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Abstract 
Can a simple positive feedback loop generate a goal-seeking behavior? The answer is 
yes. Can the behavior generated from a loop with a constant gain shift from a goal-
seeking one to an exponential growth one? The answer is also yes. From the above 
answers, one can conclude that link gains alone cannot explain the origin of behavior 
patterns. In this paper, we propose the “curvature-contribution” of a link as a more 
valid representation of the link’s role in generating behavior patterns.  The “curvature-
contribution” of link is the product of the link’s gain and the rate of change in the input 
(influencing) state. If a link has a very high gain but there is no change in the input 
state, then this link does not contribute at all to the behavior pattern of the output 
(influenced) state. Likewise, if the input state is changing rapidly but the link has zero 
gain, then this link does not contribute at all to the behavior pattern of the output state.   
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1 The Challenge 
 
As a demonstration of the issues stated in the abstract, we consider the model shown in 
figure 1. It is a simple, second order model that has a single positive feedback loop with 
a constant gain (determined by the model equations in table 1). This model can generate 
a goal-seeking behavior (as shown in figure 2), it can generate an exponential growth 
behavior (as shown in figure 3), and it can shift its behavior from a goal-seeking one to 
an exponential growth one (as shown in figure 4). In short, it can generate various sorts 
of behavior despite the fact that it is just contains a single loop with a constant gain. The 
implication is that knowing the structure of a model, more specifically the link gains 
characterizing that structure, is not sufficient to determine the current behavior of the 
model.   



 
 

Fig. 1: Example 1, stock and flow diagram  
 

flow  Level_1 = Rate_1 
flow  Level_2 = Rate_2 
 
Rate_1 = 0.1* Level_2 
Rate_2 = 0.1* Level_1 

 
Table 1: Example 1, equations  

 
Now, if we set the initial value of level_1 to –1, and the initial value of level_2 to 1, we 
get a goal-seeking behavior (convergent behavior), as shown in the figure below. 

 

Fig. 2: Example 1, behavior; init Level_1= -1 & init Level_2= 1 
 
 

Yet, if we change the initial value of level_1 from –1 to 1, we get an exponential growth 
behavior (divergent behavior), as shown in the figure below. 
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Fig. 3: Example 1, behavior; init Level_1= 1 & init Level_2= 1  
 
 

Moreover, if we set the initial value of level_1 to –0.9, and the initial value of level_2 to 
1, the behavior shifts from a goal seeking one to an exponential growth one, as shown in 
the figure below.  
 

Fig. 4: Example 1, behavior; init Level_1= -0.9 & init Level_2= 1 
 
 
In the next sections, we will first develop quantitative measures for behavior patterns, 
and then we will identify the origins of behavior patterns.  In this paper, we define 
behavior patterns as the types of behavior that can be observed over a tiny time interval.  
In any tiny time interval, one can only observe divergent behavior (i.e. exponential 
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growth or decline) and convergent behavior (i.e. goal-seeking behavior). Other types of 
behavior like oscillation and s-shaped behavior can only be observed over a large time 
interval, and are composed of a series of convergent/divergent patterns. This paper is 
based on our previous paper (Saleh & Davidsen, 2000), in which we developed two 
distinct approaches to characterize the current behavior, i.e. behavior pattern indexes 
and the current dominant modes of behavior -- where each mode of behavior is 
represented by an eigenvalue.   Nathan Forrester (Forrester, 1982 & 1983) has 
established the theoretical foundation for identifying the origins of behavior modes 
(eigenvalues). In this paper we study the origin of behavior patterns, which is another 
approach to characterize the behavior. The curvature-contribution concept, which we 
mentioned in the abstract, is the core of our study as we are going to explain later.  

 
Characterizing and analyzing the behavior of complex models is a sophisticated issue. 
Looking at this issue, from two distinct perspectives broadens our horizon, and enables 
us to capture the different aspects of this sophisticated issue. These two distinct 
perspectives are the empirical approach described in this paper, and an ana lytical 
approach based on eigenvalue analysis, which is described in (Saleh & Davidsen, 2001; 
Saleh & Davidsen, 2000; Forrester, 1982 & 1983). 
 
Applying these two approaches to the same system dynamics models we may 
triangulate our results through thorough experimentations. Our ultimate goal (in both 
approaches) is to shed some light on the origin of dynamics in complex models, and 
apply the insights gained to the facilitation and enhancement of the management of the 
real systems represented by such complex models. 
 
Note that the simple empirical interpretation method, described in this paper, is a 
localized perspective for determining the causes of the behavior of a certain state 
variable. It is a localized perspective as we only focus on the behavior of a particular 
variable, and for this specific state variable we search for the causes of its current 
behavior pattern in the near links, i.e. links that directly affect the state variable without 
any other intervening state variables. This only offers a fragmented view of the model 
as we assume that links far from the state variable (i.e. links that do not directly affect 
the state variable) have no effect at all. In contrast, the eigenvalue analysis gives us a 
global view of the whole model. I.e. we are able to determine the effect of any link on 
the behavior of any state variable (whether this link is a near or a far link).  Moreover, 
the analytical approach based on eigenvalue analysis is more suited to studying models 
that exhibit oscillatory behavior, than the empirical approach, described in this paper. 
Recall that the analytical approach decomposes the total behavior of a model into 
monotonic and oscillatory modes of behavior. In contrast, in the empirical approach, we 
can only express monotonic behavior (that unfolds over a small time period). Hence an 
oscillatory behavior will be expressed as a series of alternating convergent and 
divergent fragments of behavior.  Nevertheless, despite these reasons for applying the 
more potent analytical approach in linking behavior to structure -- i.e. explaining the 
foundation of behavior -- we apply the empirical approach in this paper to outline an 
interpretation to the origin of behavior. We think that a dual empirical/analytical 
approaches are vital to ensure that the analytical approach (based on eigenvalue 
analysis) is consistent with our empirical (intuitive) interpretation (described in this 
paper) of model behavior, model structure and the relationship between the two. 



2 Theoretical Foundation 
 
To investigate in depth the questions we raised in this paper and to understand the 
curvature -contribution concept, we begin by explaining the behavior pattern indexes. 
 
 
2.1 Behavior pattern indexes  
 
The properties of the behavior that we will be focusing on are the slope (s), and the 
curvature (c) of each state variable (x). These are defined, in this paper, as follows: 
- the slope, s, is defined as the first (time) derivative, x& , of that state variable, x; and 
- the curvature, c, is defined as the double (time) derivative, x&& , of that state variable. 
 
The convergence/divergence of a state variable at any instant of time is defined as the 
rate of change of the absolute value of the slope, s, of this state variable, i.e. d|s|/dt  
(Ford, 1999). If the state variable is in a convergent behavior (goal-seeking behavior), 
then d|s|/dt will be negative, i.e. the absolute value of the slope, |s|, is decreasing with 
time. If the state variable is in a divergent behavior (exponential growth or decline), 
then d|s|/dt will be positive, i.e. the absolute value of the slope vector, |s|, is increasing 
with time. Note that |s|=0 is a partial condition for equilibrium. 
 
In the next paragraphs, we will develop a proxy measure for d|s|/dt. This pr oxy measure 
will serve as a normalized indicator for the convergence/divergence of a state variable at 
any instant of time. The definition of this proxy measure is the ratio of the curvature to 
the slope of the state variable. To understand the idea behind this proxy measure we 
begin by analyzing the following simple difference equation: 
 

sx new = sx current + ∆t * c x 

 
For a state variable x, we may express the new slope, i.e. sx new, in terms of the original 
slope, sx current , and the rate of change in the slope over the subsequent period of time, i.e. 
the curvature, cx.  
 
In mathematical terms, the new proxy measure is defined by the following ratio: 
 

cx / sx current 
 
Note that if cx and sx current have the same sign, then this ratio will be positive, and the 
absolute value of the slope will increase (i.e. d|sx|/dt > 0), - an indicator of divergent 
behavior. If, on the other hand, the two have opposite signs, then the ratio will be 
negative, and the absolute value of the slope will decrease (i.e. d|s|/dt < 0), - an indicator 
of convergent behavior. If c = 0, then the ratio will be 0, so that the absolute value of the 
slope will not change, i.e. d|sx|/dt = 0. In such a case, if cx changes its value from -
ε (ε−>0) to +ε , then the ratio (cx / sx current ) will change from negative to positive -- or the 
reverse, depending on the sign of sx current. As a consequence, the value of d|sx|/dt will 
also change from negative to positive -- or the reverse, - an indicator of a transition in 
the pattern of behavior from convergence to divergence -- or the reverse. If sx current  
changes its value from -ε  to +ε, then the ratio (cx / sx current) will change from  -∞  to +∞ -- 



or the reverse, depending on the sign of cx. That would be an indicator of a discontinuity 
in d|sx|/dt, and thus, also in this case, a transition in the pattern of behavior from 
convergence to divergence – or the reverse.  
 
Since the ratio cx / sx current is a characterization of the pattern of behavior exhibited by 
the state x, we define an indicator of that behavior in the form of a Behavior Pattern 
Index (BPI), associated with a particular state variable, x, as: 
 

BPIx = cx / sx 
 
BPIx serves as a normalized proxy for d|sx|/dt. 
 
 
2.2 Behavior pattern indexes – example 2  
 
Example 2 is a simple first order model with the state variable Level_1, governed by the 
Slope_1, - a model that can exhibit exponential growth or goal-seeking behavior, 
depending on the value of the parameter Constant_1. A positive value implies 
exponential growth, while a negative one implies a goal-seeking behavior. 
 

Fig. 5: Example 2, stock and flow diagram of the model 
 
In order to analyze the model in example 2, we need to add an auxiliary structure, see 
figure 4, that calculates the pattern index, Pattern_Index, for the state variable based on 
the first derivative, Slope_1, and second derivative, Curv_1; it also calculates the rate of 
change of the absolute value of the slope, Rate_Change_ABS_Slope: 

Constant_1

Level_1Slope_1



Fig. 6: Example 2, stock and flow diagram of the calculation of the behavior 
pattern index, and the rate of change of the absolute value of the slope  

 
 
Below is the table of equations for example 2. 

 
init  Level_1 = 1 
flow  Level_1 = Rate_1 
 
Slope_1 = Constant_1*Level_1 
Curv_1 = DERIVN(Slope_1) 

Note: DERIVN is the time derivative function. 
 
Constant_1 = 2 (or –2) 
 
Pattern_Index = Slope_1/Curv_1 
ABS_Slope =ABS(Slope_1) 

Note: ABS is the absolute function. 
 
Rate_Change_ABS_Slope = DERIVN(ABS_Slope) 

 
Table 2: Example 2, equations 

 
For Constant_1 = 2, this model exhibits the following behavior with respect to the state 
variable (Level_1), BPILevel_1, and d|s|/dt: 

Rate_Change_ABS_Slope

ABS_Slope

Pattern_Index

Curv_1

Slope_1



 
Fig. 7: Example 2, behavior, Constant_1= 2 

 
 
Note that the graphs for BPILevel_1 and d|s|/dt qualitatively provide the same information 
about the state variable Level_1 -- that the state variable is divergent -- since both of 
them take positive values. BPILevel_1 is constant because it is a normalized expres sion of 
the divergence, i.e. of cur vature, c with respect to slope, s. BPILevel_1 is thus a com pact 
characterization of the mode of behavior exhibited by the state variable. 
 
Now, if, in this model, we change the value of Constant_1 from “2” to “–2”, then we 
will obtain the following behavior with respect to the state variable (Level_1), 
BPILevel_1, and d|s|/dt: 
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Fig. 8: Example 2, behavior, Constant_1= -2 

 
Again note that the graphs for BPILevel_1 and d|s|/dt qualitatively provide the same infor-
mation about the state variable Level_1 -- as they both take negative values -- indicating 
that the state variable is convergent. BPILevel_1 is constant as it is a normalized value. 
 
 
2.3 The curvature -contribution of a link 
 
We first begin by defining the gain of a link in the model.  The gain is defined as the 
change in the net rate (slope) of a state variable (say state i) in response to a change in 
the level (value) of another state variable in the model (say state j).  
 
 

In mathematical terms the gain, gij , is dfined as (
j

i
x
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Now, as at any instant of time: 
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Then, by the chain rule, at any instant of time: 
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That is: 

ci = gi1 * s1 + gi2 * s2 + …+ gin * sn    [1] 
 
Equation 1 is valid for any nonlinear or linear model, as long as the model is a 
differentiable continuous one.  
 
 From the equation above, it is clear that, at any time, the curvature of state i is the sum 
of “contributions” from all state variables. Each contribution is the product of the link’s 
gain and the rate of change in the input state. As we have stated before, if a link has a 
very high gain but there is no change in the input state, then this link does not contribute 
at all to the curvature of the output state, and thus this link does not contribute at all to 
the behavior pattern of the output state. Likewise, if the input state is changing rapidly 
but the link has zero gain, then this link does not contribute at all to the curvature of the 
output state, and thus this link does not contribute at all to the behavior pattern of the 
output state  
 
As we mentioned before, the behavior pattern of any state variable is determined by its 
slope and curvature. Moreover, the slope is the integration of the curvature; i.e. the 
slope results from the gradual accumulation of the curvature. This is illustrated in figure 
9. As shown in that figure, the curvature contribution of a link determines the role of 
that link in shaping the current curvature, which in turn constitutes the rate of change of 
the current slope. Moreover, both the current curvature and slope determine the current 
behavior pattern. Thus, we can conclude that the behavior pattern “originally” comes 
from the curvature contributions of links. For this reason, we define, in this paper, the 
significance of a link with respect to the behavior pattern of a certain state variable by 
the contribution of this link to the curvature of the state variable. Note that as mentioned 
before, this is not -- by any means -- the only way to define the significance of a link 
with respect to behavior. It is just another empirical localized perspective on the 
relationship between structure and behavior.  
 



 
Fig. 9: The origin of behavior pattern  

 
 
From equation 1, one can directly compute the proportional curvature-contribution (or, 
in short, proportional contribution) of each link. In this paper, we will denote the 
proportional contribution by p'ij 
 
 

p'ij = 100 * (gij * sj ) /   ci 
 
 
Now there is a tricky part left. Recall that whenever the curvature has the same sign as 
the slope (i.e. positive BPI) then the state variable exhib its a divergent behavior; and 
when the slope and curvature have opposite signs the behavior is convergent.  We will 
benefit from this fact and expand on it in the following way: A link is acknowledged to 
have a positive curvature-contribution when it pushes the curvature in the same 
direction as the slope (i.e. the effect of the link is to increase the absolute value of the 
slope), and is acknowledged to have a negative curvature-contribution when it pushes 
the curvature in a direction opposite to that of the slope (i.e. the effect of the link is to 
decrease the absolute value of the slope). To incorporate this in our computations, we 
introduce a slight modification for the sign of the proportional contribution to obtain the 
relative contribution. In this paper, we will denote the relative contribution by pij 

 
pij = sign(ci/ si)  * p'ij 

 
Where the sign function returns 1 if its argument is greater than zero, 0 if its argument 
equals zero and -1 if its argument is less than zero. 
 
I.e. 

pij = sign(BPIi)  * p'ij 
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Usually in system dynamics models, the relative contributions for model links will 
change with time and may even change their signs. By tracking the changes in the 
relative contributions of model links one can develop valuable insights about the 
complicated and concealed dynamics of the model. Hitherto we have offered theoretical 
material, and maybe it is time now for practical examples. 
 
To demonstrate the curvature-contribution concept, will use it to analyze two models. 
We first begin by analyzing example 1 (please revise fig 1 & table 1) which we 
presented in the introductory section.  
 
 
3 Examples 
 
3.1 Back to example 1 
 
 
We will study the model both in the case when it exhibits a goal-seeking behavior, and 
when it exhibits an exponential growth behavior. 
 
- Goal seeking -behavior (as shown in fig. 2): 
 
For simplicity we will s tudy the model at time = 0, where Level_l = -1; Level_2 = 1 
  
Thus Slope_1 = Rate_1 = g12 * Level_2;  

Where  g12 is the gain of the link from State_2 to State_1. g12 = 0.1 
 

And Slope_2 = Rate_2 = g21 * Level_1; 
 Where  g21 is the gain of the link from State_1 to State_2. g21 = 0.1 
  
 
By substituting the initial values of the state variables we obtain; 
Slope_1=0.1*1=0.1;  Slope_2=0.1*-1=-0.1 
 
By differentiating the rate equations with respect to time we obtain; 
Curvature_1 = g12 * Slope_2 = 0.1 * -0.1 = -0.01 
Curvature_2 = g21 * Slope_1 = 0.1 * 0.1 = 0.01 
 
Hence we can compute the behavior pattern indexes as follows; 
BPI_1 = Curvature_1/ Slope_1 = -0.01/0.1 = -0.1 
BPI_2 = Curvature_2/ Slope_2 = 0.01/ -0.1 = -0.1 
 
As we stated before, negative behavior pattern indexes indicate convergent behavior for 
the two state variables. 
 
Now we can compute the proportional contributions (P'ij); 
P '12 = 100 * (g12 * Slope_2 ) /  Curvature_1 = 100%  
P '21 = 100 * (g21 * Slope_1) /   Curvature_2 = 100% 
 



As there is only one link that influences the rate of each state variable, then the 
proportional contributions of links are 100%.  However, we will concentrate on the 
signs of the relative contributions. Here is the formula and computations for the relative 
contributions (P ij):  
 
P 12 = sign(BPI_1)  * P'12 = -100%  
P 21 = sign(BPI_2)  * P'21 = -100% 
   
Now we will trace the dynamics of the model in order to explain the reasons behind 
negative values for the relative contributions.  We start from the link from variable 
State_2 to State_1, i.e. Link_12. As Slope_2 is negative and as the gain of Link_12, g12, 
is positive, then the Link_12 will push Curvature_1 in the negative direction. Yet as 
Slope_1 is positive, then, in reality, Link_12 is causing BPI_1 to be negative (i.e. the 
effect of the Link_12 is to decrease the absolute value of Slope_1). The same line of 
reasoning applies for the link from State_1 to State_2, i.e. Link_21. As Slope_1 is 
positive and as the gain of Link_21, g21, is positive, then Link_21 will push Curvature_1 
in the positive direction. Yet as Slope_2 is negative, then, in reality, Link_21 is causing 
BPI_2 to be negative (i.e. the effect of the Link_21 is to decrease the absolute value of 
Slope_2). 
 
 
- Exponential growth behavior (as shown in fig. 4): 
 
For simplicity we will study the model at time = 0, where Level_l = 1; Level_2 = 1 
  
Thus Slope_1 = Rate_1 = g12 * Level_2;  

Where  g12 is the gain of the link from State_2 to State_1. g12 = 0.1 
 

And Slope_2 = Rate_2 = g21 * Level_1; 
 Where  g21 is the gain of the link from State_1 to State_2. g21 = 0.1 
  
 
By substituting the initial values of the state variables we obtain; 
Slope_1=0.1*1=0.1;  Slope_2=0.1*1=0.1 
 
By differentiating the rate equations with respect to time we obtain; 
Curvature_1 = g12 * Slope_2 = 0.1 * 0.1 = 0.01 
Curvature_2 = g21 * Slope_1 = 0.1 * 0.1 = 0.01 
 
Hence we can compute the behavior pattern indexes as follows; 
BPI_1 = Curvature_1/ Slope_1 = 0.01/0.1 = 0.1 
BPI_2 = Curvature_2/ Slope_2 = 0.01/0.1 = 0.1 
 
As we stated before, positive behavior pattern indexes indicate divergent behavior for 
the two state variables. 
 
Now we can compute the proportional contributions (P'ij); 
P '12 = 100 * (g12 * Slope_2 ) /  Curvature_1 = 100%  



P '21 = 100 * (g21 * Slope_1) /   Curvature_2 = 100% 
 
Like the goal-seeking case, as there is only one link that influences the rate of each state 
variable, then the proportional contributions of links are 100%.  However, we will 
concentrate on the signs of the relative contributions. Here is the formula and 
computations for the relative contributions (P ij):  
 
P 12 = sign(BPI_1)  * P'12 = 100%  
P 21 = sign(BPI_2)  * P'21 = 100% 
    
As we did before in the goal-seeking case, we will trace the dynamics of the model in 
order to explain the reasons behind positive values for the relative contributions.  We 
start from the link from variable  State_2 to State_1, i.e. Link_12. As Slope_2 is positive 
and as the gain of Link_12, g12, is positive, then the Link_12 will push Curvature_1 in 
the positive direction. Yet as Slope_1 is positive, then, in reality, Link_12 is causing 
BPI_1 to be positive (i.e. the effect of the Link_12 is to increase the absolute value of 
Slope_1). The same line of reasoning applies for the link from State_1 to State_2, i.e. 
Link_21. As Slope_1 is positive and as the gain of Link_21, g21, is positive, then 
Link_21 will push Curvature_1 in the positive direction. Yet as Slope_2 is positive, 
then, in reality, Link_21 is causing BPI_2 to be positive (i.e. the effect of the Link_21 is 
to increase the absolute value of Slope_2). 
 
As we may have observed, this example is very simple as the relative contributions are 
either 100% or –100%. However, it sets the stage for analyzing more interesting 
models, and extending the analysis to models with a large number and a variety of links 
is straightforward, as we will demonstrate in the following example. 
 
 
3.2 The population model   
  
This model, example 3, is a typical simple population model as shown in the figure 
below. 



Fig. 10: Example 3, stock and flow diagram  
 

This model consists of only one level, the population level, that has one inflow, i.e. the 
Birth_Rate, and two outflow, i.e. the Death_Rate and Harvesting_Rate. So the Net_Rate 
is equal to the Birth_Rate – Death_Rate – Harvesting_Rate. 
 
Below is the table of equations for example 3.  
 

init  Level_1 = init_pop 
flow  Level_1 = Birth_Rate – Death_Rate – Harvesting 
 
Stress = Population/carrying_capcity 

    Effect_Stress_Birth_Fraction = 1-(Stress -0.75)^2/5 
   Birth_Fraction = Ref_Fraction*Effect_Stress_Birth_Fraction 
    Birth_Rate = Birth_Fraction*Population 
    Effect_Stress_Death_Fraction = 0.1+Stress^1.4 
    Death_Fraction = Ref_Fraction*Effect_Stress_Death_Fraction 
    Death_Rate = Population*Death_Fraction 
    Harvesting_Rate = Population*Harvesting_Fraction 

 
 Ref_Fraction =  0.02 
    init_pop = 75000 
    carrying_capcity = 1000000 
    Harvesting_Fraction = 0.0095 

 
Table 3: Example 3, equations 

 

L1

L2 L4

L3

L5

Birth_Fraction

Death_Fraction

Effect_Stress_Birth_Fraction

Birth_Rate

Population

carrying_capcity Ref_Fraction

Effect_Stress_Death_Fraction

Death_Rate

init_pop Harvesting_Fraction

Ref_Fraction

Stress

Harvesting_Rate



Below are the graphs of the behavior of the population state, and the behavior pattern 
index of the population. BPI is the ratio of the Curvature to the Slope. The Slope is 
equal to the Net_Rate of the population, and the Curvature is equal to the time 
derivative of the Slope (can be computed using the DERIVN function in Powersim 
software). 

Fig. 11: Example 3, behavior and BPI 
 
 
It is clear from figure 11 that the model exhibits a s-shaped behavior, where, initially, it 
exhibits a divergent behavior (as indicated by a positive BPI), thereafter, the behavior 
shifts to a convergent behavior (as indicated by a negative BPI). 
 
Returning back to the model loops, as shown in figure 9 and table 3, the model also has 
five loops L1…L5, where: 
 
L1: Population? Birth_Rate—?? Population  (—??  symbolizes integration)  
We will denote its gain by g_b1, where  
g_b1 =   Birth_Fraction (pos. gain)  
 
L2: Population? Stress? Eff_Stress_Birth? Birth_Fraction? Birth_Rate—??  
Population  
We will denote its gain by g_b2, where  
g_b2 =   (1/carrying_capcity)*( -0.4*(stress-0.75))*Ref_Fraction*Population  
(pos. gain) 
 
L3: Population? Death_Rate—?? Population   
We will denote its gain by g_d1, where  
g_d1 =   -Death_Fraction (neg. gain)  
 
L4:Pop.? Stress? Eff_Stress_Death? Death_Fraction? Death_Rate—?? Pop.  
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We will denote its gain by g_d2, where  
g_d2 =   -1*(1/carrying_capcity)*(1.4*stress^0.4)*Ref_Fraction*Population  
(neg. gain) 
 
L5: Population? Harvesting—?? Population  
We will denote its gain by g_h, where  
g_h =   -Harvesting_Fraction (neg. gain)  
 
Now, the stage is set to compute the relative contributions. The point of departure is the 
following formula that relates Curvature to Slope. 
 

Curvature = g_total * Slope 
 
Where:  

g_total = g_b1 + g_b2  + g_d1 + g_d2  + g_h  
 

Thus: 
Curvature = (g_b1 + g_b2  + g_d1 + g_d2  + g_h) * Slope 

 
Hence the relative contribution due to loop L1 (denoted it by P_b1) is given as; 

P_b1 = sign (BPI) * 100 * (g_b1 * Slope) / Curvature 
 
The relative contribution due to loop L2 (denoted it by P_b2) is given as; 

P_b2 = sign (BPI) * 100 * (g_b2 * Slope) / Curvature 
 
The relative contribution due to loop L3 (denoted it by P_d1) is given as; 

P_d1 = sign (BPI) * 100 * (g_d1 * Slope) / Curvature 
 
The relative contribution due to loop L4 (denoted it by P_d2) is given as; 

P_d2 = sign (BPI) * 100 * (g_d2 * Slope) / Curvature 
 
And the relative contribution due to loop L5 (denoted it by P_h) is given as; 

P_h = sign (BPI) * 100 * (g_h * Slope) / Curvature 
 
In figure 12, we plot of the various percentage contributions over time.  



Fig. 12: Example 3, relative contributions  
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There are two basic insights from our empirical analysis, which can be observed in 
figure 12. 
 
First, as a consequence of our normalization, although the values of some relative 
contributions at some point of time are very high (much bigger than 100), yet the sum of 
relative contributions is either equal to 100% or –100% at any time. 
  
Second, P_b1 and P_b2 associated with loops 1 and 2, respectively, are always positive, 
i.e. have positive contributions that influence the population behavior divergently. 
Moreover, loops 1 and 2 dominate the behavior in the initial divergent phase. Note that 
the sum of all relative contributions, in the initial divergent phase, is 100%. 
 
While P_d1, P_d2, and P_h associated with loops 3, 4 and 5, respectively, are always 
negative, i.e. have negative contributions that influence the population behavior 
convergently. Moreover, loops 3, 4 and 5 dominate the behavior in the final convergent 
phase. Note that the sum of all relative contributions, in the final convergent phase, is -
100%. 
 
 
The same kind of analysis can effectively be applied to more complex and sophisticated 
system dynamics models. 
 
 
4 Conclusion 
 
The purpose of this paper has been to illustrate that link gains alone cannot explain the 
origin of behavior. Moreover, the goal of the paper was not only to present the 
challenge that most system dynamics practitioners face when they attempt to interpret 
behavior, but also to explain how such an analysis can be performed utilizing the 
curvature - contribution concept. This new concept may shed more light on the hidden 
and complicated dynamics that operate in the model unnoticed if one only considers the 
gains of the model. Furthermore, we proposed the proportional contribution as a 
normalized measure for the curvature -contribution, and in addition we proposed the 
relative contribution to incorporate the correlation relationship between the contribution 
and the behavior pattern index.   
 
Our final mission, from such kind of analysis, is to tell the story of a system dynamics 
model based on a detailed mathematical analysis, rather than merely by intuition, which 
may sometimes be misleading. Here is how we propose to proceed: Partition the time 
horizon of the model into a set of disjoint time-intervals. For each such interval, select a 
time instant contained within that interval, and then construct a contribution-map that 
visually displays the relative contributions for all links (at that time instant). 
Additionally, one can identify the dominant modes of behavior (eigenvalues) at the 
current time; divergent, convergent, oscillatory, convergent oscillation, and divergent 
oscillation. In this paper, we did not dwell on the scheme to identify the dominant 
modes of behavior. The interested reader may refer to (Saleh & Davidsen, 2001). 
Finally, in order to complete the analysis, track the changes in the various contribution-
maps generated at different time instants to tell the dynamic story of the model.  



References 
 
Barlas, Y.; Kanar K. (2000): Structure-oriented Behvior Tests in Model Validation. Proceedings 
of the 2000 International System Dynamics Conference. Bergen. 
 
Davidsen, P. (1991): The Structure-Behavior Graph. The System Dynamics Group, MIT. 
Cambridge.  
 
Eberlein, R. (1984): Simplifying Dynamic Models by Retaining Selected Behavior  
Modes. Ph.D. Thesis, M.I.T., Cambridge, MA. 
 
Forrester. N. (1982): A Dynamic Synthesis of Basic Macroeconomic Policy:  
Implications for Stabilization Policy Analysis. Ph.D. Thesis, M.I.T ., Cambridge, MA.  
 
Forrester. N. (1983): Eigenvalue Analysis of Dominant Feedback Loops. The 1983 International 
System Dynamics Conference, Plenary Session Papers, pp. 178-202. 
 
Ford, D. (1999): A Behavioral Approach to Feedback Loop Dominance Analysis. System 
Dynamics Review. Volume 15, Issue 1, pp.  3-36.  
 
Goncalves, P.; Lertpattaraong, C.; Hines, J. (2000): Implementing Formal Model Analysis. 
Proceedings of the 2000 International System Dynamics Conference. Bergen.  
 
Guthrie, S. (1999): Mini-Model Presentations _ A Tool for Teaching Dynamic Systems 
Thinking. Proceedings of the 1999 International System Dynamics Conference. Willington.  
 
Kampmann, C. (1996): Feedback Loop Gains and System Behavior. Proceedings of the 1996 
International System Dynamics Conference. Boston.   
 
Kreyszig, E. (1979): Advanced Engineering Mathematics. Fourth Edition. John Wiley & Sons. 
 
Luenberger, D. (1979): Introduction to Dynamic Systems: Theory, Models and Applications. 
John Wiley & Sons. 
 
Mojtahedzadeh, M. (1996): A Path Taken: Computer-Assisted Heuristics for Understanding 
Dynamic Systems. Ph.D. Thesis. Rockefeller College of Public Affairs and Policy. Albany NY. 
   
Myrtveit, M.; Saleh, M. (2000): Superimposing Dynamic Behavior on Causal Loop Diagram of 
System Dynamics Models. Proceedings of the 2000 International System Dynamics Conference. 
Bergen. 
 
Ogata, K. (1997): Modern Control Engineering. Third Edition. Prentice-Hall.  
 
Press, W.; Teukolsky,  S.;  Vetterling, W.; Flannery, B. (1992): Numerical Recipes in  
C. Second Edition. Cambridge Univ. Press. 
 
Reinschke, K. (1988): Multivariable Control: A Graph-theoretical Approach. Lecture Notes in 
Control and Information Sciences. Springer-Verlag. 
 
Richardson, G. (1984): Loop polarity, loop dominance, and the concept of dominant polarity. 
System Dynamics Review Vol. 11; pp. 67-88. 
 



Saleh, M.; Davidsen P. (2000): An eigenvalue approach to feedback loop dominance analysis in 
non-linear dynamic models. Proceedings of the 2000 International System Dynamics 
Conference. Bergen.  
 
Saleh, M.; Davidsen P. (2001): The origins of business cycles . Proceedings of the 2001 
International System Dynamics Conference. Atlanta.  
 
Sterman, J. (2000): Business Dynamics: Systems Thinking and Modeling for a Complex World. 
McGraw-Hill. 


	Go Back: 


