
19941NTERNATIONAL SYSTEM DYNAMICS CONFERENCE 

Foundations of Mental Model Research 

George P Richardson, David F Andersen, Terrence A Maxwell and Thomas R Stewart 
Center for Policy Research 

Abstract 

Nelson A. Rockefeller College of Public Affairs and Policy 
University at Albany State University of New York 

Albany, NY 12222, USA 

Ongoing research at the Rockefeller College is exploring the ability of subjects in a computer-based 
management laboratory to manage the implementation of welfare reform. Reflections on the design 
of such research have pushed us to develop a firmer theoretical foundation to guide our research on 
mental models in dynamic decision making. We posit that mental models are multifaceted, including 
distinguishable submodels focused on ends (goals), means (strategies, tactics, policy levers) and 
connections between them (the means/ends model). These distinctions, coupled with a view of 
human judgment from Brunswikean psychology, lead to a rich integrated theory of perception, 
planning, action. and learning in complex dynamic feedback systems. 

From that theory we derive classes of testable research hypotheses about decision making in dynamic 
environments in particular, design logic and operator logic hypotheses that have serious 
implications for system dynamics research and practice. The operator logic hypothesis suggests that 
systems interventions focused on understanding detailed system structure will have little impact if 
they are not captured in easy-to-digest chunks of strategic insight that managers can integrate into 
relatively simple means-ends as!'.ociations. Compounding the difficulties of mental model research is 
the likelihood that individuals' mental models can not be directly elicited without distortion. 
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Foundations of Mental Model Researcbl 

Decades of modeling practice aimed at improving understandings of policy dynamics have led the 
modeling community naturally to a current focus on mental models and learning (see, e.g. 
Modelling for Learning, special issue of the European Journal of Operational Research 59,1 
( 1992) ). It is also natural that the approaches system dynamics practitioners have taken to 
research on mental models and learning have been grounded in the circular causal, feedback 
perspective of the field. There is a touch of hubris in such undertakings, however, as modeling 
practitioners invade the domain of psychologists, education researchers and learning theorists and 
hope to make contributions by applying their special patterns of thought to phenomena long 
blessed with an extensive research tradition and literature. A glance at the bibliographies of the 
dissertations of Bakken (1993) and Kampmann (1992) shows the large background required for 
well grounded scholarship here. 

It was in the beginnings of such model-based research on mental models in dynamic decision 
making that we found we had opened questions we were not well prepared to answer. Our 
deliberations were facilitated by the interdisciplinary nature of the research team (two 
management-trained modelers, one psychologist, and one public administration-trained modeler 
who bridged some of the gaps among the others). The discussions were facilitated, we should say, 
only sometimes; many times our diverse points of view and the puzzles we encountered led to 
tortuously intricate discussions that frequently gave our research the feeling of two leaps forward, 
three steps back. 

Several unfamiliar concepts and principles emerged from these deliberations, which we put 
forward here to test against others' perceptions, with the ultimate goal of smoothing the way for 
future progress in model-based research on mental models and learning in dynamic decision 
making. We address the following ideas: 
Mental models are multifaceted. comprising (at least) three main components: an ends model, r 
means model, and a mean/ends model. 
The Brunswikean lens model extends and improves the classic cybernetic concept of the 
"perceived state'' of the system, moving the system dynamicist's continuous view closer to 
discrete human decision-making behavior. 
Operator lo~ic and desi~n lo~ic are fundamentally different means/ends models that decision
makers may employ and are grounded in very different views of the world to be managed. 
The mental model uncertainty principle: mental models are not directly accessible or observable; 
efforts to elicit mental models distort what is elicited. 
The ideas developed in the paper lead to a picture of decision making and learning in dynamic 
situations that can generate propositions and guide research. The paper concludes with the 
implications of these ideas for future research on mental models and learning in dynamic decision 
making. 

Foundations for mental model research: feedback theory 
At the heart of any feedback thinker's view of human decision making is the classic cybernetic 
loop involving the state of the system, the perceived state, goals, planned action, and, finally, 
action affecting the state of the system and closing the loop of perception, planning, and action. 
Three of the concepts in this classic loop are mental constructs: the perceived state, goals, and 
the planned action. A fourth mental construct is implicit: the cognitive model or "cognitive 
map"2 of the ways the system is structured and functions, which gives rise to selected plans of 
action. We conclude that a ··mental model" in a dynamic, planned action setting must be 
composed of (at least) these four elements: intentions, perceptions, system structures, and plans. 
Figure I shows the classic cybernetic loop overlaid on this view of mental models. 

1 Preparation of this paper was supported in part by the National Science Foundation (Decision, 
Risk, and Management Science Program) under grant no. SES-9211521. 

2 Strictly speaking, a cognitive map is a representation of a cognitive model of system structure 
and function, not the thing itself. 
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Figure 1: The components of mental models, placed in the context of the classic cybernetic 
process closing the loop involving the system state, the perceived state, planned action, and 
action altering the system state. 

These considerations lead to a definition or clarification of what we mean by the term "mental 
model." A mental model, as the term is used in the system dynamics literature on dynamic 
decision making, appears to us to comprise, at a minimum, three submodels: the ends model, the 
means model, and the means/ends model (Andersen and Rohrbaugh 1992). These three elements 
of a mental model are placed in the context of (or phrased in terms of) perceived information 
about the state of the system, which we take to be a field of cues which make up the perceived 
state. 

In the system dynamics literature on mental models and modeling for learning, there is a natural 
tendency to focus on perceptions of system structure - what we term here the means/ends 
model. The grounding presumption, or research hypothesis to be tested, is that "truer" 
perceptions of system structure lead in the direction of more effective policy decisions and 
system management. However, each of the other elements of a mental model shown in Figure 1 
influence the results of mental model research. Ignoring their distinguishable characteristics can 
be misleading. 

The Ends Model 
The Ends Model contains perceptions and information about what one is trying to accomplish in 
a decision or stream of decisions over time. There are local or proximal goals - goals which 
might be thought of as intermediary goals along the way toward more major goals. And there are 
global or distal goals- major or even ultimately important ends to strive toward, some perhaps 
unreachable. It is conceivable that there is a continuum of goals stretching between local and 
global ends. An individual's "ends model" in a dynamic decision-making task comprises this rich 
set of local-to-global goals. 

There is much to know about an individual's ends model in a given task (Gardiner and Ford 1980; 
Andersen and Rohrbaugh 1983, 1992). Are goals perceived? Are they clear? Do they match 
other observers' visions of the ends or goals to strive for? Do they conflict? Do they change 
over time or with repeated trials? Failure to understand aspects of subjects' goals can invalidate 
conclusions about the role of mental models in dynamic decision making. 

The Means Model 
Perceptions, together with a mental model of the functioning of the system, lead to a plan of 
action. Or more probably, several possible plans of action are reflected upon, either intuitively 
or analytically. The decision maker moves back and forth between cues from the system, 
selection of policy intervention strategies and tactics, and the selection of appropriate policy 
"levers" by which plans are implemented. One of those plans is selected from this reflection 
process (Miller, Galanter and Pribram 1960). 
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The Means Model thus contains strategies, tactics, and policy levers the decision maker believes 
are available or usable to move toward the perceived goals. Researchers can ask What kinds of 
action are possible? How does the research setting limit or expand subjects' understandings of the 
actions available? What kinds of changes can one make to initiate actions believed to be 
desirable? Are the believed policy levers really connected to the things necessary to bring about 
the changes desired? How extensive is the decision maker's logic underlying a strategy or tactic? 

The Means/Ends Model 
The Means/Ends Model is most familiar to systems modelers, for in one incarnation at least it is 
a mental representation of the stock-and-flow/feedback structure of a complex dynamic system 
modelers strive to capture realistically. Alternatively, the Means/Ends Model could be a simple 
chain of associations linking a policy lever to an outcome. Yet even here there are crucial 
distinctions that can affect the design and results of mental model research. There is a continuum 
of means/ends models, ranging from "operator logic" to "design logic." [The distinction is 
related to Forrester's "operator" and "observer" (Forrester 1973), but stems from the literature 
on human/computer interaction (see Montmollin and De Kayser 1986).] We address design and 
operator logic and their implications for mental model research in the next-to-last section of this 
paper. 

This vision of mental models - expanded to identify three important submodels and illuminated 
at this point by reflections on feedback thinking - is still far short of an adequate foundation for 
mental model research on dynamic decision making and learning. Its treatment of perception is 
woefully weak, and it fails to incorporate structures for learning. For a richer view of perception 
we tum to some of the psychological literature. 

Foundations: cognitive psychology - the Brunswikean lens model 
With hundreds of years of thought and at least a hundred years of research on perception, it 
should come as no surprise that the psychological literature has much to say about the feedback 
thinker's "perceived state." A psychology literature quite compatible with system dynamics 
perspectives rests on the writings of Egon Brunswik ( 1956). Brunswik emphasized a study of 
psychological phenomena in their environments, not isolated from them in controlled 
experiments. His emphasis is close to the inclusiveness of the system dynamicist's system 
boundary and endogenous point of view. Brunswik proposed a framework for studying perception 
and judgment known as the "lens model." 

The Brunswikean lens model 
From the stream of literature originating with Brunswik (Hammond 1955; Hammond, Stewart, 
Brehmer & Steinman 1975: Brehmer and Joyce 1988), we learn that the "perceived state" is 
productively thought of as a more complex process (see Figure 2) involving true descriptors of 
the state of the system, cues (measurements) derived from those true descriptors, and subjective 
cues (interpretations of those measures, potentially differing among observers using different 
conceptual models to interpret the data). 

Subjective cues are combinations of (objective) cues, assembled in a probably nonconscious way 
by the individual. They result from an attention process which includes scanning the field of all 
possible cues, selecting combinations to attend to, and gauging or in some sense getting an 
estimate of the cues. The individual then subjectively interprets the assembled cues in light of 
experience, memory, perceptions. and the other cognitive baggage that make our perceptions 
subjective and unique. Assessments of the current state of the system, and predictions of future 
states, emerge from these subjectively interpreted cues.3 

3 Cues are obtained from true descriptors by a measuring or information system. For example, 
unemployment may be a true descriptor, but the manager only has access to an estimate of 
unemployment based on the survey (the cue). Temperature may be the true descriptor, but the 
level of mercury in a thermometer is the cue. This tranlation from true descriptors to cues is done 
before the manager makes an assessment, so is not part of the cognitive process. 
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Judgment and decision making research in the Brunswikean tradition focuses on open-loop 
discrepancies between individual's assessments and predictions and the true state of the system. 
Considerable effort and sophistication are invested to capture accurately an individual's 
subjectively interpreted cues.4 But for our purposes, the elements in Figure 2 expand richly on 
the "perceived state" in the classic cybernetic loop of Figure 1. They form a perceptual basis for 
planned action, and they contain the seeds of the mechanisms by which they change. 

Incorporating ideas from Figure 2 in Figure I yields a richer and more explicit statement of a 
closed-loop theory of perception, planning, and action. The individual diagramed in Figure 3 
scans the system, selects and interprets cues from it, and subjectively interprets them as a basis 
for assessing and predicting the state of the system. Assessments and predictions are also bas~d 
on the individual's individual's cognitive model of the way the true system actually functions -
the structure linking means to ends. The individual's selection of appropriate strategies, tactics, 
and policy levers results, as in the classic cybernetic formulation, from a comparison of the 
desired state and the individual's assessment of the current state of the system and predictions for 
the future, all considered in light of the individual's cognitive model of system function. The 
diagram highlights the subset of four components of mental activity that we identify as the 
individual's mental model. 

Interpretation 
(information 
processing) 

Cognitive model 
of system functio~ 
(means-ends) 

\ 

Attention 
(scanning, selection, 
and measurement) 

Planned 

Cues~ 

State of 
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Internal ) 
dynamics 

~ 
Action 

action --~-+--~ 

Mental activity Svstem fuction frealitxl 

Figure 3: The cybernetic loop with a richer view of the psychology of the perceived state, 
showing attention and interpretation behaviors leading the selection and interpretation of cues 
that influence assessment, prediction and planned action. 

4 Quantitatively, assessments and forecasts in the Brunswikean lens model are expressed in 
terms of sequences of regression equations (possibly involving nonlinear function forms) involving 
combinations of cues, weights on cues measuring .their importance in the assessments and 
forecasts, and nonlinearities capturing saturation effects in cue significance. See Stewart 1988. 
For examples of cue detection efforts in the system dynamics literature, see Sterman (1988, 
1989), Richardson and Rohrbaugh (1989), Diehl (1992), and Kampmann (1992). 
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Figure 3 is the beginnings of an adequate foundation for research on mental models in dynamic 
decision making. It strives to capture the elements of mental models that are necessary for 
taking planned action to manage a dynamic system. The changes in such a system are the result 
of the implemented plans and the system's own internally generated dynamic tendencies. These 
changes result in new cues, which the individual pays attention to and interprets, leading to new 
assessments and predictions and revised plans. Figure 3 sketches a theory of how planned action 
emerges in a dynamic setting and how implemented plans and the system's own internally 
generated dynamics combine to create the new conditions that individuals perceive. It 
emphasizes that in such settings actors may be adjusting the cues they attend to and may be 
changing their interpretations of them in their efforts to improve their management results. 

There is a glaring omission in Figure 3, a set of elements that is involved in most management 
settings and most research on dynamic decision making: the mechanisms by which managers 
change their perceptions and behavior, that is, the mechanisms of learning. 

Learning 
Learning is the mix of processes by which people change their mental models. In the context of 
Figure 3, that definition suggests numerous feedback paths by which elements of mental models 
are adjusted to improve perception, planning and performance. 

Mental activjtv 
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Figure 4: An integrated theory of perception, planning, action, and learning. Learning involves 
changes in the design of strategies and tactics (means), goals (ends), and cue selection and 
interpretation (perception), as well as changes in the cognitive model of system function (means
ends). Changes in any of these components of the mental model may stem from perceived 
weaknesses in perceptions, beliefs, and actions, experience with simulated microworlds, teaching, 
or even searches for novelty, particularly in gaming situations. 

Figure 4 extends Figure 3 to include learning loops. The figure strives to incorporate the 
potentials for changes in strategies and tactics, goals, the cognitive model of system function, and 
the perception and interpretation of cues on which these depend. The figure suggests that such 
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changes are based on perceived needs for improvement in performance, stemming from the 
memory of past assessments, predictions, plans, and actions and the comparison of these 
memories with newly perceived information about the system. It is entirely possible that some 
changes result from not from systematic assessments and revisions but rather from whim or 
boredom or random flights of fancy, and some, of course, may result from explicit teaching. The 
figure, however, emphasizes the elements of learning that are endogenous, resulting from 
reflection, presumably on the perceived results of efforts to close the gap between goals and 
system performance.S 

Researchers investigating decision making in dynamic environments are working with the 
structure, functioning, and change of people's mental models that are potentially at least as 
complex as Figure 4. Definition of the management task and the number of trials may simplify 
somewhat. For example, Figure 4 captures an overview of the elements that must be considered 
by researchers investigating dynamic decision making in situations with repeated trials, where 
experience and reflection may change cues and interpretations, strategies and tactics (including 
policy levers), the cognitive model of the structure and behavior of the system, and even one's 
goals. In a research setting involving just a single judgment or set of decisions that are then not 
altered, the simpler Figure 3 may capture the necessary elements. Learning in some form 
(changes in cues, interpretations, strategies and tactics, and so on) is almost certain to be present 
in research settings involving a single play of a game requiring a sequence of the same decisions 
over simulated time, as well as repeated plays of a static or dynamic game. It becomes critical to 
know what subjects are paying attention to, how the cues are being interpreted, what strategies 
and tactics are being employed, and how goals shift, as well as the nature of a subject's cognitive 
map or model of system structure. 

Research hypotheses 
The significance of Figure 4 is that it contains within it a number of potentially competing 
hypotheses about the operation and modification of mental models in complex, dynamic 
management tasks. Different parts of the figure suggest different predictions of the types of 
managerial interventions that will actually improve performance. The figure points toward 
empirically testable propositions that can help researchers to sort out the predictive power of 
these potentially competing hypotheses. 

The left side of Figure 4 lists four ways individuals can modify their thinking to improve 
assessments, predictions, and/or interventions in complex dynamic systems. They can change 
(I) the cues they are looking at and the ways they are interpreting them, (2) the way they think 
the system functions, (3) the strategies and tactics (plans and policy levers) they are using, and 
(4) the goals they are striving toward. Furthermore, they can do these things in combination- a 
total of 15 (24 - l) possible mixes of cognitive modifications, each one of which potentially 
involves many aspects of the system under consideration. These cognitive modifications can be 
made by actors in the system, as the figure suggests, or can be the result of interventions from the 
outside by consultants, systems modelers, and teachers. 

To illustrate the ways Figure 4 can help to inform research, we briefly consider four hypotheses 
about improving performance in dynamic tasks: the Outcome Feedback Hypothesis, the Cue 
Selection Hypothesis, the Design Logic Hypothesis, and the Operator Logic Hypothesis. 

The Outcome Feedback Hypothesis. 
The entire structure of Figure 4 is involved in trying to learn by outcome feedback (knowledge of 
the results of past decisions). As depicted in the figure, people in dynamic decision making 
situations have four areas of their mental models they can try to improve, which they can test in 
controlled isolation (if they are well-disciplined scientists) or in combination (as many as 15 
different mixes of areas to try to improve, each of which could involve many hypotheses). 

5 Kim and Senge (1994) and Sterman (1994) have similar representations of learning loops and 
include the role of learning labs and microworlds to facilitate or enable learning about complex 
dynamic systems. 
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Unfortunately, as Sterman (1994) notes in his well-documented review of barriers to learning in. 
and about complex systems, people are poor scientists. Identifying real improvements, 
particularly in complex or noisy decision settings, is extremely difficult and highly subject to 
chance. It is no wonder that the research literature on learning from outcome feedback is 
disturbingly negative and pessimistic (Brehmer 1988). 

The Cue Selection Hypothesis. This hypothesis focuses on the upper half of the mental activity 
sector in Figure 4, the loops that contain "Judged adequacy of assessments and forecasts." The 
cue selection hypothesis posits that people strive to improve their assessments by changing what 
they are paying attention to and how they are interpreting the information. Research indicates 
that the performance of people in static and dynamic tasks can be improved solely by improving 
the cues to which they attend (Hammond 1971; Dawes and Corrigan 1974). For example, 
Richardson and Rohrbaugh (1989) demonstrated that changing the screen in the Long Wave 
Game (Sterman and Meadows 1985; Sterman 1987, 1989) and pointing subjects to salient cues 
improved their scores. 

Much of the research in this area points to the importance of information processing activities 
associated with cue interpretation (for overviews see Baron 1988; Einhorn and Hogarth 1981; 
Hogarth 1987; Slovic, Fischoff & Lichtenstein 1977). For example, too many cues can 
overwhelm decision makers and mask truly important effects, cues that contain significant 
amounts of random disturbance can befuddle manager's efforts to detect the important 
information that is embedded in outcome feedback, and finally the presence of complexity in the 
actual or simulated system (such as significant delays in response to actions) can inhibit decision 
makers' ability to perform well the task under study. 

The Design Logic Hypothesis. This line of research and thinking, familiar to all system 
dynamicists, begins with an important conclusion of years of research in the outcome feedback 
tradition--namely that outcome feedback by itself will rarely lead to good performance when the 
system being managed possesses significant random disturbances, delays, or dynamic feedback 
processes. 

The design logic hypothesis focuses on decision makers' mental models of system structure and 
function. Such cognitive models of structure and function are seen as intervening constructs 
decision makers use to select management strategies to meet their goals. In fact, to a large 
degree the point of most system dynamics interventions is to create more sophisticated mental 
models in key decision makers - to capture in managers' minds a structure that is close in 
essential details to the way the system is designed. When real systems are characterized by 
delays, feedback, and nonlinear interacting processes, it is critical that managers understand these 
complexities and somehow integrate them into their thinking processes. The design logic 
hypothesis predicts that when managers are exposed to the structural cause-effect/feedback/delay 
complexity that truly exists in the real system, their thinking patterns become correspondingly 
sophisticated and hence their abilities to predict system responses and manage effectively are 
increased. As shown in Figure 4, this hypothesis posits that interventions altering managers' 
cognitive models of system function can impact planned action by affecting assessments and 
predictions and the strategies and tactics selected to meet managerial goals. 

Presumably, the design logic hypothesis about mental models can yield a number of smaller and 
testable hypotheses concerning what is important about cognitive models of system function and 
how they can be improved to enhance decision making. Activities that should increase the 
quality of cognitive models of system function would include more detailed understandings of 
causal feedback loops acting within a system, richer understandings of feedback loops and their 
dynamic effects, and more sophisticated understanding of concepts such as generic structures and 
their applicability to the task at hand. The list of such potentially testable hypotheses is 
probably quite large and laid out with various degrees of explicitness in the system dynamics and 
systems thinking literature. 

The notion of generic structures leads to an interesting extension of the design logic hypothesis, 
which might be called the systems archetype hypothesis. The effort to codify and teach dynamic 
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feedback system archetypes (Senge 1990; see also Forrester 1969 and Meadows 1982) is aimed at 
providing decision makers with a rich inventory of generic elements of system design. Systems 
archetypes, as thought of in the system dynamics literature, are insightful feedback structures 
capturing dynamic complexity rather than detail complexity, and as such they are concise 
elements of the feedback design of complex systems. The systems thinking hypothesis 
postulates that having a rich inventory of insightful generic structures increases the likelihood 
that decision makers will incorporate feedback design elements in their mental models of 
particular system structure and thereby improve managerial performance in that particular 
setting. 

The Operator Lo~ic Hypothesis. 6 In contrast to the design logic hypothesis, the operator logic 
hypothesis proposes that managers and decision makers do not, in fact can not, create highly 
sophisticated cause and effect, feedback-oriented cognitive models of system structure and 
function. The operator logic hypothesis suggests that a more direct route to improving 
managerial decision making lies in providing managers not with design logic but with improved 
strategies and tactics for accomplishing their aims (see Figure 4) . We term the strategies and 
tactics managers employ operator logic. 

By definition, all operators (managers, decision makers, senators, truck drivers) have operator 
logic; those who also possess detailed, complex structural understandings have design logic. 
Operator logic may be informed by design logic (see Figure 4, the link from the cognitive model 
to strategies and tactics) - one may be able, on reflection, to produce a detailed design-level 
explanation of an operating heuristic which can be represented in a rich cognitive map - but 
such a detailed picture of system structure is not necessary for operator logic. We note that a 
grounding premise in much system dynamics consulting work and research in dynamic decision 
making holds that operator logic can be improved and performance enhanced by improving the 
design logic of clients, usually through model-based experiences and reflection. 

The operator logic hypothesis predicts that humans always use simple associative networks to 
manage complex systems. Enriching managers' mental models actually reduces to merely adding 

6 There are subtleties in the distinctions between design and operator logic. The two may be 
thought of as polar extremes on a continuum, with some fuzzy boundary somewhere along the 
continuum dividing the two. Design logic may be thought of as whatever justification people have 
for the operator logic they exhibit. We prefer to limit the idea of design logic to "rich" or 
"complex" cognitive maps of causal structure underlying the dynamics of a system to be managed 
or influenced. We acknowledge at this point an inability to pin down "rich" or "complex" here. 
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a few cleverly designed new associations to manager's limited repertoire of means-ends response 
reactions. This prediction has important, if somewhat disheartening, implications for what a 
good system dynamics or systems thinking intervention must be: all insights must be reduced to 
strategic "chunks" that must then be integrated into managerial thinking.? If the insights are u 
nchunked then they are useless and unused. Sophisticated insights matter for naught. 

At a rather cynical level, the operator logic hypothesis suggests that successful systems 
intervention reduces to spoon feeding strategic chunks to managers. More elaborate systems 
thinking exercises such as discussing feedback effects, eliciting system structure from a group, or 
showing and discussing simulation runs are all complicated forms of superstitious behavior 
designed to enhance managers' confidence in the consultants with whom they are working. But 
these elaborate and complicated exercises do not have any effect unless they result in easy-to
digest chunks of strategic insight that managers can integrate easily into relatively simple means
ends associations. Of course, there is still a crucial role for systems modelers to uncover the 
helpful strategies and tactics, but the operator logic hypothesis suggests that otherwise excellent 
interventions that do not come to fully chunked conclusions will fail to have any impact on 
managerial thinking and performance. Fortunately, these predictions from the operator logic 
hypothesis are testable. Preliminary results from one such empirical test are contained in 
Andersen, Maxwell, Richardson and Stewart (1994). 

Implications for Experimental Design 
The distinctions between design logic and operator logic have serious implications for research on 
mental models and dynamic decision making. Operator logic captures ends (goal statements), 
means (policy levers and tactics), and heuristic statements linking means and ends (strategies, 
policy guidelines, rules of thumb). Design logic captures upstream influences (antecedents, causal 
influences), downstream effects (consequents, effects), delays, and circular causal processes 
(feedback loops). In any given research context, details of design and operator logic can be 
specified. Researchers studying mental models in dynamic decision making using simulated . 
microworld environments can specify the "true" state of perfect design logic and can identify 
(through simulation analyses) the elements of operator logic that produce optimum performance. 
The research task is then to assess subjects' operator and design logic structures and compare to 
the optimal, with appropriate reference to treatments, cognitive characteristics of subjects, and 
other experimental frameworks. 

Figure 5 sketches an overview of the research design framework that emerges from these 
considerations. The framework suggests that performance on a dynamic decision-making task is 
influenced by subjects' mental models in a particular way. Operator logic - system specific 
heuristics identifying means to desired ends - can influence performance; design logic, to the 
extent it is influential, acts through operator logic. Learning can take place through reflection 
on transient performance during a task, or through reflection on final performances ih repeated 
tries. Experimental treatments can thus influence subjects' mental models in two ways: in 
developing or influencing design logic structures and in affecting operator logic. 

7 Simon (1969, 1981) measures the capacity of short-term memory in "chunks," which he 
defines as a "maximal familiar substructure." We intend the same sense of conceptual units that 
can be represented by a phrase or icon and mentally manipulated (thought about and with) as a 
whole. 
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Figure 5: Overview of experimental design for mental model research. Treatments may 
influence design logic or operator logic or both. Cognitive characteristics of the subjects 
influence design and operator logic, and the effects of the treatments. Performance has at least 
two components, transient behavior and final results, both of which may be assessed. The 
potential for learning is represented in the shaded arrows: with reflection, transient performance 
can alter both operator and design logic, as can final performances in repeated trials. 

A principle concern in such research is how to elicit or uncover elements of a subject's mental 
model in a dynamic task environment. Our efforts and reflections have convinced us of a mental 
model uncertainty principle: subjects' mental models - the cues they are using and their 
interpretations of them, their cognitive models of system function, their strategies and tactics, 
and their goals - can not be directly elicited without distortion. Any process of direct, guided 
elicitation tells subjects something about what the researchers are looking for and subjects respond 
accordingly. We note this crucial issue here but explore it in more detail and offer our research 
design work-around in Andersen, Maxwell, Richardson and Stewart (1994). Our preliminary 
research results reported there tend to support the operator logic hypothesis, suggesting that 
treatments that influence the design logic level but that fail to be chunked at the level of operator 
logic will not significantly affect performance. 

References 
Andersen, D.F., T. Maxwell, G.P. Richardson, and T. Stewart. 1994. Mental models and dynamic 
decision making in a simulation of welfare reform. Proceedings of the 1994 International System 
Dynamics Conference. July 1994, Stirling, Scotland. 
Andersen, D. F. and J. Rohrbaugh. 1983. Specifying Dynamic Objective Functions: Problems and 
Possibilities. Dynamica 9( I). 
Andersen, D. F. and J. Rohrbaugh. 1992. Some Conceptual and Technical Problems in 
Integrating Models of Judgment with Simulation Models. IEEE Transaction on Systems, Man, 
and Cybernetics 22, I: 21-34. 
Bakken, B.E. 1993. Learning and Transfer of Understanding in Dynamic Decision 
Environments. Ph.D. dissertation, M.l.T., Cambridge, MA. 
Baron, J. 1988. Thinking and Deciding. New York: Cambridge University Press. 
Brehmer, B. and Joyce, C.R.B., Eds. 1988. Human Judgment: The Social Judgment Theory View. 
Amsterdam: North- Holland. 
Brehmer, B. 1988. In one word: Not from experience, In B. Brehmer and C. R. B. Joyce (Eds.), 
Human Judgment: The Social Judgment Theory View. Amsterdam, North-Holland. 
Brunswik, E. 1956. Perception and the Representative Design of Psychological Experiments 
(2nd ed.). Berkeley: University of California Press. 
Dawes, R. M., and B. Corrigan 1974. Linear models in decision making. Psychological Bulletin 
81: 95-106. 
Diehl, E.W. 1992. Effects of Feedback Structure on Dynamic Decision Making. Ph.D. 
dissertation, M.l.T., Cambridge, MA. 
Einhorn, H., and R.M. Hogarth 1981. Behavioral decision theory: Processes of judgment and 
choice. Annual Review of Psychology 32: 53-88. 

Problem- Solving Methodologies. page 191 



1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE 

Forrester, J. W. 1969. Urban Dynamics. Cambridge MA: Productivity Press. 
Forrester, J. W. 1973. Confidence in Models of Social Behavior--With Emphasis on System 
Dynamics Models. Memo No. D-1967, System Dynamics Group, M. I. T., Cambridge, MA 02139 
Gardiner, P., & Ford, A. 1980. Which Policy Run is Best, and Who Says So? In TIMS Studies in 
the Management Sciences: System Dynamics. Amsterdam: North-Holland Press. 
Hammond, K.R. 1955. Probabilistic functioning and the clinical method. Psychological Review 
62: 255-262. 
Hammond, K.R. 1971. Computer graphics as an aid to learning. Science 172: 903-908. 
Hammond, K.R., T.R. Stewart, B. Brehmer & D.O. Steinman. 1975. Social judgment theory. In 
M. F. Kaplan and S. Schwartz (Eds.), Human Judgment and Decision Processes. New York: 
Academic Press. 
Hogarth, R. 1987. Judgment and Choice (2nd ed.). New York: John Wiley & Sons. 
Kampmann, C.P.E. 1992. Feedback Complexity and Market Adjustment: An Experimental 
Approach. Ph.D. dissertation, M.I.T., Cambridge, MA. 
Kim, D. and P. M. Senge. 1994. Putting systems thinking into practice. System Dynamics 
Review 10 (2-3 ). 
Kleinmuntz, D.N. 1993. Information processing and misperceptions of the implications of 
feedback in dynamic decision making. System Dynamics Review 9,3 (fall): 223-237. 
Meadows, D. 1982. Whole Earth Models and Systems. Coevolution Quarterly (Summer): 98-
108. 
Miller, G.A., E. Galanter. and K.H. Pribram. 1960. Plans and the Structure of Behavior. New 
York: Henry Holt. 
Montmollin, M. de and De Kayser, Y. 1986. Expert logic vs. operator logic. In Mancini, G., 
Johannsen, G., and Martenson, L. (Eds.) Analysis, Design, and Evaluation of Man-machine 
Systems. Proceedings of the 2nd IFACIIFIPIIEAIIFORS Conference, Varese, Italy, 1985. 
Oxford: Pergammon Press. 
Paich, M. and J.D. Sterman. 1993. Boom, Bust, and Failures to Learn in Experimental Markets. 
Managemenr Science 39.12: 1439-1458. 
Richardson, G. P. 1991. Feedback Thought in Social Science and Systems Theory. Philadelphia: 
University of Pennsylvania Press. 
Richardson, G. P., & Rohrbaugh, J. 1989. Decision Making in Dynamic Environments: Exploring 
Judgments in a System Dynamics Model-Based Game. In Contemporary Issues in Decision 
Making, ed. K. Borcherding. 0.1. Larichev, and D.M. Messick. Amsterdam: Elsevier. 
Simon, H. A. 1969,1981. The 5iciences (~(the Artificial (2nd ed.). Cambridge, MA: MIT Press. 
Slovic, P., Fischhoff. B .. & Lichtenstein. S. 1977. Behavioral decision theory. Annual Review of 
Psychology 28: 1-39. 
Sterman, J.D. 1987. Testing Behavioral Simulation Models by Direct Experiment. Management 
Science 33.12: 1572-1592. 
Sterman. J.D. 1989. Mispcrcepuon~ of Feedback in Dynamic Decision Making. Organizational 
Behavior and lluman Dect.11on !'roce.1ses 43(3): 301-335. 
Sterman, J.D. 1994. Leammg 111 and about complex systems. System Dynamics Review 10 (2-3). 
Sterman. J.D .. and D. L. \lcadm\~. 1985. STRATEGEM-2: A Microcomputer Simulation Game 
of the Kondraticv Cych:. Sunu/,11/on and (iames 16(2): 174-202. 
Stewart, T.R. 1988. Judgment anal~ sis. In Brehmer, B. and Joyce, C.R.B. (Eds.) Human 
Judgmenr: The 5iocial Jwlgmenr Theon l'n'IL Amsterdam: North-Holland. 
Stewart, T. R. and C. M. Lu-.k.. ( 111 press). Seven components of judgmental forecasting skill: 
implications for research and 1mprm mg forecasts. Journal of Forecasting. 

Problem- Solvmg A!eJ!wdologlt!S. page 19:! 


