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Abstract--This paper presents a model of the dynamic behavior of the yellowtail rockfish of the 
Pacific Coast of the United States. The purpose of the model is to generate endogenously the 
historical data for fish population, fishing vessels, regulatory parameters, and fish harvest. The 
model was subjected to a variety of tests to determine its sensitivity to changes in key parameters 
and initial values, including extreme conditions. Model results indicate that acceptable 
biological catch and fleet capacity must be adjusted quickly in response to changing conditions, 
in order to improve fishery sustainability. Additional analysis reinforces the policy of setting the 
maximum sustainable yield at 40%. 
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THE PROBLEM 
 
Populations of rockfish and other Pacific Coast groundfish have dropped dramatically in recent 
decades. Although the direct economic contribution at the state level (California, Oregon, and 
Washington) is quite small (1%-3%), the fishing industry is still very important to the coastal 
communities where it continues to be the mainstay of their local economy.  
 
Northwest communities that are very dependent on natural resource-based industry exhibit low 
economic growth compared with national average rates. For example, the per capita net earnings 
in Tillamook, OR, Coos Bay, OR, and Gray’s Harbor, WA are below state and national levels 
(The Research Group 1999). 
 
Since 1983, groundfish revenues have fallen by 69% and landings of rockfish (a type of 
groundfish) have decreased 78%. Catch limits for various species of rockfish have declined 78%-
89%, showing the negative trends in general for the fishery industry as a consequence of 
inadequate management decisions. To prevent economic collapse, the federal and state 
governments created several regulations implementing the conservation and community viability 
provisions of the Magnuson-Stevens Fishery Conservation Act (1996) and its amendments. 
 
Despite these efforts, in January 2000 the West Coast groundfish fisheries were declared a 
federal disaster (Ecoworld 2000).  The decline in fish stocks is considered by many to be the 
consequence of ineffective natural resource management and short-term policies that resulted in 
a larger fishing fleet than could be supported long term.  These polices are not only affecting the 
ecosystems, but also the fisheries and associated fishing communities.  In his report declaring the 
fisheries a disaster, Secretary of Commerce William Daley called for alternative management 
policies to be studied in order to find a way to protect and rebuild fish stocks, while minimizing 
adverse economic and social impacts on the fishing communities. 



 

Overcapitalization is considered to be the primary cause of the decline in fish stocks for the last 
three decades. The challenge is how to reduce the fleet without painful economic effects.  
According to the Pacific Fishery Management Council, the specific objective is to reduce the 
fleet by 50%, mitigating the adverse effects during the transition (PFMC 2000). 
 
Currently, a number of programs and organizations are working together to formulate the best 
solution for addressing fleet overcapitalization (Young 2001; PMCC and Ecotrust 2002). In a 
study of the overcapitalization of the Norwegian fishery (Moxnes 1998) the capacity of the 
fishery was estimated to be about twice the optimal size for the past fifteen years, and 
sustainability was threatened because participants consistently overbuilt the fishing fleet.  This is 
an example of “misperception of feedback” (Sterman 1989), and is indicative of the poor 
performance by participants in managing complex systems in general. 
 
We present a model that demonstrates how system dynamics (SD) could be used to help evaluate 
policy options for improving the sustainability of the Pacific Coast groundfish fishery and 
ecosystem.  SD is well suited for studying this type of problem because of its ability to 
characterize dynamic interrelationships between system components and to show how these 
interrelationships lead to the aggregate behavior of the system as a whole. 
 

BACKGROUND 
 
Mathematics, statistics, computer simulation, and SD have all been used to model fishery 
management systems.  Schaefer (1954) provided the classic dynamic (differential equation) 
model for fish biomass as a function of pristine (unfished) biomass, intrinsic rate of increase, 
fishing effectiveness, and fishing effort. The formula was advantageous to the fishery because it 
required less statistical data; however, the formula did not address the inverse effect of fish 
abundance on the fishing effort that caused the maximum sustainable yield (MSY) calculations 
to be biased.  
 
Another classic work is Fish Banks, Ltd. (Meadows et al 1986), an SD-based microworld in 
which participants attempt to manage a fishery. In the Fish Banks, Ltd. game, teams of players 
manage their own fishing companies. At the beginning of the game, each fishing company has 
equal amounts of money and fishing vessels. Each company has the same operating costs and 
technology. At the beginning of every simulated year, the teams make decisions about buying or 
selling vessels, whether to fish or not, and where to fish. The object of the game for each 
company is to maximize profits. 
 
More recent applications of SD to fisheries management include Ruth and Lindholm (1996) who 
applied SD to multispecies fishery management; Holland and Brazee (1996) and Dudley and 
Soderquist (1999) who presented an SD-based general fishery model as a tool for studying 
fishery management policy; Ford (1999) who offered the “Tucannon harvesting model” as an 
illustration of the application of SD to fisheries; and Sampson (2001) who provided a detailed 
cohort-based SD simulator for exploring fish harvesting policies. 
 
Two very interesting simulators that take into account the interplay between ecosystems and 
economic systems are the Patagonia Coastal Zone Management Model (van den Belt 1999) and 



 

Otter Trawler (Gates 2000).  The former is an elaborate SD-based simulator, whereas the latter is 
not SD based. 
 
Figure 1 shows a high-level description of the interplay between the ecosystem, fishery, and 
fishing community that guided our study of groundfish sustainability. 
 

 
 

Figure 1 - Groundfish Subsystems 
 
Selected Definitions 
 
� Acceptable Biological Catch (ABC): An estimate of the amount of fish in tons that could 

be taken from a stock at its current abundance without jeopardizing it.  ABC is calculated 
by multiplying current biomass by the harvest fraction that would produce the MSY. 

 
� Annual Recruitment: The number of fish that mature and become vulnerable to fishing in 

a given year. 
 
� Maximum Sustainable Yield (MSY): The largest average catch or yield that can 

continuously be taken from a stock under existing environmental conditions. For species 
with fluctuating recruitment, the maximum might be obtained by taking fewer fish in 
some years than in others. 

 
� BMSY: The biomass value that corresponds to MSY. 

 
� Stock Assessment and Fishery Evaluation (SAFE) Reports:  Reports that provide 

historical data on catch and biomass for various species of fish. 
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� Trawl vessels:  Vessels that primarily use trawl gear and account for the majority of 
groundfish landings (approximately 90%). 

 
Reference Behavior Pattern 
 

The species chosen for this model is the Pacific yellowtail (sebastes flavidus), a type of 
rockfish.  Historical data from various sources (PFMC 1981-2003; Taggart 2000; 
NOAA 1996; NMFS 1998) were used to determine the reference behavior for 
yellowtail harvest and ABC (see Figure 2). 

 
 

 

 
Figure 2– Reference behavior for yellowtail 

ABC and Harvest 
 
The reference data for the number of trawl vessels fishing for yellowtail is estimated from 
various sources (NOAA 1996; Young 2001; PMCC 2002), and shows a 72% decline.  Other 
sources (Hanna 2000; Tagart 2000; PSMFC 2000) confirm this decline, indicating that rockfish 
landing vessels, in general, have declined 78% and that there has been a 69% decrease in gross 
revenues. 
 

THE MODEL 
 
A system dynamics model is a set of relationships between key variables that are expressed in 
terms of differential and algebraic equations that are solved numerically to simulate behavior 
over time.  Our model consists of six sectors:  the fish population sector, the trawl vessels sector, 
the ABC sector, the harvest sector, the economic sector, and the ocean health sector.  Each sector 
will be described in the pages that following, but first the primary feedback loops in the model 
are discussed (see Figure 3). 
 
The reproduction loop is a reinforcing cycle in which mature fish impact the spawning process, 
which in turn impacts juveniles and therefore mature fish via the recruitment process.  The 
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natural mortality loop is a balancing cycle impacting the mature fish.  The fishing loop is a 
balancing loop wherein fishing is reduced when fish population is low, and vice versa. The trawl 
vessel loop is also a balancing cycle and reflects the number of vessels being reduced when total 
capacity is more than the ABC, and vice versa.  Figure 4 summarizes the overall causal structure 
of the model. 
 

 
Fish Reproduction Loop 

 
Natural Fish Mortality Loop 

Fishing Loop Vessel Change Loop 
Figure 3- Primary feedback loops 

 
Key Assumptions 
 
The following key assumptions were made: 
  
� Random variations:  The model uses average values from historical information for 

recruitment rate, spawning, and mortality fish, and ignores random variations. 



 

 
Figure 4 – Overall causal loop structure 

 
� Ecosystem impact: The model assumes that fluctuations in ecological variables impact 

natural mortality rates by a maximum of 20%. 
 
� Vessels: The number of trawl vessels in the model is assumed to be a fraction of the total 

number of trawl vessels in use.  This fraction is computed to represent the equivalent 
number of trawl vessels that would be present if the vessels were fishing only for 
yellowtail. 

   
� ABC: Acceptable biological catch is calculated yearly in the model, based on triennial 

biomass surveys. This is the established scientific protocol for stocks assessments, 
although it is not always reflected in actual policy. 

 
Trawl Vessel Dynamics 
 
Trawl vessels are modeled as a stock that could increase or decrease over time.  In reality, new 
trawl vessels do not enter the fleet.  Instead, vessels modify their participation season by season. 
The change in trawl vessels is modeled as a function of supply and demand--vessels increase 
when additional capacity can be supported and vice versa.  In other words, new vessels are added 
to the fleet when fish are plentiful and removed from the fleet when fish stocks are down. 
 
Current Capacity is the sum of vessel capacity for each of the trawl vessels in the yellowtail 
fishery. This number is calculated assuming that the total number of trawl vessels working in the 



 

yellowtail fishery is a percentage of the total number of groundfish vessels. Capacity Difference 
is the value of the difference between the ABC and the Current Capacity. 
 
Management Response Time (MRT) determines how quickly the Capacity Difference is reduced 
to zero.  The number of trawl vessels is not changed instantly, rather, a time constant (MRT) is 
specified to indicate the average time that it takes vessels to enter into and exit from the fleet.  
 
Formulas 1 through 3 summarize the logic, and Figure 5 shows the flow diagram for the trawl 
vessel dynamics. 
 
 Capacity_Difference = CurrentCapacity – ABC (1) 
 
 CurrentCapacity = AvVesselCap * TrawlVessels (2) 
 
     Vessel Change =INTEGER(PULSE((CapacityDiff/AvVesselCap)/(MangmtRespTime),1983,3)         (3) 
 

 
 Figure 5 – Trawl Vessel Sector 
 
Fish Population Dynamics (Biomass) 
 
Fish population, often described as biomass, is modeled as two separate stocks, Juveniles and 
Mature Fish.  The inflow to Juveniles depends on a spawning process that considers Spawner 
Abundance, Pristine Spawner Abundance, Maximum Spawn Rate, and Spawning Variability. 
Pristine Spawner Abundance is an indication of carrying capacity (Ford 1999).  Spawns flow 
into the Juveniles stock, and Juveniles flow into the Mature Fish stock. The Juveniles stock also 
has a mortality outflow determined by the Juvenile Mortality Rate, which is determined by the 
Ocean Health Measure.  Mature fish Mortality includes Fishing Mortality and Natural 
Mortality.  Natural Mortality depends on Mature Fish and the Natural Mortality Rate, while 



 

Fishing Mortality depends on Harvest and Bycatch Rate. Figure 6 displays the flow diagram of 
the fish population sector. 
 

 
Figure 6 – Fish Population Sector 

 
When there is no fishing, biomass increase to an upper limit where Natural Mortality equals 
Recruitment, and Recruitment plus Juvenile Mortality equals Spawns. This equilibrium point is 
called the unfished (pristine) biomass of the specific fish species. In our case, Yellowtail 
Rockfish has an unfished biomass of 114,700 Metric Tons (Taggart 2000). 
  
Formulas 4 through 9 pertain to the Fish Population Sector (Figure 6). 
 
NaturalMortality = (NaturalMortalityRate*MatureFish)/OceanHealthMeasure         (4) 
 
SpawnerAbundance = MatureFish*SpawnerRate                   (5) 
 
SpawnerRatio = SpawnerAbundance/PristineSpawnerAbundance                 (6) 
 
Recruitment = Juveniles/MaturationTimeConstant                   (7) 
 
Spawns=EXP(-1.73*SpawnerRatio)*MaximumSpawnRate* SpawnerAbundance*SpawningVar            (8) 
 
 
ABC and Harvest Logic 
 
The Pacific Fishery Management Council (PFMC) sets ABC based on prescribed rules, the 
triennial SAFE surveys, and other pertinent information.  The model attempts to replicate this 
process, as indicated in Equation 9. Figure 7 shows the flow diagram for this part of the model. 
 



 

 ABC = IF SpawnerPercentage> MSY THEN 0.21 * MatureFish ELSE 
 
  IF SpawnerPercentage > 0.25 THEN 0.12 * MatureFish ELSE 
 
  IF SpawnerPercentage > 0.1 THEN 0.06 * MatureFish ELSE   0 (9) 
 

 
Figure 7 – Flow diagram for ABC Sector 

 
Harvest is determined using Current Capacity, Restrictions, and Density. This approach is 
different than what is often reported in the literature, where fishing mortality is modeled as a 
constant fraction of current biomass.  Equation 10 provides the formula for Harvest in our 
model. 
 

Harvest = (CurrentCapacity-(Restrictions/Density))         (10) 
 
Density is the Mature to Exploitable Ratio divided by the Fish Density Coefficient.  Mature to 
Exploitable Ratio is the current exploitable biomass (Mature Fish) divided by Unfished 
Exploitable Abundance.   Density is treated as zero when there are no Mature Fish.  Formulas 11 
and 12 summarize these relationships.  
 
  Restrictions = CapacityDifference*TripLimitsEfficiency        (11) 
 
  Density = MaturetoUnfishedRatio/FishDensityCoefficent                             (12) 
 
Figure 8 provides the flow diagram for the Harvest Sector. 
 



 

 
Figure 8 – Flow diagram for Harvest Sector 

 
The Economic Sector 
 
This sector does not participate in the loop structure and simply translates harvest into revenues 
and profits. 
 
Harvest determines Fleet Gross Revenues based on a conversion factor and the ExVessel Price 
for fish.  Revenues are accumulated to facilitate the comparison of different scenarios with 
respect to Total Gross Revenue.   
 
Formulas 13 through 15 summarize the Economic Sector (Figure 9). 
 
FleetGrossRevenue = Harvest * TonsToPounds * ExVesselPrice        (13) 
 
NetPerVessel = (1-OperationalCostPercentage) * RevenuePerVessel           (14) 
 
RevenuePerVessel = FleetGrossRevenue / TrawlVessels              (15) 
 
 
Ocean Health Sector 
 
According to the literature, many factors including temperature, industrial disposal, El Nino, and 
ocean nutrient level impact spawning and mortality rates for both juvenile and mature fish (COE 
2002; NODC 2002; Ruth et al 2001).  The model uses a composite Ocean Health Measure to 
represent these combined effects.  Disposal Effect and El Nino Anomalies are purely exogenous, 
whereas Habitat Health is endogenously calculated, and depends on the ratio of the current value 
of Trawl Vessels to the initial value of Trawl Vessels. 



 

 
Figure 9 – Economic Sector 

 
One anomaly, El Nino, is generally regarded to have drastically impacted the environment. It 
changed biomasses, habitats, temperature, and much more. The effects were often to decrease the 
harvest as well as fish biomass.  Data regarding the El Nino effect shows the peak impact to have 
occurred during 1983 and 1994.  This data was normalized and entered in the model as the 
graphical function El Nino Anomalies. 
 
Industrial Disposal rates (COE 2002) are believed to influence fish mortality and spawning.  
These relationships have not been thoroughly researched.  We chose to represent the relationship 
qualitatively, with a Disposal Effect variable that impacts Ocean Health Measure.  
 
Our research indicated that disturbing fish habitat reduces spawning and increases natural 
mortality, since the fish are less able to protect themselves under rocks and other features of the 
pristine ocean bottom.  In particular, trawling the bottom of the ocean tends to destroy the 
protective layer of the ocean bottom, thereby reducing the health of the fish habitat. This 
increases the natural mortality rates for groundfish, especially rockfish.  
 
Equations 16 through 20 and Figure 10 represent the Ocean Health Sector. 
 
OceanHealthMeasure = HabitatHealth+DisposaEffect+ElNinoEffect   (16) 
 
DisposalEffect = DisposalScalingParameter*DisposalCondition+0.2777   (17) 
 
ElNinoEffect = ElNinoScalingParameter* ElNinoAnomalies+0.2777              (18)   
 
HabitatHealth = HabitatConditionParameter*HabitatCondition+0.277   (19) 
 



 

HabitatCondition = TrawlVessels/InitialVesselAmount   (20) 
 
The formulas above assume that each component of the Ocean Health Measure (OHM) 
contributes equally to the measure.  Scaling parameters and constants are used to assure that 
OHM remains within 20% of 1.0. 
 

 
Figure 10 – Ocean Health Sector 

 
Base Model Behavior 
 
Figure 11 compares Harvest calculated in the model with the Historical Harvest Data.  The 
overall trend is downward in both cases, but there are appreciable differences.  
 
Figure 12 compares ABC calculated in the model with the Historical ABC from SAFE. 
 
It may be misleading to compare the two traces in Figure 12 because in the model, ABC was 
calculated to maintain fish stocks without regard to economic impact, whereas the Historical 
ABC reflects the complex reality of fishery policy. 
 
Finally, the model indicated a decline in Trawl Vessels from 300 to 91 between 1980 and 2002, a 
70% reduction (see Figure 13). This result is consistent with the reference behavior discussed 
earlier.  

 



 

 
 

Figure 11 – Harvest, model vs. historical data 
 
 

 
 

Figure 12– ABC, model vs. historical data 
 



 

 
 

Figure 13– Trawl Vessels over time calculated by the model  
 

 
MODEL TESTING 

 
The primary focus of our model testing to date has been to thoroughly test the sensitivity of the 
model to changes in key parameters.  The values of each parameter selected were varied over a 
range 50% below to 50% above the base value.  For each value of the selected parameter, we 
plotted the biomass over time, and show, in the table below the plot, the cumulative Total Gross 
Revenue (TGR) in millions of dollars. 
 
Sensitivity Analyses  
 
Sensitivity Analysis of Natural Mortality Rate (NMR) 
 
The sensitivity of the model to NMR is tested by varying its value from 0.05 to 0.15, in 
increments of .025.  Figure 14 shows how NMR affects biomass and TGR.  Increasing NMR 
reduces the TGR and significantly impacts the biomass. 
 
This result is consistent with our expectations because NMR is an important variable that 
determines the equilibrium value for biomass in the model. 
 
Sensitivity Analysis of Bycatch Rate 
 
As shown in Figure 15, the model is less sensitive to Bycatch Rate, which was varied from .06 to 
.18.  The fluctuation differences between the runs are the due to delays in the triennial ABC  



 

 

 
 

Figure 14– Natural Mortality sensitivity test results 
 
 

 

 
 

Figure 15– Bycatch Rate sensitivity test results 



 

determination process.  Bycatch Rate is an important aspect of fish mortality, and the model 
should reflect some degree of sensitivity, but, as indicated by the tests, the impact is less than 
NMR.  
 
Sensitivity Analysis of Average Vessel Capacity (AVC) 
 
The effect of AVC on Biomass is displayed in the Figure 16.  AVC is varied from 40 to 120 tons.  
The higher the AVC, the longer it takes to reach a sustainable equilibrium. However, the TGR is 
not affected significantly by AVC changes, due to the balancing loop that reduces the excess 
capacity (implemented as Vessel Change within the model).  Biomass is more sensitive than TGR 
to changes in AVC. 
 

 

 
 

Figure 16– Average Vessel Capacity sensitivity test results 
 
Sensitivity Analysis of Spawner Rate (SR) 
 
The model is very sensitive the parameter SR when it is varied from .2 to .6 (see Figure 17).  The 
system reaches equilibrium earlier when the SR is higher.  SR strengthens the only reinforcing 
loop in the model--a loop that the entire fishery depends upon. The TGR values show high 
sensitivity to changes in SR.  This effect is not symmetric; lower values of SR have considerably 
more impact than higher value.  This underscores the importance of spawner abundance, as 
would be expected based on the literature. 

 



 

 

 
 

Figure 17– Spawner Rate sensitivity test results 
 
Sensitivity Analysis of Normal Fishing Rate (NFR) 
 
Figure 18 shows the sensitivity of the model to varying the NFR from .1 to .3.  NFR is a fraction 
that determines what ABC will be when fish are plentiful (over 40% of the pristine spawner 
biomass). Since management wants to keep fish stocks plentiful, NFR is clearly an important 
policy lever.  The base run yields the biomass line labeled as 3. The upper values of NFR tend to 
reduce the biomass, which might cause problems for the fishery in the future, whereas lower 
values result in lower TGR. The biomass is very sensitive to changes in NFR. But this is not true 
for TGR, which varies by only a few percent. Also, until the year 1990, biomass is the same in 
the five different runs because NFR does not get activated (due to low spawner biomass levels). 
After 1990, the effects of varying NFR are clearly visible.  
 
Sensitivity Analysis of Effectiveness of Trip Limits (ETL) 
 
Figure 19 indicates that higher values of ETL (varying from .36 to 1.1) tend to better sustain the 
environment. Trip limits are used to regulate fishing, in order to sustain the biomass at a level 
that will yield maximum harvest without jeopardizing the stock. Total revenues are not greatly 
affected, due to the fact that the model reduces fishing vessels (overcapacity) over time, 
irrespective of trip limits. Higher ETL values result in better long-term yields from the fishery. 



 

 

 
 

Figure 18– Normal Fishing Rate sensitivity test results 
 

 

 
Figure 19– Sensitivity test results for the Effectiveness of Trip Limits variable 

 



 

Sensitivity Analysis of Maturation Time Constant (MTC) 
 
As shown in Figure 20, varying the MTC from 2 to 6 years has a significant impact on Mature 
Fish (MF) population and TGR.  MF is displayed instead of biomass because biomass also 
includes juveniles. The model is highly sensitive to MTC.  Shorter MTC tends to reinforce MF 
population, yielding higher TGR.  Higher values of MTC result in much lower biomass and TGR. 
These results increase our confidence that the model is behaving in a realistic fashin, and that it 
possibly could be applied to other fish species.  Species such as yelloweye and bocaccio are 
currently in danger because they have higher MTC. Their current stocks of mature fish have been 
depleted, and it will take many years to rebuild them if fishing is not reduced.  
 

 

 
Figure 20– Maturation Time Constant sensitivity test 

 
Sensitivity Analysis of Spawning Constant (SC) 
 
SC is a parameter that regulates the influence of the spawning process, and therefore Biomass.  
We used SC to help calibrate the model.  Figure 21 shows the model sensitivity to changes in SC 
as it is varied from .12 to .36. Biomass seeks a different equilibrium point for each value of SC, 
and the resulting impact on TGR is substantial, indicating very high sensitivity to this parameter. 
 
 

 



 

 

 
Figure 21– Spawning Constant sensitivity test 

 
Table 1 summarizes the results of the sensitivity testing, and Figure 22 displays the information 
graphically. 

 
Total Gross Revenue (TGR) Million $ 

Base Value = 112 Million $ 
 

Range 
(-50%) 

Initial 
Value 

Range 
(+50%) TGR at low value TGR at high value 

Natural Mortality Rate 0.05 0.1 0.15 $132 $  91 
Bycatch Rate 0.06 0.12 0.18 $118 $104 
Av. Vessel Capacity (in Tons) 40 80 120 $114 $108 
Spawner Rate 0.205 0.41 0.615 $  65 $123 
Normal Fishing Rate 0.105 0.21 0.315 $104 $116 
Effectiveness of Trip Limits 0.365 0.73 1.095 $103 $110 
Maturation Time Cons. (years) 2 4 6 $160 $  82 
Spawning Cons. 0.12 0.24 0.36 $  51 $177 

Table 1 – Sensitivity Analysis Summary 
 
 

POLICY ANALYSIS 
 
Several policy questions were studied. 
 
Maximum Sustainable Yield (MSY) 
 
An important aspect of managing a fishery is to determine the proper value for MSY. Without 
fishing, the biomass will build up to a density that limits fish growth and diminishes the  



 

Graphical Display of Sensitivity Analysis 
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Figure 22–Sensitivity test results portrayed graphically 

 
probability of survival, whereas overfishing will leave few adults to spawn, resulting in a decline 
of the stock (Watt 1968). The MSY lies between these two extremes. We tested five MSY values 
from 30%-50% in intervals of 5%, and obtained the results for TGR shown in Table 2. 
 
MSY Level 30% 35% 40% 45% 50% 
Total Gross Revenue ($) 111,781,268 112,282,020 112,609,462 108,195,051 105,654,051 

Table 2: MSY Analysis 
 
When MSY is less than or equal to 40%, TGR is approximately the same, but when MSY is 
above 40%, TGR decreases.  This supports the idea that maximum revenues occur when fish 
biomass is sustained at 40%, and that MSY could possibly be lowered somewhat below 40% 
without damaging revenues.  However, because of the possibility that non-fishing factors may 
cause major disruptions in fish populations, the PFCC recommends that MSY not be lowered 
below 40%.  This is referred to as the “40-10 Policy” in the literature--above 40% is the normal 
zone; 25%-40% is the precautionary zone; 10%-25% is the protection zone; below 10%, the 
species faces the possibility of extinction and no fishing is allowed. 
 
Acceptable Biological Catch (ABC) Update Frequency 
 
During model testing, it became clear that another important policy variable is how often the 
ABC value is updated.  Consequently, we ran the model with ABC being updated every N years 
(N = 1, 3, 5).  Figures 23 and 24 show ABC and yellowtail biomass, respectively, for each of 
these three runs. 
 



 

 

 
 

Figure 23– Test of ABC update frequency and its effect on ABC 
 

 
Figure 24 – Test of ABC update frequency and its effect on Biomass 

 
Figures 23 and 24 indicate that increasing the frequency of updates to ABC reduces the 
fluctuations in fish biomass, thereby helping to stabilize the fishery. The graphs are 



 

superimposed until 1991, due to the biomass level being at the precautionary zone. After 1991 
the fluctuations begin, due to different delay times for updating ABC.  This result suggests a 
possible policy for reducing fluctuations in the groundfish fishery. Wide fluctuations may 
contribute to the ecological and economic decline of the fishery by pushing the biomass towards 
the protection zone or even extinction. 
 
Management Response Time (MRT) 
 
MRT specifies the time over which imbalances in fishing capacity are rectified, in terms of trawl 
vessels being removed from the fishery.  Figure 25 shows the biomass over time with four MRT 
values, varying from one to seven years in two-year increments.  
 

 

 
Figure 25 – Biomass for different values of management response time 

 
The lower the MRT value, the more quickly MF recovers and returns to the MSY value, 
suggesting that MRT should be less than five years for best results. 
 
In order to further illustrate how SD models might help analysts and decision-makers explore 
policy options, a user interface for the model was developed (see Appendix).  Additional 
parameters can be easily varied to simulate different policies, including Normal Fishing 
Fraction, Precautionary Fishing Fraction, Protection Zone Fraction, and Effectiveness of Trip 
Limits. 
  
Since base model runs show that the present number of trawl vessels focused on yellowtail 
rockfish is only slightly above the sustainable value, in order to apply the model to evaluate 
groundfish fleet reductions in a meaningful way, the model would need to be recalibrated using 



 

either aggregate groundfish data or data for specific endangered species. Such data has been 
difficult to obtain. 
 

CONCLUSIONS 
 
Using system dynamics to study the Pacific Coast groundfish fishery was a significant challenge, 
both in terms of obtaining high-quality data and in terms of specifying and calibrating the model.  
Despite these challenges, the final model does endogenously reproduce the behavior of fish 
populations and trawl vessels, two of the most important factors in any fishery model.   
Endogenously modeling harvest is new to the fishery literature, and we believe that further 
research in this area is warranted. 
 
Regarding the stability and sustainability of the fishery, the model results suggest that 
Acceptable Biological Catch (ABC) values should be updated more frequently and that 
Maximum Sustainable Yield (MSY) should remain at 40%, as stipulated in the Magnuson-
Stevenson Fisheries Act.  Furthermore, the management response time for fleet reduction should 
be kept as short as is feasible. 
 
Fishery management requires accurate, frequently updated information about fish populations 
and socioeconomic data. Ideally, surveys would be done annually and the latest scientific 
methods would be used to better determine conditions of fish populations. Currently, the 
National Marine Fisheries Service (NMFS) is increasing the frequency of updating data for some 
groundfish species, especially those that are considered endangered or at risk. Better and more 
current information will help to move the Pacific Coast groundfish fishery toward sustainability. 
 
Future Work 
 
Implementing economic and social factors 
Further work is needed regarding how to measure the economic impact of the fishery and then 
determine how changes in harvest would affect social factors. There are several studies in 
progress that address these issues. However, these studies are not yet able to provide quantitative 
relationships for community impact. 
 
Incorporating dynamic trip limits 
In order to properly determine the harvest endogenously, it will be necessary to model trip limits 
dynamically, since trip limits are used to implement policy in the actual fishery.  Currently, the 
model uses a non-dynamic trip limit factor. As dynamic trip limits are incorporated, the harvest 
figures will be closer to the real harvest values, especially in extreme cases such as when the 
fishery is closed.  
 
Connecting the economic side of the system back to the other aspects of the model 
The model is currently generating economic values; however, these values are not fed back to 
determine the number of trawl vessels that operate, which would in turn impact the harvest and 
fish population.  
 
Improving how the model incorporates changes in ocean health 



 

Although ocean health is difficult to specify given the data currently at hand, there are obviously 
connections between ocean health and fish population. More research must be conducted to 
quantify these relationships so that they can be implemented in the model.  
 
Considering population dynamic models that include the age, size, and weight of fish 
Models of fish population used by fisheries biologists are often more complex than our 
simplified aggregate model. In order to better replicate actual behavior, we may need to utilize 
the more sophisticated models and data (Tagart 2000). 
 
Incorporating catch per unit efficiency (CPUE) index 
Catch per unit efficiency index (Tagart 2000) describes the efficiency of vessels at a given time. 
It might be helpful to incorporate the CPUE index once the economic and trawl vessel 
components of the model are connected. Although this index is not as prevalent in the current 
literature, it was used in early fisheries models and may prove useful to our endeavor. 
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APPENDICES 
 
The model diagram, user interface, equations, and initial value data are provided below.  
 
Model Overview 
 

 



 

User Interface 
 

 
 
Equations 
 
ABC(t) = ABC(t - dt) + (Stock_Assessment_Inflow - Stock_Assesment_Outflow) * dt 
INIT ABC = 3200 
Stock_Assessment_Inflow = pulse(Instantaneous_ABC,1980,Safe_Analyses_Year) 
Stock_Assesment_Outflow = pulse (ABC,1980,Safe_Analyses_Year) 
BMSY = 0.4 
Converter_to_Tons__from_fish = 1.13/1000 
Instantaneous_ABC = (if Spawner_Percentage>BMSY then Normal_Fishing*Mature_Fish else 
if Spawner_Percentage>0.25 then Precautionary_Fishing*Mature_Fish else 
if Spawner_Percentage>0.1 then Protection_Zone*Mature_Fish else 
0)*Converter_to_Tons__from_fish 
Normal_Fishing = 0.21 
Precautionary_Fishing = 0.12 
Protection_Zone = 0.06 
Safe_Analyses_Year = 3 
Historic_ABC = GRAPH(time) 
(1980, 3200), (1981, 3200), (1982, 3200), (1983, 3200), (1984, 3200), (1985, 3000), (1986, 
4000), (1987, 4000), (1988, 4000), (1989, 4000), (1990, 4300), (1991, 4300), (1992, 4300), 



 

(1993, 4400), (1994, 6740), (1995, 6740), (1996, 6740), (1997, 1773), (1998, 4653), (1999, 
3465), (2000, 3539), (2001, 3146), (2002, 3146) 
Biomass = (Mature_Fish*1.13+Juveniles*0.93)/1000 
Historical_Biomass = GRAPH(time) 
(1980, 10785), (1983, 12057), (1986, 9093), (1989, 16861), (1992, 24200), (1995, 2934), (1998, 
22614) 
Total_Gross__Revenue(t) = Total_Gross__Revenue(t - dt) + (Gross_Inflow) * dt 
INIT Total_Gross__Revenue = 0 
Gross_Inflow = Fleet_Gross__Revenue 
ExVessel_Price = 0.34 
Fleet_Gross__Revenue = Harvest*Tons_to_Pounds*ExVessel_Price 
Net_Per_Vessel = (1-Operational_Cost_Percentage)*Revenue__per_vessel 
Operational_Cost_Percentage = 0.85 
Revenue__per_vessel = Fleet_Gross__Revenue/Trawl_Vessels 
Tons_to_Pounds = 1000*2.2 
Juveniles(t) = Juveniles(t - dt) + (Spawns - Recruitment - Juvenile_Mortality) * dt 
INIT Juveniles = 37000000 
Spawns=EXP(-
1.73*Spawner_Percentage)*MaximumSpawn_Rate*Spawner_Abundance*Spawning_Variablity 
Recruitment = Juveniles/Maturation_Time_Constant 
Juvenile_Mortality = Juveniles*Juvenile_Mortality_Rate 
Mature_Fish(t) = Mature_Fish(t - dt) + (Recruitment - Mortality) * dt 
INIT Mature_Fish = 23500000 
Recruitment = Juveniles/Maturation_Time_Constant 
Mortality = Fishing_Mortality*Fishing+Natural_Mortality 
Bycatch__Rate = 0.12 
Fishing = 0 
Fishing_Mortality = Harvest*(1+Bycatch__Rate)*1000/1.13 
Fishing_Mortality_Rate = Fishing_Mortality/Mature_Fish*1000 
Juvenile_Mortality_Rate = 0.2/(Ocean_Health_Measure) 
Maturation_Time_Constant = 4 
Maximum_Spawn_Rate = 12 
Natural_Mortality = (Natural_Mortality__Rate*Mature_Fish)/Ocean_Health_Measure 
Natural_Mortality__Rate = 0.10 
Pristine_Spawner_Abundance = 32500000/1.13 
Spawner_Abundance = Mature_Fish*Spawner_Rate 
Spawner_Percentage = Spawner_Abundance/Pristine_Spawner_Abundance 
Spawner_Rate = 0.41 
Spawning_Variablity = 0.24 
Historical_Harvest(t) = Historical_Harvest(t - dt) + (Harvest_In - Harvest_Out) * dt 
INIT Historical_Harvest = 0 
Harvest_In = PULSE(Historical_Harvest_Data,0,1) 
Harvest_Out = PULSE(Historical_Harvest,1,1) 
Density = Mature_to_Unfished_Ratio/Fish_Density_Coefficent 
Difference_of_Historical_Harvest_and_Endogeneous_Harvest = Harvest-Historical_Harvest 
Effect_of_Trip_Limits = 0.73 



 

Fish_Density_Coefficent = 0.4 
Harvest = (Current_Capacity-Restrictions)*Density 
Mature_to_Unfished_Ratio = (Mature_Fish/Unfished_Exploitable_Abundance) 
Percentage_Density = Mature_to_Unfished_Ratio*100 
Restrictions = (Capacity_Diff*Effect_of_Trip_Limits) 
Unfished_Exploitable_Abundance = 74000000 
Historical_Harvest_Data = GRAPH(Time) 
(1980, 8664), (1981, 9184), (1982, 9185), (1983, 9500), (1984, 5393), (1985, 3830), (1986, 
3478), (1987, 5785), (1988, 6670), (1989, 5046), (1990, 4754), (1991, 4273), (1992, 6822), 
(1993, 5861), (1994, 6456), (1995, 6069), (1996, 6344), (1997, 2323), (1998, 3144), (1999, 
3598), (2000, 3539), (2001, 3146), (2002, 2540) 
Endogeneous_ABC(t) = Endogeneous_ABC(t - dt) + (Endog_Stock__Assesment - Outflow) * dt 
INIT Endogeneous_ABC = 0 
Endog_Stock__Assesment = pulse((Instantaneous_ABC),0,1) 
Outflow = pulse (Endogeneous_ABC,3,1) 
Disposal_Effect = Effectiveness_of_Disposal*Disposal_Condition 
Effectiveness_of_Disposal = 0.5 
Effectiveness__ofEl_Nino = 0.5 
Effect_of_Habitat_Health = 0.5 
El_Nino_Effect = Effectiveness__ofEl_Nino*El_Nino_Anomalies 
Habitat_Health = Effect_of_Habitat_Health*Habitat__Condition 
Habitat__Condition = 1-(Trawl_Vessels/Initial_Vessel__Amount) 
Initial_Vessel__Amount = 300 
Ocean_Health_Measure = 1-Disposal_Effect*Habitat_Health*El_Nino_Effect 
Disposal_Condition = GRAPH(time) 
(0.00, 0.982), (1.00, 0.961), (2.00, 0.968), (3.00, 0.963), (4.00, 0.912), (5.00, 0.931), (6.00, 
0.936), (7.00, 0.948), (8.00, 0.949), (9.00, 0.948), (10.0, 0.9), (11.0, 0.969), (12.0, 1.00), (13.0, 
0.956), (14.0, 0.974), (15.0, 0.965), (16.0, 0.999), (17.0, 0.948), (18.0, 0.904), (19.0, 0.938), 
(20.0, 0.999) 
El_Nino_Anomalies = GRAPH(time) 
(0.00, 0.95), (2.00, 0.855), (4.00, 0.96), (6.00, 0.975), (8.00, 0.96), (10.0, 0.9), (12.0, 0.88), (14.0, 
0.8), (16.0, 0.95), (18.0, 0.95), (20.0, 0.905) 
Trawl_Vessels(t) = Trawl_Vessels(t - dt) + (- Vessel_Change) * dt 
INIT Trawl_Vessels = Initial_Vessel__Amount 
Vessel_Change= 
INT(pulse((Capacity_Diff/Av_Vessel_Cap)/(Mangmt_Resp_Time),1983,3)*Trawl_Reduction) 
Av_Vessel_Cap = 80 
Capacity_Diff = (Current_Capacity-ABC) 
Current_Capacity = Av_Vessel_Cap*Trawl_Vessels 
Mangmt_Resp_Time = 4 
Trawl_Reduction = 0 
Total_Historical_Harvest(t) = Total_Historical_Harvest(t - dt) + (Noname_2) * dt 
INIT Total_Historical_Harvest = 0 
Noname_2 = Historical_Harvest_Data 
Total_Model_Harvest(t) = Total_Model_Harvest(t - dt) + (Noname_4) * dt 
INIT Total_Model_Harvest = 0 



 

Noname_4 = Harvest 
Normal_Level = 40 
Precautionary_Level = 25 
Protection_Level = 10 
X_Axis=0 
 
Initial Values 
 
� Average Vessel Capacity: Average capacity in metric tons per vessel per year. We assumed 

an average capacity around 80 mt, which is an approximation derived from the PFMC 
Science and Statistics Committee capacity calculation - SSC Economics Subcommittee 
(2000) (PMCC & Ecotrust 2002). 

� ExVessel Price: Calculated as $0.34 per pound according to the historical data (PFMC 
1981:2003).  

� BMSY: Maximum sustainable yield is set to 40% of the biomass according to research 
literature. In fact, the federal harvest regime dedicates this exploitation rate, and the regime is 
explained in most groundfish harvest regulation reports (PFMC 2000; NOAA 1996). 

� Bycatch Rate: This is assumed by the Pacific Council to be 16% of the fish harvested 
(PFMC 1981:2003). 

� Initial Vessel Amount: Assumed as 20% of the total trawl vessels working in the groundfish 
area in year 1980. 

� Juveniles: Estimated to be 37 million juveniles. 
� Management Response Time: The time it takes the system to respond to imbalances in 

overall vessel capacity.  Assumed to be 4 years. 
� Maturation Time Constant: It takes 4 years for yellowtail juveniles to mature into adults 

(Tagart et al. 2000). 
� Mature Fish: Estimated to be 23.5 million fish. 
� Maximum Spawn Rate: This is set to 12 fish per year for each spawner on average. 
� Natural Mortality Rate: 11% of the exploitable biomass (Tagart et al. 2000). 
� Pristine Spawner Abundance: 32,500mt that or about 2.8x107 spawner fish (Tagart et al. 

2000). 
� Pristine Exploitable Abundance: The biomass is estimated around 114,700 mt for 

yellowtail which means the exploitable biomass is around 74 million fish assuming a linear 
relationship between biomass and mature fish (Tagart et al. 2000). 

� Spawning Variability: This is set to 0.24 initially to give a mean spawning value of 14 
million fish per year (Tagart et al. 2000).  

� Spawner Rate: Calculated through the relationship between spawner and exploitable 
biomass, using the algorithm described in the Yellowtail Rockfish Report 2000 (Tagart et al. 
2000).  It averages 0.3857 of the exploitable biomass. 

 
Definitions of Variables in Fish Population Sector  
 
� Mature Fish: Also called exploitable abundance. This is the stock of mature fish at any 

given time. 
� Juveniles: Stock of juveniles at any given time. 



 

� Maturation Time Constant (MTC): The time it takes juveniles to become mature fish. This 
varies from species to species. For yellowtail, it takes an average of 4 years for a juvenile to 
become a mature fish. 

� Natural Mortality Rate (NMR): Average annual natural mortality fraction for mature 
yellowtail.  

� Natural Mortality: The product of NMR and the mature fish. 
� Fishing Mortality: Fish caught by trawl vessels and bycatch. 
� Mortality: Sum of natural mortality and the fishing mortality. 
� Spawner Percentage: Ratio of spawner abundance to the pristine spawner abundance.  
� Spawner Abundance: The number of fish that participate in the spawning process. 
� Pristine Spawner Abundance: The average number of spawners when no fishing occurs for 

a long period of time. 
� Maximum Spawning Rate: Maximum juveniles from one mature female fish. 
� Spawning Variability: Models degree of variance in juveniles, according to historical data. 
� Spawns: The amount of newborn fish added each year to the juvenile stock. 
� Juvenile Mortality Rate: Annual fraction of the juvenile stock that flows out due to natural 

mortality. 
� Juvenile Mortality: The product of juvenile mortality rate and juveniles. 


	Abstracts: 
	Table of Contents: 
	back to the top: 


