallest structures on Earth (Wheatley 1996). 

Metaphorical SOS applications 

Nature helps managers willing to re-examine and to change their internal models of reality. As 
employees pursue their daily routines, changed managers encourage them to experiment, to make 
messes, to seek information and assistance in search of new ways to keep the company mission 
alive. Meanwhile, they create new streams of performance data so everyone can see what's 
working. In time, unpredictable new structures and flows take shape, success building on 
success. Whether because of financial or other stakes, employees display boundless new 
eagerness for the work they control. Instead of driving ambiguity and instability out, managers 
who adhere to nature embrace them both. 
 SOS principles won't succumb, however, to program-of-the-month syndrome because self-
organizing adaptation is a ceaseless process in a real-time world of global business, with 
technologies, markets and relationships emerging and disappearing amid a fury of constant 
communication. And it recognizes the best of the baby-boomer culture and the detachment of 
Generation X. Naturally, some firms could be engulfed by the chaos they create but, so far, 
Petzinger (1997) sees nothing but success stories to report: 



 In rural Virginia, for example, productivity soars at Rowe Furniture after workers take over 
production scheduling and problem-solving. 

 At Koch Industries of Wichita, refinery operators who once turned dials according to 
carefully assigned procedures now come up with their own control techniques, causing 
huge gains in output. 'Complex human systems, whether societies or organizations, can 
only function properly by spontaneous order' says Charles Koch, who heads the $25-
billion-a-year energy company. 

 It's not some feel-good impulse driving executives in this direction: there's simply no faster 
way to react to change. Central planning is considered futile at Cardinal Environmental Inc. 
of Oklahoma City, which instead relies on its employees to act on ever-changing customer 
cues. 'We function like an amoebae that flows with the environment and constantly 
reshapes its body', says owner Steve Mason. 

 On a larger scale, Monsanto is hatching a bold new R&D initiative from the self-
coordinated effort of several employee teams. 'If an institution wants to be adaptive', 
Monsanto Chairman Robert Shapiro says, 'let go of some control, and trust people'. 

 With self-organization seen both as a movement and good management, a diverse club of 
major outfitsCiticorp, Coca-Cola, Honda, Intel and the Veterans Hospital Administration 
among themhave become corporate affiliates of the Santa Fe Institute, the leading think 
tank on complex adaptive systems. 

 A hot new magazine in Boston called Fast Company is riding the wave of bottom-up-
leadership with distributed managerial control. 

 'Self-organization is all about de-engineering', says Ken Baskin, a former Bell Atlantic 
executive. Give employees the tools and the autonomy, he saysparticularly Americans, 
with all their education and independence'and they produce amazing results'. As a society 
we know the best way to organize people is freeing them to organize themselves. Why 
should it be any different in business? 

 Are SOS the wave of the future, asks Petzinger (1997), or are we all washed up? 
 
 Since the 1980s, several well-articulated and well-received books in the business literature 
advocate the study of organizations from a self-organizing systems perspective. For example, 
Morgan (1993) argues that the metaphor of organizations as a self-organizing, self-producing 
system offers powerful conceptual tools to examine organizations in flux. Equally fascinated by 
SOS connectedness and wholeness, Senge et al. (1994) describe organizations as complex 
nonlinear systems, directed by charismatic leaders who intervene at critical leverage points. 
 Wheatley (1996) continues this advocacy about organizations as self-organizing systems 
by conveying the pleasure of sensing a new way of thinking about organizations. She 
acknowledges the danger in playing with science metaphors, but she also argues that all science 
is metaphor. Wheatley reduces SOS to mere images and uses their outcomes to define 
consciousness, thereby turning science back to anthropomorphic mythology. 
 These authors and their followers love to metaphorically re-conceptualize organizations 
as dynamic, chaotic, non-linear systems, with self-similar structures, given to sudden disruptive 
changes, often triggered by small, seemingly random actions. They offer illustrative anecdotes of 
organizational activities and structures that appear to bear out SOS characteristics. No matter 
how breathtaking, however, anecdotes hardly make up empirical evidence. Anecdotes and 
images are just metaphorical attempts to imaginize organizations (Morgan 1993). 



 The history of, and reaction to, earlier scientific metaphors suggest that disillusionment 
sets in when the public tires of the metaphor and the research community fails to see formalized 
intellectual advances. This time around, simulation modeling holds out the promise that 
disillusionment can be pre-empted, or at least delayed (Turner 1997). 

Computational SOS applications 

Complexity theory and the exponential increase in computational power make simulation 
modeling a critical fifth tool in addition to the four tools used in science: observation, 
logical/mathematical analysis, hypothesis testing and experiment (Turner 1997). Simulation 
modeling permits researchers and practitioners in a variety of disciplines to examine the 
aggregate, dynamic and emergent implications of multiple nonlinear generative mechanisms. 
 Swarms are but one of the many self-organizing systems studied through simulation 
modeling. Inexpensive and powerful computers make it possible to model and explore highly 
complex systems. Simulation modeling helps the Santa Fe Institute researchers in New Mexico 
study complex adaptive systems, consisting of many interacting components, which undergo 
constant change, both autonomously and in interaction with their environment. 
 Typical examples are ecosystems, where different species compete or cooperate while 
interacting in their shared environment. By generalizing the mechanisms through which 
biological organisms adapt, Holland (1997) founded the theory of genetic algorithms. This 
approach to computer problem solving relies on the mutation and recombination of partial 
solutions, and the selective reproduction of the most fit new combinations. By letting units that 
undergo variation and selection interact through signals or resources, Holland extended 
simulation modeling to cognitive, ecological and economic systems. 

Figure 3 These ordinary differential equations (rate variables) by Lorenz (1963) produce the 
butterfly-like attractor (XZ phase plot) that has become the symbol of chaos theory (e.g., 
Ormerod's 1999 book Butterfly Economics). Model diagram, equations and graphs created with 
iThink Analyst 6 (Richmond et al. 2000). 

 



 Markets are good SOS examples, where producers compete and exchange money and 
goods with consumers. Although markets are highly chaotic, nonlinear systems, they usually 
reach equilibria, attractors that satisfy changing and conflicting customer demands. The failure of 
communism shows that markets' distributed control is more effective at organizing the economy 
than a centrally controlled system. SOS computer simulations corroborate what Adam Smith, the 
father of economics, called the invisible hand (Sterman 2000, pp. 169-177). 
 Biologist Stuart Kauffman (1995) also studies the development of organisms and 
ecosystems. His simulation models show how networks of mutually activating or inhibiting 
genes differentiate organs and tissues during embryological development. Complex networks of 
chemical reactions self-organize into autocatalytic cycles, the precursors of life. SOS develop 
autonomously, and natural selection helps them adapt to variable environments. 
 Holland's and Kauffman's work provides essential inspiration for the new discipline of 
artificial life. This approach, initiated by Chris Langton, successfully builds computer programs 
that mimic lifelike properties, such as reproduction, sexuality, swarming, co-evolution and arms 
races between predator and prey. 
 Simulation modeling is also the chief catalyst for chaos theory. Using a deterministic 
simulation model of a weather system, MIT meteorologist Edward Lorenz (1963) discovered that 
even the most minuscule of changes cause drastic alterations in weather (Fig. 3). That effect 
defied both intuition and what meteorologists had previously understood about their science. 

Figure 4 The chaotic attractor Ueda (1992) found in Duffing's system. Model diagram, equations 
and graphs created with iThink Analyst 6 (Richmond et al. 2000). 

 

 Intrigued by Lorenz's puzzle, scientists from different fields began experimenting with 
simulation models, only to discover similar dynamics. Yoshisuke Ueda (1992), for example, 
found a strange attractor in Duffing's system (Fig .4). The fundamental insight that minute 
changes can lead to large deviations in the behavior of a natural system has inaugurated a radical 



shift in how scientists see the world. For all practical purposes, the dynamics of even relatively 
simple systems is unpredictable. This is the butterfly effect (Fig. 4). 
 This does not mean that chaotic systems do not exhibit any patterns. While the idea of 
unpredictability is counterintuitive, chaos theory's second basic insight is even more so: behavior 
patterns do lurk beneath the seemingly random behavior of systems. Chaotic systems do not end 
up just anywhere. Certain paths show distributed intelligence or control (Fig. 3 & 4). 
 Like biologists who are simulating cells that arrange themselves into immune systems, 
economists are simulating the limited actions of individual buyers and sellers that form complex 
markets, industries and economies. Jay W. Forrester (1958) was the first to apply the 
computational principles of cybernetics to industrial systems. 
 Forrester's initial work in industrial systems has been subsequently broadened to include 
other social and economic systems and is now known as the field of system dynamics (Sterman 
2000). Relying on the computer, system dynamics provides a coherent method for solving 
business, economic and social problems, particularly when chaotic attractors are involved (see 
for example the work of Erik Mosekilde and other system dynamics colleagues in the System 
Dynamics Review: Special Issue on Chaos, Richardson & Andersen 1988). A prerequisite for 
systems thinking, system dynamics simulation is the basis of this essay's SOS modeling example, 
which follows the overview of a high-level learning process framework, applicable to virtually 
all business situations. 

High-level learning in and about SOS 

Effective decision making and learning in a world of growing dynamic complexity requires 
managers to become system thinkers. To synchronize their mental models with today's business 
reality, they must use high-level learning (Fig. 5), which preserves SOS rigor and helps discern 
contemporary business phenomena, such as the emerging self-organizing business networks with 
autopoietic industry value chains (Zeleny 1999). 

Figure 5 High-level learning: Multi-loop translations among language, pictures and models. 

 

 High-level learning requires multi-loop translations among language, pictures and models. 
The metaphorical SOS applications, which link business to science (Fig. 1) and nature (Fig. 2), 
do cover the translations in and between language and pictures on top of Fig. 5. Undoubtedly, 
these capture the imagination of business managers and scholars. Benefiting from SOS, however, 



requires preserving their rigor with simulation modelingthe same tool used for the advancement 
of SOS science itself (Holland 1997; Kauffman 1995; Turner 1997). 
 Explicit mathematical or simulation models are selective representations of managers' daily 
contact with the business reality. The relevance of modeling for learning to today's business 
manager, scholar and student has much to do with our struggle of defining, refining and 
reperceiving our daily contact with reality (Georgantzas & Acar 1995). The modeling process 
provides a different way of seeing managerial problems, a different mindset for thinking about 
business situations and for learning from their experiential ramifications. The process entails 
using all six translation feedback loops of Fig. 5. 

VEN and SME network incumbents: A simple SOS modeling example 

Modeling the autopoiesis (i.e., self-production) of small and medium enterprise (SME) networks, 
an integral part of the new network economy (Zeleny 2000), illustrates how simulation modeling 
can help us see SOS principles in action. After decades of research, market-centric SMEs are still 
poorly understood, despite their being the driving force of economic growth from the industrial 
districts of Terza Italia to the entrepreneurial cluster of American Silicon Valley, Bavarian Isar 
Valley, Norwegian Nordvest Forum, plus a large number of SME networks in other regions, 
from Australia to China to Spain. Although SMEs are driving jobs, disinflation and productivity 
on a global scale, they are still enigmatic with respect to what lies at the core of their success; the 
theory behind SMEs is absent (Zeleny 1999). 

Figure 6 Circular autopoiesis in market-centric value chains (adapted from Zeleny 1999). 

 

 Industrial district SMEs are neither market-scattered competing clusters, nor appendices to 
large firms and conglomerates. On the contrary, they form their own customer- or market-centric 
industry value chains, enabling themselves to respond to changing markets directly, bonding 



with markets through customized feedback linkages (Fig. 6). SME networks and their post-
modern VEN (virtual enterprise network) counterparts (Georgantzas 2000) are self-organizing 
systems, i.e., they meet the conditions that support self-organization in complex adaptive systems 
(Heylighen 1999; Zeleny 1999): 
 
1. The circular autopoiesis of a market-centric VEN or SME network (Fig. 6) begins with 

poiesis (production) in response to local differences as new customers and suppliers, new 
technologies and goods or services enter the scene. With the market still forming (right of 
Fig. 6), alternative chains develop to cover needs that the initial industry value chain 
incumbents do not. The rules and regulations governing new entrants adhere to the 
requisite manifestations of the firm and industry value chain frameworks. 

2. As the market grows, the network's incumbents build transforming bridges across local 
differences identified in the poiesis process, with the market-centric VEN or SME network 
components bonding through feedback or linkage coupling. The system moves toward an 
equilibrium state, its past behavior superseded by emergent dynamics corresponding to the 
network's feedback-loop linkages. Although there might still be exchange between the 
system and its environment, enabled by distributed control, linkages that embody its 
internal structure determine the network's organization and dynamics. At some point in the 
bonding process, equilibrium is reached when all suppliers and customers are integrated. 
The system then becomes organizationally closed and thermodynamically open (bottom of 
Fig. 6). 

3. As the market declines, rules associated with degradation or replenishment come into play. 
During this process, incumbent firms unable to adapt go out of business, their knowledge 
agents absorbed into newly emerging units in new markets. As a result of degradation, new 
differences become significant in the system, and its self-organizing (autopoietic) process 
moves into the next poiesis-bonding-degradation cycle (Zeleny 1999). 

 
 With the structure and rules behind circular autopoiesis in market-centric networks 
understood, including birth, death, membership and acceptance, it becomes fairly simple to build 
a simulation model for such a SOS (Fig. 7). VEN or SME network membership, i.e., VEN 
Members, is a real quantity that cannot grow forever. Every system that initially grows 
exponentially, eventually approaches the carrying capacity of its environment, whether food 
supply for moose, number of people susceptible to infection, or potential market for a good or 
service (Sterman 2000). As an autopoietic system approaches its limits to growth, it goes through 
a nonlinear transition from a region where positive feedback dominates to a negative feedback 
dominated regime. S-shape growth often results: a smooth transition from exponential growth to 
equilibrium, captured by the degradation rate's logistic function (Eq. 3, Fig. 7). 
 Through its reinforcing (positive) feedback loop, the poiesis rate feeds the VEN Members 
stock (Fig. 7). Conversely, degradation depletes VEN Members via its compensating (negative) 
loop. Poiesis (in new entrants/month) and degradation (in incumbents/month) are generally 
highly variable, but keeping them independent of the VEN Members to the market carrying 
capacity (VM\m) ratio simplifies things. Similarly, the fixed market carrying capacity 
(market=50) and poiesis constant (0.8), Eq. 4 & 6 of Fig. 7, respectively, also keep the model 
simple. The market carrying capacity is the number of incumbent VEN Members that the market 
can support in a sustainable manner. Although the numerical values of these relationships would 
differ for different VENs or SME networks, their qualitative shape would not (Sterman 2000). 



Figure 7 Structure and rules for market-centric VEN membership growth and decline. Model 
diagram and equations created with iThink Analyst 6 (Richmond et al. 2000). 

 

Figure 8 Phase plot for nonlinear market-centric VEN membership growth (arrows show flow 
direction through time). Graph created with iThink Analyst 6 (Richmond et al. 2000). 

 



 Turning to the actual dynamics, the phase plot of Fig. 8 shows the poiesis, degradation and 
net poiesis curves over the VM\m ratio, with an unstable equilibrium near the VM\m=0 point. 
The initial VEN or SME network population is very small (Eq. 1, Fig. 7) relative to the market 
carrying capacity (Eq. 4, Fig. 7). Positive (reinforcing) feedback dominates the system in the 
region where net poiesis has a positive slope, while negative (compensating) feedback is 
dominant where net poiesis has a negative slope (Fig. 8). The net poiesis rate rises nearly linearly 
for VM<m. The behavior of the system in this region resembles pure exponential growth. As the 
incumbent firm population density increases, net poiesis continues to rise, but at a declining rate. 
 At some point, net poiesis reaches a maximum. This point comes at a lower incumbent 
population density than the peak in the poiesis rate because degradation is increasing at an 
increasing rate. The peak of the net poiesis curve on the phase plot corresponds to the inflection 
point in the trajectory of VEN Members in the time domain (Fig. 9a: the point at which the VEN 
Members stock is rising at its maximum rate). 

Figure 9 Time domain for nonlinear market-centric VEN membership growth and decline. 
Graphs created with iThink Analyst 6 (Richmond et al. 2000). 

 

 Beyond the inflection point (Fig. 8), net poiesis, while still positive, drops, falling to zero 
just when the VEN or SME network incumbent population reaches the market's carrying 
capacity (VM=m). If the number of network incumbents exceeded their market's carrying 



capacity, individual firm sales and profit would become so scarce that degradation would exceed 
poiesis, and the number of incumbents would fall back toward the market carrying capacity. The 
equilibrium at VM=m or VM\m=1 is therefore stable (Fig. 8). 
 Figure 9 shows the behavior of the system over time for three cases: 
(a) when the initial incumbent population is much smaller than the market carrying capacity, 
(b) when the initial incumbent population is much larger than the market carrying capacity and 
(c) when the initial incumbent population is much smaller than the market carrying capacity 

but, subsequently, the market declines, making the incumbent population larger than its 
carrying capacity. 

 When VM0<m, net poiesis is increasing (Fig. 9a). As long as the net poiesis slope in the 
phase plot is positive (Fig. 8), positive feedback dominates the system and the network's 
population grows exponentially. VEN Members' stock reaches maximum growth when the 
network's incumbents reach the inflection point on the VEN Members trajectory. At that point, 
the net poiesis slope is zero; the positive and negative feedback loops offset each other. 
 As the VEN Members stock continues to grow, the net poiesis slope in the phase plot 
becomes negative; negative feedback dominates the system. And the equilibrium point at 
VM\m=1 is stable because the net poiesis rate has a negative slope in this region (Fig. 8). A 
network incumbent population less than the market carrying capacity grows at a diminishing rate 
until it reaches the market carrying capacity (Fig. 9a). 
 An incumbent population, however, larger than the market carrying capacity falls until it 
reaches the market carrying capacity from above (Fig. 9b). Similarly, when the market declines, 
its incumbent firm population becomes larger than the market carrying capacity and thereby falls 
until it reaches the market carrying capacity from above (Fig. 9c). This is how the poiesis-
bonding-degradation cycle (Fig. 6) works. 

Conclusion 

Distributed control among a self-organizing system's components enables globally coherent 
dynamics out of local component interactions. Circular or feedback-loop relationships among 
system components form the pathways to self-organization. The structure they create causes 
nonlinear SOS dynamics spontaneously. Positive feedback leads to explosive growth, which 
ends when all dynamics has been absorbed into an attractor, leaving the system in a stable, 
negative feedback state. 
 The new SOS science has grown out of many disparate scientific fields with many different 
concepts, terms and methods, applied to seemingly different types of systems. Out of all these, 
however, a core of fundamental ideas and principles emerges, applicable to all self-organizing 
systems, from simple crystals to brains to social organizations. Salient SOS characteristics 
intrigue business researchers and practitioners who eagerly adopt them. Consequently, SOS 
business applications are either metaphorical or computational. 
 The metaphorical SOS applications undoubtedly charm business managers and scholars, 
but their metaphors focus on SOS outcomes, treating self-organizing systems like black boxes. 
Conversely, the computational SOS applications employ the same tool used for the advancement 
of SOS science itself: simulation modeling. Much conducive to effective decision making 
through high-level learning, simulation modeling entails multi-loop translations among SOS 
language, pictures and models that render metaphorical black boxes transparent. 
 SOS metaphors are good as far as they provide a springboard for discussion about the 
possibilities that emerge when combining physical and social sciences. To benefit from the new 



SOS science, however, business managers and researchers must preserve SOS rigor. Simulation 
modeling helps explain why and see exactly how SOS generate their magnificent patterns; how 
SOS structure causes behavior; how poiesis-bonding-degradation cycles drive the autopoietic 
industry value chains of VENs and SME networks. As a critical fifth scientific tool, simulation 
modeling perhaps can help articulate an interdisciplinary, posthumanist SOS theory that shifts 
between contradictory elements in old and new sciences. Yet, that might require distributed 
control among management scientists and practitioners themselves... 
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