

Agile Project Management
Warren W. Tignor

SAIC

472 Cornwall Court

Severna Park, MD 21146 USA

410-647-9652

wtignor@ieee.org

International Conference of the System Dynamics Society

Albuquerque, NM 2009

July 26 – July 30, 2009

This paper explores agile project management relative to the conceptual models
documented by Lyneis & Ford (2007) to examine whether the generic structures and the
findings for those structures apply, or new ones are required.

 1

Table of Contents
1 Introduction... 3
2 Statement of the Problem.. 3
3 Literature Review.. 3
4 Research Method and Design ... 14
5 Data Analysis .. 15
6 Major Findings and Significance .. 17

6.1 Does agile project management use feedback responses?................................ 17
6.2 Are agile project management tasks causally linked? 17
6.3 What are agile project management typical behaviors? 18
6.4 What are the limits of agile project management, if any? 19
6.5 What are some lessons learned to date and future research directions regarding
agile project management and system dynamics? .. 19

7 Conclusions... 20
8 References... 21
9 Endnotes.. 23

List of Tables

Table 1 Comparison of agile life-cycle, project management, & concrete guidance
(Adapted from: Abrahamsson et al., 2003, p. 248).. 12

Table 2 Overall data sorted by Stock and Flow subset... 16
Table 3 Summary of reference count in Stock & Flow subsets….………………………16

List of Figures

Figure 1 Scrum Pattern (Adapted from: Ramsin & Paige, 2008, p. 58) 4
Figure 2 Adapative Development Feedback Loops (Adapted from: Tarr et al., 2008, p.23)

... 7
Figure 3 Conceptual Project Management Model (Adapted from: Lyneis & Ford, 2007,

p. 161) ... 15

 2

1 Introduction
The International System Dynamics Society has supported the art and science of

project management for decades. Several domains of project management researched
using system dynamics include hardware development projects, software development
projects, defense projects and civil construction projects. Lyneis & Ford (2007) published
that one of the most successful areas for the application of system dynamics has been
project management in terms of new system dynamics theory, new and improved model
structures, number of applications, number of practitioners, value of consulting revenues,
and value to clients.

This paper explores agile project management relative to the conceptual models
documented by Lyneis & Ford (2007) to examine whether the generic structures and the
findings for those structures apply to agile project management.

2 Statement of the Problem
The questions addressed by this paper are whether agile project management has a

unique structure or will fit within the generic conceptually formed system dynamic
project management structures identified by Lyneis & Ford (2007). Questions to be
addressed include the following:

1. Does agile project management use feedback responses?

2. Are agile project management tasks causally linked?

3. What are agile project management typical behaviors?

4. What are the limits of agile project management, if any?

5. What are some lessons learned to date and future research directions regarding
agile project management and system dynamics?

3 Literature Review
The literature review consisted of reviewing agile project management

publications. The articles reviewed met the criteria for analysis by containing some
information regarding project management, agile development, feedback, tasking,
behavior, and limits. These were indicators that the article would be relevant to the
eventual step to compare their content to the touchstone article by Lyneis & Ford (2007),
essentially the baseline for system dynamics and project management.

The first article is an interesting introduction to agile methodology and project
management. According to Ramsin & Paige (2008, p. 7), most agile methodologies
incorporate explicit processes, keeping them as lightweight as possible. There usually is
an iterative-incremental process present. Of particular interest to this paper is the Scrum
agile methodology for software development as described by Schwaber & Beedle (2001),
Schwaber (2004), & Schwaber (2007).

Ramsin & Paige (2008, p. 58) provide a diagram of the Scrum pattern from
research by Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002), see Figure 1.

 3

Figure 1 Scrum Pattern (Adapted from: Ramsin & Paige, 2008, p. 58)

The Scrum process consists of three phases as follows:

1. Pregame is concerned with setting the stage for the iterative-incremental
development effort and consists of the following subphases1:

1.1 Planning is focused on producing an initial set of prioritized requirements,
i.e., listing the Product backlog, analyzing risks associated with the project,
estimating the resources needed for implementing the requirements, obtaining the
resources necessary for starting the development, and determining an overall
schedule.

1.2 Architecture/high-level design focuses on determining the overall architecture
of the system in such a way as to accommodate the realization of the requirements
in Sprint and Product backlog.

2. Development focuses on iterative and incremental development of the system.
Each iteration (Sprint) is typically one month in duration and delivers an
operational increment satisfying a predetermined subset of the Product backlog2.

3. Post-game focuses on integrating the increments produced and releasing the
system into the user environment3.

At the end of each Sprint, according to Ramsin & Paige (2008, p. 60), the
increment produced is demonstrated to all the parties concerned. A comprehensive
assessment is made of the achievements of the Sprint in satisfying the Sprint goal, and the
Product backlog is updated accordingly. Fully realized requirements are marked as such,
necessary bug fixes or enhancements4 are added, and appropriate changes are made to
partially developed requirements. The Sprint can also result in the identification of new
requirements, or changes to already defined requirements, for consideration when

 4

updating the product backlog5. Another objective of the Sprint review meeting is to
discuss and resolve issues impeding the progress of the development team. The meet
also addresses updating the system architecture according to the insights gained during
the sprint.

For

ing

their embedded control system project, Cordeiro, L., Mar, C., Valentin, E.,
Cruz, F

trong

e

The neXt
Method e

ology contained three different process groups that were used during
the sys

ts,

d of the

pe ent with the TXM methodology as reported by Cordeiro et al. (2008)
success

s-Roth (2008, p. 31) said, referring to the waterfall
develop

the

 substantiate their position, Denning et al. (2008, p. 30) cite the U.S.
govern t which

Experiments (LTEs).

., Patrick, D., Barreto, R., & Lucena, V. (2008) adapted agile principles and
patterns, focusing on issues related to system constraints and safety. They required s
unit testing to ensure timeliness and correctness. They needed a platform-based design
approach to balance cost and time-to-market, regarding performance and functionality
constraints. They found that the agile methodology significantly reduced the design tim
and cost as well as resulted in better software modularity and reliability.

Cordeiro et al. (2008) developed a methodology named as TXM (
ology) composed of practices from Software Engineering, Scrum and eXtrem

Programming (XP).

Their method
tem development project: system platform, product development and product

management. The system platform processes were the following: product requiremen
system platform, product line, and system optimization. The product development
processes were as follow: functionality implementation, task integration, system
refactoring, and system optimization. The product management processes consiste
following processes: product requirements, project management, bug tracking, sprint
requirements, product line, and implementation priority. The TXM process life cycle
consisted of five phases: Exploration6, Planning7, Development8, Release9 ,10 and
Maintenance11,12.

The ex rim
fully balanced cost and time-to-market in view of performance and functionality

constraints. Additionally, they concluded that the project methodology led to better
software modularity and reliability.

Denning, Gunderson & Haye
ment model, “There is too much at stake to continue to allow us to be locked into

a process that does not work.” They asserted that development time is the critical factor
where the user environment changes often and significantly in as little as 18 months
(Moore’s Law), Denning et al., 2008, p. 289. In government and large organizations,
bureaucratic acquisition process for large systems can often take a decade or more, which
contributes to delivered systems being unsatisfactory for the customer. They are in favor
of the evolutionary project process as opposed to the waterfall.13 To them, the astonishing
success of evolutionary development projects challenges common sense. They believe
that the evolutionary development project approach may be the only way to achieve
satisfactory replacements for aging large systems and to create new, unprecedented
systems.

To
ment’s 2004 World Wide Consortium for the Grid (W2COG) experimen

took advantage of a provision of acquisition regulations that allows Limited Technology

 5

The experiment developed a secure service-oriented architecture system,
comparing an LTE using evolutionary methods against a standard acquisition process. In
18 mon ed 80

d
differen

(SE)

the methodologies, and
suppor

 of SE methodologies in any particular circumstance, and advocate developing
a reaso

t entities.
Their re

es

re of “top-down” designed software processes, which has led to the
postula ms

k loops and mechanisms that are required to ensure an
adequa on?

dback
betwee

ths, the LTE’s process delivered a prototype open architecture that address
percent of the government requirements, at a cost of $100,000. In contrast, after 18
months at a cost $1.5 million, the standard process delivered only a concept document
that neither provided a functional architecture, nor had a working prototype.

Jiang & Eberlein (2008, p. 10) address the “methodology war” issue between
agile and non-agile (e.g., waterfall) projects by comparing their similarities an

ces using the CHAPL framework: (1) Contextual analysis, (2) Historical
analysis, (3) Analysis by analogy, (4) Phenomenological analysis, and (5) Linguistic
analysis. The framework inputs are best practices of classical systems engineering
methodologies, agile methodologies, and industry practices14.

Although the CHAPL framework was in its early stage of research, the authors
believe that it will help to understand the relationship between

t rational selection of best practices and suitable SE methodologies for a software
project.

They recognized the fact that there is no model that allows us to reason about the
suitability

ning mechanism that assists in SE methodology selection. This “reasoning model”
is part of their larger research vision and the CHAPL framework its basis.

Tarr, Williams, & Hailpern (2008) examined software development project
processes and software development organizations as adaptive and emergen

search looks at software development processes and organization as having
properties that are unknown a priori, and resulting from ongoing and continuous
response to externals, e.g., evolving requirements, new enterprise priorities, and chang
in resources.

They cite the relative success of “bottom-up” agile software processes and the
common failu

te that software development has more in common with complex adaptive syste
than with assembly lines. They identified that it is necessary for both the project
processes and organizations to adapt to ever-changing requirements and evolutionary
pressures. They posited that only emergent processes, and adaptive organizations were
suited to software development.

Particularly interesting questions they posed are as follows (Tarr et al., 2008,
p.22): (1) “What are the feedbac

te stakeholder/development organization awareness, adaptation, and co-evoluti
(2) What is the frequency of feedback required to achieve effective coevolution?”

They presented four feedback loops involving the stakeholders of a software
development project and the development team15. Figure 2 illustrates postulated fee

n these two populations.

 6

Input
Requirement

Stakeholders Developers

Lessons
learned Output

Figure 2 Adapative Development Feedback Loops (Adapted from: Tarr et al., 2008, p.23)

Tarr et al. (2008) acknowledge that they have seen some feedback and control
occurring in agile project processes, especially ones involving Scrum. But, they have also
seen feedback in top-down project processes in the form of evaluations and acceptance
tests from customers.

They note that there is little in the way of understanding these feedback loops.
They proposed additional research was needed to understand the feedback loops, how
they interact, how they are affected by various pressures (both internal and external), and
how each one can be exploited to maximize the probability that a good result will
emerge16. For example they cited Schwaber & Beedle (2001) that all attempts at external
control during a Scrum “Sprint” result in reduced efficiency of the development team in
achieving their primary goals. Scrum shields a sprinting team from external control input
to whatever extent possible, designating specific control points before and after a Sprint.

Bass (2006) noted that agile approaches have issues when organizations begin to
distribute work geographically. The nature of the developing organization changes and
practices that worked with collocated groups may no longer work with distributed
groups. Two strategies to deal with distributed agile development discussed were:
decoupling the work and augmenting the lack of face-to-face communication.

The problem they identify with these strategies is that project management has no
means of monitoring the effectiveness of such practices. Most current project
management approaches do not explicitly recognize the role of “cognitive
synchronization,” e.g., mental models, in software development17. When it comes to
monitoring and controlling projects, managers typically use documents or artifact-driven
approaches.

Bass (2006) said that agile project approaches are appealing because managers get
to see concrete results regularly. He claimed that agile practices are focused on
optimizing the extent to which the team shares a common mental model. Although this
has been working well inside of a single team, there is no means, currently, for
synchronizing across teams.

There are several ways in which managers might measure either directly or
indirectly the extent to which a shared mental model exists (Bass, 2006, p.36): monitor

 7

coordin urvey

ividual

 processes. Most projects followed a modified waterfall model with daily or

weekly

he
e customer, responding to change, and delivering value instead of

artifact

 room once a year, let alone
once a

 trust boundaries synchronized with the value stream (Brechner,
2005). they could

e
ork in

, extra controls were put in
place to of

.41).
equirements and interactions of interfaces with buyoff from all

key cus
d

 to lack traditional project-management processes and skills, relying
heavily

ation through social network analysis, administer a lightweight Web-based s
(typically less than 10 minutes per individual) on a bi-weekly basis. Additionally,
managers could monitor the social networks of the project, for example: (1) Who in the
project does an individual coordinate with and how often? (2) How aware is an ind
in the activities, skills, and roles of others in the project? (3) To what extent and about
what are teams coordinating? (4) Who is involved with particular kinds of decisions in
the project?

Traditionally at Microsoft, each product group determined and followed its own
practices and

 integrated-builds and six- to twelve-week design-implement-stabilize cycles
(Brechner, 2005, p.40). Unit tests, code reviews, and design inspections varied widely
across groups.

The agile software movement gained a great deal of momentum at Microsoft. T
focus was on th

s18. Developers targeted their rapid development on satisfying customer needs
with constant feedback and an uninterrupted value stream.

They found that when serving a wide variety of customers and working with a
large number of partners, it was difficult to get them all in a

week or month. They saw this problem as inherent with integrated services and the
agile methodologies.

Microsoft’s approach was to add “just enough” project process and
documentation to keep

This enabled teams to have the latest builds available quickly so that
validate and adjust direction frequently with customers and partners. Many teams
employed Scrum, lean development, test-driven development, and refactoring to be mor
responsive to change. This helped the teams to produce better designs, minimize w
progress, and provide the required level of code quality.

“Just enough” documentation meant integrated systems had good points of
integration. Since an interface change could be disruptive

 minimize the possible impact. Interfaces were designed upfront. Versioning
interfaces was as important as versioning of source code and binaries. Versions were
well-managed and maintained to keep the entire enterprise up and running without
interruption or failure.

“Just enough” was more than a “handshake” according to Brechner (2005, p
It meant documenting r

tomers and partners. This happened on two levels: between groups of people and
between groups of services and included a fallback position to keep the system stable an
diffuse tensions.

Detweiler (2007) wrote that agile projects operated under highly compressed time
scales and tended

 on team self-governance. The compressed time scales made it difficult to get
access to the right customers at the right times. Contrary to popular recommendations,

 8

close customer contact and regular feedback may have occurred only sporadically. The
agile phases they followed are below19:

Phase 1 - Understand users. D twe eiler believes a key challenge in contrast to
plan-ba

e

 The challenge was documentation of requirements. Detweiler (2007)
recomm ot

idered a challenge because
indepe th each

ted a research model that hypothesized
the effe

 two

e.

ct
e

 defined the Scrum agile characteristics and developed their hypotheses
based u nd

tive the systems development

es

u ntegration was

 keep

 The greater the degree of collective
older

team members to own the software code benefitted the project process .

sed approaches is that few, if any, background documents or specifications are
available to help provide context for requirements. He recommended lobbying hard to
have dedicated Sprints/milestones allocated for gathering requirements, especially at th
beginning of an agile project to involve developers in synthesizing the data gathered from
customer visits.

Phase 2 –
ended promoting agile-friendly use-case methods so that time and effort were n

wasted. By explicitly writing down users’ goals, the steps needed to achieve them, and
the data needed to support the steps, it would be possible to accelerate the production of
prototypes and working code (Detweiler, 2007, p.43).

Phase 3 - Designing the user interface was cons
ndently empowered teams evolved code in parallel, without coordinating wi

other. He showed prototypes to design partners and target end-users to gather their
feedback early and often to avoid inconsistencies.

Ferreira & Cohen (2008) developed and tes
cts of five characteristics of agile project systems development (iteration,

continuous integration, test-driven design, feedback, and collective ownership) on
dependent stakeholder satisfaction measures: (1) stakeholder satisfaction with the
development process and (2) stakeholder satisfaction with the development outcom
They focused on Scrum as the agile methodology practice. They intended to better
understand general characteristics of agile methodology that lead to improved proje
outcomes. They recognized that organizations were still learning to blend or balance th
characteristics of agile methodology practice, and were still trying different combinations
of options.

They
pon them. There was a hypothesis for each agile methodology characteristic a

one for the linkage of process satisfaction and outcome satisfaction. The research results
supported each hypothesis (Ferreira & Cohen, 2008, p.53):

1. Iterative development hypothesis: The more itera
process, the greater the stakeholder satisfaction. Iterative development had a
strong effect on stakeholder satisfaction allowing for reprioritization of featur
and early and continuous demonstrations of system value20.

2. Continuous integration hypothesis: The more continuo s i
present within the systems development process, the greater the stakeholder
satisfaction. Continuous integration supported the early detection of errors to
the development project on track21.

3. Collective ownership hypothesis:
ownership during the systems development process, the greater the stakeh
satisfaction. Collective responsibility, role swapping, and empowerment of all

22

 9

4. Test-driven design hypothesis: The more test-driven the systems developme
process, the greater the stakeholder satisfaction. Test-driven design appea

nt
red to

 within the
ment process, the greater the stakeholder satisfaction. Regular

ly

with the

uired
letting go of command-and-control management to leadership-and-collaboration . They
said tha

Soft Systems Methodology
and Ac logies

ethodologies and
mismat d”28.

ms.
em Agile Project Management (APM) framework to

 agile manager establishes clear roles and responsibilities to ensure

help focus developers on the delivery of working code that benefited
stakeholders23.

5. Feedback hypothesis: The greater the degree of customer feedback
systems develop
feedback helped organizations recognize necessary requirements changes by
allowing customers ample time to voice their desired changes, which in turn,
allowed customers to get what they wanted. The feedback characteristic showed
the least variation and the highest mean. Feedback appeared the most common
applied agile practice, suggesting a move toward user-centered design24.

6. Process and outcome hypothesis: The greater the stakeholder satisfaction with
the systems development process, the greater the stakeholder satisfaction
systems development outcome. The more satisfied stakeholders were with the
development process, the more satisfied they were with the overall project
outcome25.

Nerur, Mahapatra, & Mangalaraj (2005) noted that agile methodologies req
26

t agile methodologies dealt with unpredictability by relying on people and their
creativity rather than on processes like traditional methodologies. The project manager’s
traditional role of planner and controller had to be altered to that of a facilitator27. The
project manager’s role in agile projects became that of coordinator of collaborative
development efforts. The project manager’s goal was to ensure that the creative ideas of
all participants were reflected in the final decision. To this end, the project manager had
to relinquish authority enjoyed by traditional methodologies.

To Nerur, Mahapatra, & Mangalaraj (2005, p.77), the principles of agile
methodologies paralleled the ideas delineated in Checkland’s

koff ’s Interactive Planning. Therefore, they concluded that agile methodo
reflected the essential characteristics of complex adaptive systems.

Augustine, Payne, Sencindiver & Woodcock (2005) reported that traditional
project management approaches were based on linear development m

ched to today’s dynamic systems that must be able to change at “Internet spee
To their experience, project managers fell back on traditional linear approaches, even
when they use agile methodologies.

They examined projects that employed agile methodologies as complex adaptive syste
They crafted a complex adaptive syst
manage agile development projects. The APM framework they prescribed consists of the
following practices:

1. Organic teams of from seven to nine members that are self-organizing and
emergent. The
proper team alignment and accountability.

 10

2. Guiding vision to help anticipate and adapt to changing conditions. A project
vision as a simple statement of project purpose will have a powerful effect on
individual member behavior.

3. Simple rules that result in complex behavior that emerges over time. The
manager identifies practices to provide simple generative rules without restricting
the autonomy and creativity of team.

4. Free and open access to information. Information about plans, progress,
objectives, and organization is a catalyst for adaptation by each member of the
project team.

5. Light-touch management style that replaces traditional control approaches that
fail when neat linear tasks don’t easily accommodate dynamic processes and
schedules require frequent updating to reflect changing circumstances.

6. Adaptive leadership that balances on the edge of chaos. Systems with too
much structure are too rigid, while systems without enough structure spiral into
chaos. Nonlinear behavior can be positive or negative in a project context and
result in unintended outcomes. Adaptive leadership employs “systems thinking”
to understand all project forces. System archetypes are used to help identify the
unintended and counterintuitive consequences of actions when cause and effect
are not closely related in time and space.

Abrahamsson, P., Warsta, J., Siponen, M., & Ronkainen, J. (2003) performed a
comparative analysis of agile method's life-cycle coverage, project management support,
type of practical guidance, fitness-for-use and empirical evidence. Their results showed
that agile software development methods covered certain but different development
phases and that most of them did not offer adequate support for project management. Yet,
many methods strived for universal solutions as opposed to situation appropriate.

They studied various agile methodologies, e.g., adaptive software development
(ASD), agile modeling (AM), extreme programming (XP), Internet-speed development
(ISD), and the Scrum approach (Scrum).

In general, Abrahamsson et al. (2003) stated that each method should be efficient,
concerning time and resource. They saw that efficiency required project management
activities to enable the execution of software development tasks. They saw project
management as a support function that provided the backbone for efficient software
development, concluding that project management was a relevant dimension in the
evaluation of agile software development methods.

A sample comparative analysis of results by Abrahamsson et al. (2003) is shown
in Table 1. Each agile method is divided into bars. The top bar indicates whether a
method supported project management. The bottom bar shows whether a method relied
mainly on abstract principles (white color) or provided concrete guidance (gray color).
The length of the three bars shows the phases of the software development cycle
supported by the agile method.

 11

Table 1 Comparison of agile life-cycle, project management, and concrete guidance (Adapted from:
Abrahamsson et al., 2003, p. 248)

They concluded that agile software development methods had a wide range of
project management coverage29. For example, AM did not address project management.
XP did not offer a comprehensive project management view. Scrum explicitly addressed
managing agile software development projects from requirements specifications through
integration test.

They were clear that project management could not be neglected. They say that
true project management support was scarce. From a method feasibility point of view,
efficient project management was of utmost importance when agile principles such as
daily builds, and short release cycles were followed. Additionally, since release and daily
builds differed from one method to another, this invited more confusion than clarity.
They maintained that project management considerations needed to be addressed
explicitly to ensure the alignment between developers and project manager.

Vanderburg (2005, p.543) examined feedback in agile processes30. Regarding
Scrum, he described its overall structure as a series of iterations, where each iteration is a
central feedback mechanism. Although Scrum’s iterations typically take 30-day Sprints,
after each Sprint, there was a Sprint Review designed to understand the Sprint’s success
or failure and whether adjustments were needed for the next Sprint. Within each Sprint,
the core feedback mechanism was the daily Scrum meeting31. The fact that feedback was
gathered in a whole-team Scrum meeting probably amplified its effect.

Vanderburg (2005) cited the creators of Scrum, Schwaber & Beedle (2002), that
Scrum employs the empirical process control model. Scrum regularly inspects activities

 12

to see what was occurring and empirically adapted activities to produce desired and
predictable outcomes.

Ko, DeLine, & Venolia (2007) hypothesized that during software projects, little is
known about what information software developers look for and why they look for it,
e.g., What information is needed to triage bugs? What and why is knowledge sought from
their coworkers? What is looked for when they search source code or use a debugger?
They thought that by identifying the types of information that software developers seek,
they would better understand what tools, processes and practices would help.

To understand developer information needs in more detail, they performed a two-
month field study of software developers at Microsoft, focusing on three specific
questions:

1. What information do software developers seek?

2. Where do developers seek this information?

3. What prevents them from finding information?

They observed several developer information needs and situations, e.g., the most
difficult to satisfy being design questions regarding the intent behind existing code32 and
code yet to be written33; nearly impossible to find were bug reproduction steps and the
root causes of failures34; and lastly, general information seeking was deferred because the
coworkers who had the knowledge were unavailable35.

Ko, DeLine, & Venolia (2007) said that one approach to reducing this
communication burden was to automate the acquisition of information. Another approach
to address these information needs was through project process change, for example agile
methods. The frequent need to consult coworkers for information was an important
motivation for Scrum meetings and radical collocation. For example, Chong and Siino
(2006) compared interruptions among radically collocated pair programmers versus
cubicle-base solo programmers and found that the agile team’s interruptions were shorter,
more on-topic, and less disruptive.

For an industrial Web-conferencing system, Graham, Kazman, & Walmsley
(2007) described their experiences with making project architectural tradeoffs between
performance, availability, security, and usability, in light of stringent cost and time-to-
market constraints. Traditional requirements elicitation techniques, e.g., questionnaires,
surveys, observation, and focus groups, proved to be of limited value in their Web-
conferencing domain. They stated that in many cases, Web-conferencing systems were
unprecedented, and end users and integrators did not know what they wanted. They took
note of Augustine, Payne, Sencindiver & Woodcock (2005) that even minor changes can
produce unanticipated effects36. Even as systems become more complex and their
components more interdependent, the market will not accept failure to adapt to changing
requirements and market conditions.

This tension between minor changes and complexity created the classic “agility
versus discipline” problem (Graham et al., 2007). They wanted to provide new
capabilities quickly, and respond to customer needs rapidly, while designing for long-
term extensibility and modifiability.

 13

Given that there were too many unknowns and too many uncontrollable factors,
e.g., third-party hardware and software in a multitude of versions, they compensated for
the difficulty in analyzing architectural tradeoffs by adopting an agile architecture project
discipline combined with a rigorous program of experiments aimed at answering tradeoff
questions. The experiments proved invaluable in resolving tradeoffs by helping to turn
unknown architectural parameters into constants or ranges of values.

Graham et al., (2007) said that the primary lessons learned were following:

1. It was enormously difficult to anticipate required changes to a system’s
architecture during the initial design phase,

2. The benefits of using an incremental, agile approach to change were
significant to the project’s success.

3. While they could have initially architected the system for scalability and fault
tolerance, there were not strong requirements at the beginning, and addressing
them would have significantly increased time-to-market and development
expense.

4 Research Method and Design
The research method consisted of using Lyneis & Ford’s (2007) project

management system dynamic exposition and structure represented as a stock and flow
diagram as a basis for comparison to the agile project descriptions in the literature
reviewed.

The research method was designed to test the hypothesis that an agile project
management conceptual system dynamics model (stock and flow structure, Figure 3)
could be identified in the literature reviewed or whether another structure may be
required. In essence, the question was whether the Lyneis & Ford (2007) system dynamic
project model holds for agile projects. In particular, the research method was designed to
see whether the literature reviewed would fit in any of the four system dynamic structures
below as defined by Lyneis & Ford, 2007:

1. A rework cycle: The rework cycle is a canonical system dynamics structure
that drives much of the dynamics of project management models.

2. Project control: Controlling systems is the objective of applying system
dynamics in many domains, in order to deliver on time, on budget, and with the
quality and specifications required. Modeling the controlling feedback loops to
close gaps between project performance and targets directly applies system
dynamics to project management.

3. Ripple effects: “Ripple effects” is the name commonly used to describe the
primary concept of policy resistance to well-intended project control efforts.

4. Knock-on effects: “Knock-on effects” commonly describe the secondary
impacts of project control behavior that results in adverse, unintended
consequence, e.g., excessive or detrimental negative morale.

 14

Figure 3 Conceptual Project Management Model (Adapted from: Lyneis & Ford, 2007, p. 161)

The data collection method consisted of reading the review literature and
endnoting it relative to the system dynamic structure. Where possible, the method was to
endnote the literature to the stocks, rectangle accumulators, and flows, triangle valves. If
the review literature fit multiple parts of the system dynamic structure, it was endnoted as
such. In instances where the review literature identified work that did not fit any of the
four system dynamic categories, it was endnoted as “nonspecific.”

As further clarification of the Lyneis & Ford (2007) standard for comparison to
the review literature, it is important to note that they considered the rework flow as the
most important single feature of system dynamics project models. Because of the rework
cycle’s recursive nature, it has the potential to generate more rework that generates more
rework, etc., creating problematic project management behaviors that result in schedule
and resource management impacts.

5 Data Analysis
The endnotes made during the review of the literature were collected as comma

separated variable (.csv) files for analysis using Microsoft Corporation’s Office Excel®.
The overall results are available in Table 2, sorted by Stock and Flow subset, i.e., the
stock and flow categories as used by Lyneis & Ford (2007). The overall data show that
all but two references, i.e., Denning et al. (2008) and Jiang & Eberlein, (2008) could be
partitioned to the model.

Some of the reviewed literature could be allocated to one or more specific parts of
the project management stock and flow chart. A summary of the subset results follows in
Table 3:

 15

Endnote
Stock & Flow Subset Reference

16 Controlling Feedbacks (Tarr et al., 2008) 1
24 Controlling Feedbacks (Ferreira & Cohen, 2008) 2
30 Controlling Feedbacks (Vanderburg, 2005) 3
10 Error Generation (Cordeiro et al., 2008) 1
13 general support (Denning et al., 2008) 1
14 general support (Jiang & Eberlein, 2008) 2
17 Knock-on Effects (Bass, 2006) 1
27 Knock-on Effects (Nerur et al., 2005) 2
33 Original Work to Do (Ko et al., 2007) 1
1 Original Work to Do (Ramsin & Paige, 2008) 2
6 Original Work to Do (Cordeiro et al., 2008) 3
7 Original Work to Do (Cordeiro et al., 2008) 4

19 Overall (Detweiler, 2007) 1
35 Overall (Ko et al., 2007) 2
15 Overall (Tarr et al., 2008) 3
18 Overall (Brechner, 2005) 4
20 Overall (Ferreira & Cohen, 2008) 5
21 Overall (Ferreira & Cohen, 2008) 6
22 Overall (Ferreira & Cohen, 2008) 7
26 Overall (Nerur et al., 2005) 8
28 Overall (Augustine et al., 2005) 9
29 Overall (Abrahamsson et al., 2003) 10
31 Overall (Vanderburg, 2005) 11
2 Progress (Ramsin & Paige, 2008) 1
8 Progress (Cordeiro et al., 2008) 2

34 Rework Discovery (Ko et al., 2007) 1
23 Rework Discovery (Ferreira & Cohen, 2008) 2
25 Rework Discovery (Ferreira & Cohen, 2008) 3
5 Rework to Do (Ramsin & Paige, 2008) 1

12 Rework to Do (Cordeiro et al., 2008) 2
36 Ripple effects (Graham et al., 2007) 1
4 Undiscovered Work (Ramsin & Paige, 2008) 1

11 Undiscovered Work (Cordeiro et al., 2008) 2
32 Work Done (Ko et al., 2007) 1
3 Work Done (Ramsin & Paige, 2008) 2
9 Work Done (Cordeiro et al., 2008) 3

Table 2 Overall data sorted by Stock and Flow subset

Stock & Flow Subset Total
 Controlling Feedbacks 3
 Error Generation 1
 Knock-on Effects 2
 Original Work to Do 4
 Overall 11
 Progress 2
 Rework Discovery 3
 Rework to Do 2
 Ripple effects 1
 Undiscovered Work 2
 Work Done 3 Table 3 Summary of reference count in Stock and Flow subsets

 16

6 Major Findings and Significance
The major finding of this research confirms the hypothesis that elements of agile

project management are present in the system dynamics project management model. The
aggregate of the reviewed literature contained elements that could be identified with the
Lyneis & Ford (2007) model. This finding has significant meaning because a new project
management structure, from a system dynamics perspective, is not needed to describe and
analyze agile projects. This finding further substantiates that the work of Lyneis & Ford
(2007) has identified an archetypical project management pattern.

Regarding whether the literature reviewed would fit in any of the system dynamic
structures defined by Lyneis & Ford, 2007, i.e., rework cycle, project control, ripple
effects, and knock-on effects, the data confirm that they are met in part, but not as a
whole, by any of the reviewed agile project articles. This is significant because the agile
community recognizes the presence of these structures but has overlooked the synergy of
their relationships. This is important because of the possible impact to agile project
management system dynamics could have, e.g., the possibility of recognizing the
recursive nature of error generation, undiscovered work, rework discovery, and rework
path as illustrated in Figure 3.

6.1 Does agile project management use feedback responses?
Tarr et al. (2008) presented four feedback loops involving the stakeholders of a

software development project and the development team as illustrated in Figure 2. This is
significant as an initial view of the role feedback plays in an agile project management
process.

Ferreira & Cohen (2008) indicated that the greater the degree of customer
feedback within the systems development process, the greater the stakeholder
satisfaction. Regular feedback helped organizations recognize necessary requirements
changes by allowing customers ample time to voice their desired changes, which in turn,
allows customers to get what they wanted. The significance is the recognition that
feedback is central to a move toward user-centered design.

Vanderburg (2005, p.543) regarded Scrum as an overall feedback structure with a
series of iterations. He described Scrum feedback, as gathered in a whole-team setting, to
probably have an amplifying effect. The recognition of the possibility that feedback could
have an amplifying effect is significant from a system dynamics perspective as a positive
feedback loop.

6.2 Are agile project management tasks causally linked?
Ko,et al. (2007) observed several developer information needs that appeared

causally linked, e.g., design questions regarding the intent behind existing code and code
yet to be written; bug reproduction steps and the root causes of failures; and lastly,
general information seeking deferred because the coworkers who had the knowledge
were unavailable. Seeing causality is a significant step toward creating system dynamic
models to study and manage effects.

Ferreira & Cohen (2008) developed a hypothesized linkage between agile
methodology characteristics and stakeholders. They studied the effects of five

 17

characteristics of agile systems development, i.e., iteration, continuous integration, test-
driven design, feedback, and collective ownership, on two dependent stakeholder
satisfaction measures: (1) stakeholder satisfaction with the development process, and (2)
with the development outcome. They intended to better understand general characteristics
of agile methodology that lead to improved project outcomes and in the process have
identified a significant role for system dynamics to address.

Augustine, et al. (2005) report that traditional project management approaches
were based on linear development methodologies and mismatched to today’s dynamic
systems that must be able to change at “Internet speed.” To their experience, project
managers fell back on traditional linear approaches, even when they used agile
methodologies. They sought a linkage between adaptive leadership employing “systems
thinking” to understand all project management forces. They believe that system
archetypes were a useful link to help identify the unintended and counterintuitive
consequences of actions when cause and effect are not closely related in time and space.
This is significant because of the recognition that there are unintended consequences and
policy resistance when relapsing to traditional management techniques. Linear
management policy will not prevail at Internet speeds.

Cordeiro, et al. (2008) adapted agile principles and patterns in order to build
embedded control systems focusing on issues related to system constraints and safety.
They found strong linkage between unit testing to ensure timeliness and correctness and
agile project tasks. They needed a platform-based design approach to balance costs and
time-to-market regarding performance and functionality constraints. There is a significant
role for system dynamic models supporting the tradeoffs needed in agile development
projects.

6.3 What are agile project management typical behaviors?
Augustine, et al. (2005) crafted a complex adaptive system Agile Project

Management (APM) framework to manage agile development project behavior. The
APM framework they constructed consists of the following practices:

1. Organic teams of from seven to nine members that are self-organizing and
emergent.

2. Guiding vision to help anticipate and adapt to changing conditions.

3. Simple rules that result in complex behavior that emerges over time.

4. Free and open access to information.

5. Light-touch management style that replaces traditional control approaches.

6. Adaptive leadership to balance on the edge of chaos.

There is a significant role for system dynamics to help define and clarify the
“simple rules” as they apply to “complex behavior.” Additionally, system dynamics is a
key tool to help anticipate and adapt to changing conditions.

According to Ramsin & Paige (2008, p. 7), most agile methodologies incorporate
explicit processes, keeping them as lightweight as possible. There usually is some
iterative-incremental process present. Three typical behaviors that they noted were as

 18

follows: (1) Pregame - concerned with setting the stage for the iterative-incremental
development effort, (2) Development (game) - focused on iterative and incremental
development of the system, and (3) Post-game - focused on integrating the increments
produced and releasing the system into the user environment. System dynamics is an
appropriate tool to study the parameters of these behaviors, their sensitivities and their
dynamic interactions. Otherwise, the project manager will have to guess at what effect
changing one variable will have on another without any empirical support, a situation that
has been proven to generally exceed our capacity to dynamically manage.

6.4 What are the limits of agile project management, if any?
Abrahamsson, et al. (2003) performed a comparative analysis of agile methods’

life-cycle coverage, project management support, type of practical guidance, fitness-for-
use, and empirical evidence. Their results showed that agile software development
methods cover certain but different development phases and that most of them do not
offer adequate support for project management. Yet, many methods strived for universal
solutions as opposed to situation-appropriate use. There is a significant opportunity for
system dynamics to provide a holistic approach to a very dynamic agile development
projects.

Bass (2006) says that agile approaches have issues when organizations begin to
distribute work geographically. The nature of the developing organization changes and
practices that worked with collocated groups may no longer work with distributed
groups. Two strategies to deal with distributed agile development are to decouple the
work or augment the lack of face-to-face communication. System dynamics could help
identify and manage the limits of positive and negative feedback loops that will be
present during distributed agile development.

Brechner (2005) found agile software movement gained a great deal of
momentum at Microsoft due to its focus on the customer, responding to change, and
delivering value instead of artifacts. Developers targeted their rapid development on
satisfying customer needs with constant feedback and an uninterrupted value stream.

Unfortunately, a limit was reached when serving a wide variety of customers and
working with a large number of partners. Brechner (2005) reports that it was difficult to
have customer contact once a year, let alone once a week or month. Microsoft’s approach
was to add “just enough” process and documentation to keep trust boundaries
synchronized and the value stream flowing (Brechner, 2005). A significant question is the
limit of “just enough” process as a function of number of developers, requirements, and
customer meetings. Answering these questions is a role for system dynamics.

6.5 What are some lessons learned to date and future research
directions regarding agile project management and system
dynamics?

Graham, et al. (2007) described their experience making architectural tradeoffs
among performance, availability, security, and usability, in light of stringent cost and
time-to-market constraints in an industrial Web-conferencing system. Their primary
lessons learned were as follows:

 19

1. It is enormously difficulty to anticipate required changes to a system’s
architecture during the initial design phase.

2. The benefits of using an incremental, agile approach to change were
significant to the project’s success.

For future research, Graham, et al. (2007) are strong proponents of
experimentation to compensate for the difficulty in analyzing architectural tradeoffs,
given many unknowns and uncontrollable factors. Significantly, system dynamics is an
appropriate tool to model and simulate the lessons learned and support their tradeoff
experimentation.

Jiang & Eberlein (2008) started researching a framework to compare best
practices of classical SE methodologies, agile methodologies, and industry practice. They
recognized the fact that there is no model that allows us to reason about the suitability of
SE methodologies in any particular circumstance, and advocate developing a reasoning
mechanism that assists in agile methodology selection. Such a model is part of their
larger research vision and the CHAPL framework their basis for comparison. With a
CHAPL framework, system dynamics might make a contribution to the reasoning model
necessary to assist in agile methodology selection.

Tarr, et al. (2008) have learned to view software development processes and
software development organizations as adaptive and emergent entities. Their research
looks at software development processes and organization as having properties that are
unknown a priori. The properties result from ongoing and continuous response to
externals, e.g., evolving requirements, new enterprise priorities, and changes in resources.
Particularly interesting questions they pose for future research are as follows: (1) What
are the feedback loops required to ensure adequate stakeholder/development organization
awareness? and (2) What is the frequency of feedback required to achieve effective
coevolution? System dynamics is a significant feedback analysis tool to support the
research advocated by Tarr, et al. (2008).

7 Conclusions
In conclusion, the work of Lyneis & Ford (2007) stands the test of agile project

management. The literature reviewed shows that there are many areas of agile project
management that could benefit from knowledge about and application of the Lynies &
Ford (2007) model. Overall, the literature shows that there is little applied science
attention to the agile project management process. The holistic approach encapsulated by
Lyneis & Ford (2007) could benefit the agile project management process. Of paramount
interest is a way to monitor and control the potential impact of recursive error detection
and rework to the agile development process.

 20

8 References
Abrahamsson, P., Salo,O., Ronkainen, J., & Warsta, J. (2002). Agile Software

Development Methods: Review and Analysis. VTT Publications, Oulu, Finland.

Abrahamsson, P., Warsta, J., Siponen, M., & Ronkainen, J. (2003). New Directions on
Agile Methods: A Comparative Analysis. IEEE.

Augustine, S., Payne, B., Sencindiver, F. & Woodcock, S. (2005). Agile Project
Management: Steering from the Edges, Communications of the Association of
Computing Machinery. 48:(12), pp.85-89.

Bass, M. (2006). Monitoring GSD Projects via Shared Mental Models: A Suggested
Approach. GSD’06, Shanghai, China.

Brechner, E. (2005). Journey of Enlightenment: The Evolution of Development at
Microsoft. ICSE’05, St. Louis, MO.

Chong, J., Siino, R. (2006). Interruptions on Software Teams: A Comparison of Paired
and Solo Programmers. Computer Supported Cooperative Work. Banff, Alberta.
pp.28–39.

Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., & Lucena, V.
(2008). An Agile Development Methodology Applied to Embedded Control
Software under Stringent Hardware Constraints. ACM SIGSOFT Software
Engineering Notes January 2008 Vol. 33 No. 1.

Denning, P., Gunderson, C., & Hayes-Roth, R. (2008). The Profession of IT Evolutionary
System Development. Communications of the Association of Computing
Machinery. 51:(12), pp.29-31.

Detweiler, M. (2007). Managing UCD Within Agile Projects. ACM Interactions, XIV.3,
May/June, pp.40-42.

Ferreira, C. & Cohen, J. (2008). Agile systems development and stakeholder satisfaction:
a South African empirical study. In Proceedings of the 2008 Annual Research
Conference of the South African institute of Computer Scientists and information
Technologists on IT Research in Developing Countries: Riding the Wave of
Technology (Wilderness, South Africa, October 06 - 08, 2008). SAICSIT '08, vol.
338. ACM, New York, NY, 48-55.

Graham, Nicholas. C.T., Kazman, R. & Walmsley, C. (2007). Agility and
Experimentation: Practical Techniques for Resolving Architectural Tradeoffs.
29th International Conference on Software Engineering (ICSE'07).

Jiang, L, & Eberlein, A. (2008). Towards A Framework for Understanding the
Relationships between Classical Software Engineering and Agile Methodologies.
APSO’08, Leipzig, Germany.

Ko, J. A., DeLine, R., & Venolia, G. (2007). Information Needs in Collocated Software
Development Teams. 29th International Conference on Software Engineering
(ICSE'07).

 21

Lyneis, J., Ford, D. (2007). System dynamics applied to project management: a survey,
assessment, and directions for future research. System Dynamics Review,
Vol.23.No. 2/3, pp. 157-189.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of Migrating to

 Agile Methodologies. Communications of the ACM Vol. 48, No. 5.

Ramsin, R. & Paige, R. F. (2008, Feb). Process-Centered Review of Object Oriented
Software Development Methodologies. ACM Computing Surveys, Vol. 40, No. 1,
Article 3.

Schwaber, K. (2004). Agile Project Management with Scrum. Microsoft Press, Redmond,
WA.

Schwaber, K. (2007). Enterprise Scrum. Microsoft Press, Redmond, WA.

Schwaber, K. & Beedle, M. (2001). Agile Software Development with Scrum. Prentice-
Hall, Englewood Cliffs, NJ.

Tarr, P., Williams, C., & Hailpern, B. (2008). Toward Governance of Emergent
Processes and Adaptive Organizations. SDG’08, Leipzig, Germany.

Vanderburg, G., (2005). A Simple Model of Agile Software Processes– or –Extreme
Programming Annealed. OOPSLA’05. San Diego, California.

 22

9 Endnotes

1 Rework cycle; Original Work to Do; (Ramsin & Paige, 2008)
2 Rework cycle; Progress; (Ramsin & Paige, 2008)
3 Rework cycle; Work Done; (Ramsin & Paige, 2008)
4 Rework cycle; Undiscovered Work; (Ramsin & Paige, 2008)
5 Rework cycle; Rework to Do; (Ramsin & Paige, 2008)
6 Rework cycle; Original Work to Do; (Cordeiro et al., 2008)
7 Rework cycle; Original Work to Do; (Cordeiro et al., 2008)
8 Rework cycle; Progress; (Cordeiro et al., 2008)
9 Rework cycle; Work Done; (Cordeiro et al., 2008)
10 Rework cycle; Error Generation; (Cordeiro et al., 2008)
11 Rework cycle; Undiscovered Work; (Cordeiro et al., 2008)
12 Rework cycle; Rework to Do; (Cordeiro et al., 2008)
13 Nonspecific; general support; (Denning et al., 2008)
14 Nonspecific; general support; (Jiang & Eberlein, 2008)
15 Rework cycle; Overall; (Tarr et al., 2008)
16 Rework cycle; Controlling Feedbacks; (Tarr et al., 2008)
17 Rework cycle; Knock-on Effects; (Bass, 2006)
18 Rework cycle; Overall; (Brechner, 2005)
19 Rework cycle; Overall; (Detweiler, 2007)
20 Rework cycle; Overall; (Ferreira & Cohen, 2008)
21 Rework cycle; Overall; (Ferreira & Cohen, 2008)
22 Rework cycle; Overall; (Ferreira & Cohen, 2008)
23 Rework cycle; Rework Discovery; (Ferreira & Cohen, 2008)
24 Rework cycle; Controlling Feedbacks; (Ferreira & Cohen, 2008)
25 Rework cycle; Rework Discovery; (Ferreira & Cohen, 2008)
26 Rework cycle; Overall; (Nerur et al., 2005)
27 Rework cycle; Knock-on Effects; (Nerur et al., 2005)
28 Rework cycle; Overall; (Augustine et al., 2005)
29 Rework cycle; Overall; (Abrahamsson et al., 2003)
30 Rework cycle; Controlling Feedbacks; (Vanderburg, 2005)
31 Rework cycle; Overall; (Vanderburg, 2005)
32 Rework cycle; Work Done; (Ko et al., 2007)
33 Rework cycle; Original Work to Do; (Ko et al., 2007)
34 Rework cycle; Rework Discovery; (Ko et al., 2007)
35 Rework cycle; Overall; (Ko et al., 2007)
36 Rework cycle; Ripple effects; (Graham et al., 2007)

 23

	Introduction
	Statement of the Problem
	Literature Review
	Research Method and Design
	Data Analysis
	Major Findings and Significance
	Does agile project management use feedback responses?
	Are agile project management tasks causally linked?
	What are agile project management typical behaviors?
	What are the limits of agile project management, if any?
	What are some lessons learned to date and future research di

	Conclusions
	References
	Endnotes

