
Meeting Critical Real-World Challenges In Modelling Complexity:
What System Dynamics Modelling Might Learn From Systems

Engineering

Alan C. McLucas and Michael J. Ryan

University College, University of New South Wales
Australian Defence Force Academy
Northcott Drive, CAMPBELL 2600

AUSTRALIA

Telephone: +61 2 6268 8332 / +61 2 6268 8200
Facsimile: +61 2 6268 8276 / +61 2 6268 8443

Email: a.mclucas@adfa.edu.au / mj.ryan@adfa.edu.au

Abstract

 System dynamics is still evolving. This paper argues additional rigour is needed if system
dynamics is to achieve its full potential in helping us understand complex behaviour of human
activity systems. It argues that a detailed appreciation of how systems engineers define,
analyse, specify, manufacture, operate and support complex systems could inform the
evolution of system dynamics even though there are significant differences between the two
disciplines. The proffered approach integrates systems thinking, system dynamics modelling
and systems engineering. This integrated approach enables group model building and building
of exceedingly complex models through top-down design and careful management of the
complexity introduced at each stage of the model-building process. The approach promises to
engender greater confidence that models developed using it work and are both necessary and
sufficient representations of the real world. The greatest potential gain accruing from
application of this methodology is enhanced acceptance of system dynamics.

1. SYSTEMS ENGINEERING AND SYSTEM DYNAMICS MODELLING

 In just over 40 years, system dynamics modelling has developed into a well-established
body of knowledge. However, systems thinkers and system dynamics modellers are
continually challenged to design and deliver highly effective strategies to remediate complex
problems. How we go about building effective, verified and validated models of complex
world behaviour tests our cognitive capacities to the limit. This paper suggests how we might
exploit lessons and methodologies drawn from systems engineering practice to improve the
effectiveness of system dynamics modelling, in particular by providing a framework within
which we manage the complexity associated with modelling real-world behaviour.

1.1. A Common Interest in Understanding Complex Systems

 The inescapable similarity between systems engineering and system dynamics modelling is
that they both exist to help us understand complex systems. In systems engineering we use this
understanding to define, analyse, specify, manufacture, operate and support systems whilst in

system dynamics modelling we set out to build models that assist us to manage within complex
systems and to manage complex systemic problems. System dynamics modelling focuses on
understanding complex systems and how they behave over time, using a single main technique
of time-domain modelling and simulation supported by general systems theory and an
appreciation of feedback structures.

1.2. Common Origins

 Systems engineering (Faulconbridge and Ryan, 2003) methodologies and practices began
to emerge from experience gained in the U.S. Department of Defense acquisition programs of
the 1950s. These programs often involved complex and challenging user requirements that
tended to be incomplete and poorly defined. Additionally, most programs entailed high
technical risk because they involved large numbers of different technical disciplines and the
use of emerging technology. Following a number of program failures, the discipline of systems
engineering emerged to help avoid, or at least mitigate, some of the technical risks associated
with the complex equipment acquisition programs. Systems engineering provides the
framework within which complex systems can be adequately defined, analysed, specified,
manufactured, operated and supported. Systems engineering processes and methodologies have
continued to develop since the 1950s, and are widely applied to many of today’s complex and
challenging acquisition projects.

 Within system dynamics modelling, feedback theory and cybernetics have strong links to
engineering. The feedback theory of system dynamics modelling is profoundly important,
having been drawn from engineering control theory (Richardson, 1990). Similarly, cybernetics,
defined as the science of control and communication, in the animal and the machine (Wiener,
1948; Ashby, 1956) takes specific principles from engineering (feedback, stability, control,
transmission and communication) and combines them with broader theories (requisite variety,
bio-regulation and self-regulatory mechanisms) and uses them to formulate theories which we
might apply to the general design of management and control in organisations.

 Yet, whilst the feedback and cybernetic threads of systems thinking and system dynamics
modelling contains abstractions drawn from engineering principles, system dynamics
modelling is not commonly considered to be strongly related to systems engineering.

1.3. A Divergence in Focus

 Despite their common origins, therefore, the disciplines of systems engineering and system
dynamics modelling have diverged over the past forty years, for a number of reasons. In
particular, systems engineering is seen to be applicable to technical systems involving hard
variables, while system dynamics modelling is seen to be applicable to socio-technical systems
involving soft variables.

 A hard variable is one, which has attributes and relationships with other variables in a
problem space to which physical laws apply. In the case of hard variables the governing
business rules are readily formulated using numerical values and algebraic operators because
these rules embody physical laws. Hard variables are readily quantifiable, and quantification
can be verified. Soft variables are a class of variables, which includes a sub-class known as
intangibles. Soft variables assist us in describing the complexity of human affairs in the
context of human activity systems. In problem situations where soft variables apply, the
governing business rules are not so readily formulated or formulated in a way which is faithful
to real-world cause-and-effect they are intended to represent. They are not readily quantified.

Verification and validation of models involving soft variables are significantly more
demanding than when models include only hard variables.

 Because of its application to engineering problems, systems engineering tends to focus on
engineering problems that are defined in terms of hard variables and solved with solid
components, whether in hardware or software. On the other hand, system dynamics modelling
tends to be applied to problems arising in social, socio-economic, and socio-technical systems,
or biological, environmental or other systems involving people (or with which humans
interact). Because of the integral role of human actors or interactions that humans have with
parts of systems (such as environmental systems) most are considered to be purposeful human
activity systems defined by soft variables (usually in combination with selected hard
variables). Because the problems we address using system dynamics modelling are largely
influenced by people, their mental models, their beliefs and values we are left to deal with the
influences of soft variables much more so than systems engineers do.

 It is very tempting therefore to consider systems engineering and system dynamics
modelling to be applicable in different problem spaces. Before proceeding, we need to make a
distinction between system dynamics modelling and systems thinking (or soft systems
methodologies).

 Wolstenholme (1990: 3) defines system dynamics modelling as:

A rigorous method for qualitative description, exploration and analysis of
complex systems in terms of their processes, information, organisational
boundaries, and strategies; which facilitates quantitative simulation modelling
and analysis for the design of system structure and control.

 Checkland (1993: 318) defines systems thinking as:

An epistemology which, when applied to human activity is based on four basic
ideas: emergence, hierarchy, communication and control as characteristics of
systems. When applied to natural or designed systems the crucial characteristic
is the emergent properties of the whole.

 Significantly, the system dynamics modelling definition has two major elements, the
‘softer’ method of qualitative system dynamics modelling (alternatively known as systems
thinking or soft systems methodologies, designed to reveal the details of mental models held
by stakeholders in a given problem), which informs the ‘harder’ form of quantitative system
dynamics modelling. We are bound to include soft variables in combination with hard
variables in system dynamics models because they are important. The only thing we can say
with certainty about models of real-world problems involving human activity systems that do
not include the effects (influences) of soft variables is that they will be wrong (Forrester, 1961:
57; Sterman, 2002: 523).

 Sterman (2000: 37) argues that our mental models are dynamically deficient, that is, they
omit feedbacks and time delays [and the consequences of system response], accumulations and
non-linearities with the consequence that simulation is the only practical way of testing our
mental models, noting that the complexity of [both the real world and] our mental models
vastly exceeds our capacity to understand their implications. To build simulations we must
construct system dynamics models built upon algebraic relationships and mathematical
integrations. Therefore, even though a system dynamics model may include consideration of
the influences of (or effects produced by) soft variables, it must ultimately become a hard

(quantitative) representation of a particular problem expressed in precise mathematical way.

 Simulation performance of our models must be shown to be reliable, repeatable, and
produce behaviours traceable back to real-world cause-and-effect. If the client has visibility of,
or is involved in, the processes of building and testing models this can build shared
understanding and confidence. When making the transition from conceptual systems thinking
(soft systems) models to quantified system dynamics models we might be tempted to interpret
the quantified model as the most plausible representation of the problem at hand. However,
without a sound model-building framework that includes comprehensive testing, we cannot
have confidence in the veracity of the transition from conceptual to quantified model or the
quantified model itself.

 Consequently, while systems engineering and the qualitative aspects of systems dynamics
may be considered to occupy different parts of the problem space, systems engineering has
much to offer in aiding us to design, build and test quantitative system dynamics models
including the detailed transition from conceptual representation to quantified model. In the
sections that follow it is argued that the most important gain to be made is in the area of
confidence that quantified models we build will function as intended, and that testing verify
and validate the model is both routine and comprehensively applied through systems
engineering methodology.

2. SYSTEMS ENGINEERING METHODOLOGY TO ENHANCE SYSTEMS
DYNAMICS MODELLING

 There is a wide range of systems engineering definitions, each of which tends to reflect the
particular focus of its source (Faulconbridge and Ryan, 2003; DSMC, 1990; EIA/IS 632, 1994;
IEEE-STD-1220-1994, 1995; Sage and Rouse, 1999). Perhaps the most useful is: “…an
interdisciplinary, comprehensive approach to solving complex system problems and satisfying
stakeholder requirements” (SECMM-95-01, 1995). Although each of these definitions has a
slightly different focus, a number of common themes are evident and are described in the
following sections. Of particular interest to us here are the themes of requirements engineering,
a top-down approach to managing and coping with complexity, verification and validation, and
a mechanism for integrating many disciplines and specialisations.

2.1. Requirements Engineering

 The complete and accurate definition of system requirements is the primary focus early in
any systems engineering effort. The lifecycle of a systems design begins with a simple
statement of need, which is translated into a large number of statements of requirement that
form the basis for the functional design and subsequently the physical architecture. These
transitions must be managed by a rigorous process that guarantees all relevant requirements are
included (and all irrelevant requirements excluded). The establishment of a set of correct
requirements is fundamental to the success of the subsequent design activities.

 Once requirements have been collected, the systems engineering process then focuses on
the management of these requirements from the system level right down to the lowest
constituent component. This requirements engineering (sometimes referred to as requirements
management or requirements flowdown) involves elicitation, analysis, definition and validation
of system requirements. Requirements engineering ensures that a rigorous approach is taken to
the collection of a complete set of unambiguous requirements from the stakeholders.

 Requirements traceability is also an essential element of effective management of complex
projects. Through traceability, design decisions can be traced from any given system-level
requirement down to a detailed design decision (forward traceability). Similarly, any
individual design decision must be able to be justified by being associated with at least one
higher-level requirement (backwards traceability). This traceability is important since the
customer must be assured that all requirements can be traced forward and can be accounted for
in the design at any stage. Further, any aspect of the design that cannot be traced back to a
higher-level requirement is likely to represent unnecessary work for which the customer is
most probably paying a premium. Traceability also supports the change process, especially the
investigation of the impact an intended change might have.

 Support for requirements traceability is a feature of the top-down approach, one which is a
consequence of taking a holistic view, that is, the unquestioned world view, weltanschauung,
to which Checkland (1981) and Checkland and Scholes (1999) refer. This top-down approach
provides a mechanism by which it can be guaranteed that requirements can be satisfied at any
stage. A bottom-up approach cannot provide the same guarantee, nor does it enable the
systematic discovery of emergent properties.

2.2. A Top-down Approach to Coping with Complexity

 Traditional engineering design methods are based on a bottom-up approach in which
known components are assembled into subsystems from which the system is constructed. The
system is then tested for the desired properties and the design is modified in an iterative
manner until the system meets the desired criteria. This approach is valid and extremely useful
for relatively straightforward problems that are well defined. Unfortunately, complex problems
cannot be solved with the bottom-up approach.

 Systems engineering begins by addressing the complex system as a whole, which facilitates
the initial allocation of requirements as well as the subsequent analysis of the system and its
interfaces. Once system-level requirements are understood, the system is then broken down
into subsystems and the subsystems further broken down into components until a complete
understanding is achieved of the system from top to bottom.

 This top-down approach is a very important aspect of managing the development of
complex systems. By viewing the system as a whole initially and then progressively breaking
the system into smaller elements, the interaction between the components can be understood
more thoroughly, which assists in identifying and designing the necessary interfaces between
components (internal interfaces) and between this and other systems and the environment
(external interfaces). For example, Figure 1 illustrates the ANSI/EIA-632 (1999) approach to
top-down development.

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

System

Operational products Enabling products

Subsystem Subsystem

Test
product

Training
product

Disposal
product

Development
product

Deployment
product

Support
product

Production
product

End
product

Figure 1. ANSI/EIA-632 building block concept for top-down development.

 It must be recognized, however, that while design is conducted top down the system is
implemented using a bottom-up approach. That is, one major aim of system engineering can be
considered to be to provide a rigorous, reproducible process by which the complex system can
be broken into a series of simple components that can then be designed and developed using
the traditional engineering bottom-up approach. Importantly, the other major aim of systems
engineering is to provide a process by which the components and subsystems can be integrated
(synthesised, in systems engineering terms) to achieve the desired system properties.

 Integration aims to combine lower-level components into progressively higher-level
subsystems until the system is complete. While the design process has been conducted top-
down, the integration process is conducted bottom-up using well-proven techniques. At each
stage of the integration, some form of integration testing is conducted to verify the successful
integration against the appropriate level of documentation. Eventually, when systems
integration is complete, testing can be conducted at the system level against the original
requirements. Test and evaluation plays a role in all phases of the systems engineering effort.
The integration effort is summarized in Figure 2. Note that the terms system, subsystem and
component are relative. Each system comprises subsystems that consist of components. Each
subsystem, however, can be considered to be a system in its own right, which has subsystems
and components and so on.

System

Subsystem

Component

Development
process

System

Subsystem

Component

Integration
process

Integration testing

Figure 2. Top-down development and bottom-up integration process.

2.3. System Optimisation and Balance

 During system design, it is important to remember that system performance is of vital
importance rather than the performance of the individual subsystems and components
(Faulconbridge and Ryan, 2003). It does not necessarily follow that the combination of
optimised subsystems leads to an optimised system. Additionally, the system architecture must
represent a balance between the large number of requirements that, as well as technical
considerations, cover a wide range of factors such as environmental, ergonomic human factors,
moral, ethical, social, cultural, psychological, and so on. This system optimization and balance
(treatment at the most appropriate and consistently applied level of aggregation) can only be
guaranteed using a top-down approach.

2.4. Integration of Disciplines and Specialisations

 Systems engineering aims to manage and integrate the efforts of a multitude of technical
disciplines and specialisations to ensure that all user requirements are adequately addressed.
Rarely is it possible for a complex system to be designed by a single discipline or by selected
individuals working alone. Consider an aircraft example. While aeronautical engineers may be
considered to have a major role, the design, development and production of a modern aircraft
system requires a wide variety of other engineering disciplines including electrical, electronics,
communications, radar, metallurgical, and corrosion engineers. Of course, in system terms,
other engineering disciplines are required for testing and for logistics and maintenance support
as well as the design and building of facilities such as runways, hangars, refuelling facilities,
embarkation/disembarkation facilities, and so on. Other non-engineering disciplines are
involved in project management, marketing, finance, accounting, legal, environmental, and so
on. In short, there could be hundreds, even thousands, of engineers and members of other
disciplines involved in the delivery of an aircraft system.

 The aim of the systems engineering function is to break up the task into elements that can
be developed by these disparate disciplines and specialisations and then provide the
management to integrate their efforts to produce a system that meets the users requirements. In
modern system developments, this function is all the more important because of the complexity
of large projects, their contracting arrangements and the geographic dispersion of contractor
and subcontractor personnel across the country and around the world.

3. A MORE-RIGOROUS APPROACH TO SYSTEM DYNAMICS MODELLING

 Systems engineering, therefore, has much to offer system dynamics modelling. In
particular, systems engineering offers a framework through which design and development
discipline is applied and rigour assures reliable outcomes. System dynamics models bring
together hard and soft aspects that are difficult to evaluate and test (verify) in detail, but to
assure the necessary rigour and opportunities to learn, comprehensive testing is essential.

Arguably, the challenges faced by system dynamicists in verifying their models (that they work
‘right’ in accordance with requirements) are greater because of the influence of soft variables
and the variability of human behaviour in human activity systems and human response to
changes (changes applied through exogenous forces or those which develop within the human
activity system). This places greater demands on the modeller to be able to design and apply
tests that verify that the models actually reproduce the cause-and-effect relationships of the
real-world problem situation. System dynamics models must explain real-world behaviour
through structure and equations that reflect real causal relationships as they appear in the real
world system (Forrester, 1961: 115-129). These models must be tested to assure that they are
the ‘right’ models (validated) to provide the detailed insights needed for the design and
development of appropriate remedial strategies. So, discipline and rigour in system dynamics
modelling is essential.

3.1. Requirements Engineering

 There is considerable evidence that, from the viewpoint of cognitive capacity, we are
poorly equipped to deal with complex problems (Diehl and Sterman, 1995; Dörner, 1980;
Forrester, 1971; Kleinmuntz, 1985; 1993; Mosekilde and Larson, 1988; Mosekilde, et, al.,
1990; Paich and Sterman, 1993; Sterman, 1989a; 1989b; 1989c; 1994; 2000; 2002 and
Sweeney and Sterman, 2000). Where we might encounter large amounts of detail (detail
complexity), we need tools and techniques to manage that detail. Tools such as databases and
spreadsheets are widely used and we are generally familiar with these. It is a different story,
however, when it comes to problems where we might encounter the additional aspect of
dynamic complexity. That is, dynamic complexity in problems is characterised by time
dependence, tightly coupled elements, feedback, non-linearity, history dependence,
adaptability, counter-intuitive system response, policy resistance and trade-offs between short
run and long-run remediation (Sterman, 2000: 22). We need specialised tools and techniques to
help us build models, which create for us the best possible opportunities to understand these
complex, dynamic problems. Again, rigour in model building supported by both verification
and validation is essential. Systems engineering enforces that rigour through requirements
engineering and requirements management and formal recognition of verification and
validation within the systems engineering methodology.

 System dynamics modelling supported by the tools and techniques of the systems
engineering discipline offers to improve the effectiveness of our problem-solving approach.
Noting that system dynamics modelling can be iterative (Forrester, 1975: 245; Homer, 1996)
the proffered approach creates opportunities to reduce the number of iterations needed to build
truly viable models, whilst enhancing particular opportunities to learn because modelling
activities will be highly visible, comprehensively documented and explained.

 It is acknowledged that focusing on model building (rather than on producing the model as
an artefact) can be highly valuable in generating learning (Richardson and Pugh, 1981;
Forrester, 1985; Morecroft, 1992; Morecroft and Sterman, 1992; Morecroft and Sterman, 1994;
Homer, 1996; Sterman, 2000). It is also acknowledged that a model-building strategy having as
its primarily goal the development of a working model might actually preclude certain
opportunities along the way to experiment and learn ab initio about system dynamics structure
and causality.

 Clearly, there is a conflict here. This conflict could be resolved by reflecting on the main
purpose of each particular model-building project. If the primary purpose is to maximise
learning (by experimentation and progressive development and testing of dynamic hypotheses)

and ample time is available for this to occur, then a highly iterative model-building process
would be in order. If the primary purpose is to produce modelling outputs through an efficient
set of processes having learning as a secondary (but very important) purpose then an approach
such as that described here, integrating systems engineering and system dynamics modelling
approach, would be more appropriate.

 Integrating the systems engineering approach into a methodology for building of system
dynamics models for analysis of complex problems provides a number of benefits. The
proffered approach integrates:

• Requirements Analysis. The complete and accurate definition of the systemic
problem, demands primary focus on clear and unambiguous statements of
requirements for a model of that systemic problem. Defining requirements forms
the basis for the structural and physical designs of models, which will be used for
analysis of the specific parts of a physical system or human activity system under
study. The initially unstructured problem situation is translated through to precise
definitions of the human activity system and its behaviour. These definitions are
critical for many reasons including being the basis for model design, development
and verification, that is, the detailed testing against requirements. To facilitate this
analysis we might use Soft Systems Methodology (Checkland, 1981) to develop a
series of root definitions of the relevant parts of the human activity system. A root
definition is a concise, tightly constructed definition of a human activity system
which states what the system is; what it does is then elaborated in a conceptual
model that is built on the basis of the definition. Every element in the definition
must be reflected in the model derived from it. A well-formulated root definition
will make explicit each of the Customer, Actor, Transformation, Weltanschauung,
Owner, and Environmental constraints (CATWOE) elements identified by
Checkland (1981) and Checkland and Scholes (1999). Building root definitions of
human activity systems raises the level of consideration of the problem to the
system level (initially, at least). The advantage of such a system-level consideration
is that it enhances top-down thinking (consistent with the systems engineering
approach). This contrasts strongly with those system dynamics practices in which
casual loop diagramming only informs bottom-up model building.

• Requirements Management. Once requirements have been collected, the systems
engineering process then focuses on the management of those requirements from
the highest level of aggregation right down to the lowest. It is appropriate to define
requirements in terms of a model at the highest level, a sector at the intermediate
level and a module at the lowest level. Modules contain elements such as stocks
(levels or accumulators), rates (flows), auxiliary variables, physical flows and
information links (the latter two often forming feedback loops). To collect and build
specifications of modelling requirements involves activities of elicitation, analysis,
definition and validation. Requirements engineering ensures that a rigorous
approach is taken to the collection of a complete set of unambiguous requirements
from the stakeholders in each of their perspectives (even though at some stage these
will be combined into a single view represented by the model, or set of connected
models).

• Requirements Traceability. Through being able to trace requirements back to
stakeholders and through every stage of consideration of a complex problem, it is

possible to assure that all requirements can be traced forward and can be accounted
for in the design of the model at any stage of its development. Similarly, any
individual design decision affecting the model of the system, or the system itself,
must be able to be justified by being associated with at least one higher-level
requirement (backward traceability). Further, any aspect of the model being used to
analyse the design, and the design itself, that cannot be traced back to a higher-level
requirement is likely to result in redundant or unnecessary work. Traceability also
supports processes that lead to implementation of changes to the structure of the
systemic problem under examination. Support for requirements traceability is a
feature of the top-down systems engineering approach that provides a mechanism
by which it can be guaranteed that requirements can be satisfied at any stage. A
bottom-up approach cannot provide the same guarantee.

 Any model-building activity must be managed as a project designed to deliver specific
outcomes. These outcomes include learning through experimentation with the model and
delivery of a completed model. The project must be based on requirements:

• elicited with close engagement of key stakeholders, notably the client group for
whom the model is being built;

• analysed for logical construction and completeness—here conflicts between
requirements must be resolved whilst maintaining a minimum set of requirements
which must be met (built into the model) according to priority;

• defined, that is, clearly and unambiguously specified using precise language;

• validated, that is, tested to determine the extent to which the requirements are likely
to lead to development of a model which maps sufficiently onto the real-world
problem space;

• managed throughout—here the modelling project must be managed in terms of its:

∗ scope, particularly as the meanings of modelling requirements
(interpretations of dynamic hypotheses) are questioned, which often leads to
pressure to change the scope of the modelling effort ; and

∗ configuration, that is, what form the model will take and what it will include
or exclude must be constantly monitored through a set of formal processes,
especially where the allocation of effort to tasks involves potential overlap
and confusion;

• traceable through each step, including:

∗ back to the original requirements (and testable, that is, verifiable against the
original requirements); and

∗ any changes that may have been permitted through configuration
management.

 The system dynamics modelling process is illustrated in Figure 3 (adapted from Forrester,
1994: 245), annotated to show where systems thinking and soft systems methodology and

systems engineering activities are integrated.

Step 1

Describe
the system

Step 2

Convert
description
to level and

rate
equations

Step 3

Simulate
the Model

Step 4

Design
alternative

policies
and

structures

Step 5

Educate
and

debate

Step 6

Implement
changes in

policies
and

structures

1

1

2

1
1

2 2 2 2 2

3 3 3 3 3

2
22

2

2

Legend: 1 Development of the root definition, application of Soft Systems Methodology or systems thinking.

2 Systems Engineering - requirements management.

3 Systems Engineering - requirements traceability.

Figure 3. System dynamics modelling process annotated with Soft Systems Methodology, Systems Thinking
and Systems Engineering activities.

3.2. A Top-down Approach to Coping with Complexity

3.2.1. Managing Complexity

 Systems engineering begins by addressing the complex system as a whole, which facilitates
the initial allocation of requirements as well as the subsequent analysis of the system and its
interfaces. Once system-level requirements are understood, the system is then broken down
into subsystems and the subsystems further broken down into components until a complete
understanding is achieved of the system from top to bottom. This top-down approach is a very
important element of managing the development of complex systems. The approach leads to
clear definition of the component parts (modules), sectors and co-models and the interfaces
between them (McLucas and Ryan, 2005). A generic diagrammatic representation of a module
is the lowest-level component part, is shown in Figure 4 (McLucas, 2005).

Physical Inflow
Definition to include:
. flow type:

discrete, or
continuous

. flow direction

. maximum flow rate

. dt

. simulation timestep

. simulation time horizon

. units

. dimensions

Information Outflow
Definition to include:
. sampling rate
. dt
. simulation timestep
. simulation time horizon
. calendar

Information Inflow
Definition to include:
. sampling rate
. dt
. simulation timestep
. simulation time horizon
. calendar

Export to Dataset
Definition
 to include:
. write format
. write direction
. conversion factors
. units of measurement

Import from Dataset
Definition to include:
. read format
. read direction
. conversion factors
. units of measurement

Physical Outflow
Definition to include:
. flow type:

discrete, or
continuous

. flow direction

. maximum flow rate

. dt

. simulation timestep

. simulation time horizon

. units

. dimensions

Figure 4. Generic system dynamics modelling module.

This approach results in creation of starting definitions of each module for a specific problem,
such as that (by way of example only) explained by Sterman (2000: 285-289) as shown in
Figure 5. This example considers how multiple feedback mechanisms, some including non-
linearities (though that is generally not known at this early stage), can produce complex
behaviour in populations where the environment has limited capacity to carry a population.

Figure 5. Module Formulation of Population Problem.

 From a process point of view, requirements and design are approached top-down (with
Figure 5 being an early artefact of the process) but detailed construction follows a bottom-up
approach (once each functional module has been described, such as shown in Figure 4). Note
that in the process, Figure 5 would be developed before Figure 4.

 The subsequent building of each module, verification and their combining (through
integration and synthesis) must be managed through systems engineering methodology, which
has the rigour and discipline to assure that none of the system’s functionality is lost and
emergent properties are systematically discovered. The systems engineering approach also
assures that processes of analysis, design and construction can be reproduced and can be
implemented in a way that still enables use of the traditional bottom-up approach. It also
enables the allocation of modelling effort to building, testing and subsequent synthesis in a
way that avoids duplication of effort, misnaming of variables occurring at the interfaces
between modules. Consequently, once functional requirements and modules have been
defined, group model building becomes a routine matter.

 Top-down analysis creates the framework within which bottom-up construction of modules
and sectors and ultimately integration into models can then occur. This approach is facilitated
by formulation of a clearly defined systemic structure which will lead to creation of models
exhibiting the necessary system-level behaviour, that is, models which replicate the reference
modes of behaviour (in systems engineering terms, delivers required functionality).

 Graham (1977) noted that experienced system dynamicists perceive that situations that
appear to be very different on the surface are caused by fundamentally similar mechanisms.
This is the structure referred to by Forrester (1961: 2) and explained by Goodman (1989) and
various teachers through to Sterman (2000). Many of the fundamental structural elements have

Environmental
Carrying Capacity

(exogenous)

Value of Factor 1
Modifying

Birthing Fraction Value of
Factor 1

Modifying
Dying

Fraction

Contribution to
Population

Produced by
Birthing

Initial
Population

Reduction in Population
Caused by Dying

Current
Population

Nominal Birthing
Fraction

Factors 2..n
Modifying Birthing

Fraction

Nominal Dying
Fraction

Factors 2..n Dying
Birthing Fraction

Carrying
Capacity
Module

Current
Population

Compared with
Environmental

Carrying
Capacity

Dying
Module

Rate of Dying

Population
Module

POPULATION

Birthing
Module

Rate of Birthing

been defined by Hines et al. (1996; 1997; 2000), Coyle (1996) and McLucas (2005). However,
structure involves more than archetypical behaviour and defined molecules of system dynamics
structure or common modules. It also encompasses the combined elements (such as feedback
mechanisms, non-linear relationships and shifting feedback loop dominance), which produce
complex dynamics behaviour (and, indeed, are emergent properties of such systems).

 Explicit and directed study of these molecules and combined elements of structure are
essential to developing in the student requisite skills in conceptualisation and development of
statements of requirement needed for the subsequent building and testing of models. However,
once the conceptual structure of the required model has been developed through a set of top-
down procedures, it is essential to build the model through stepwise processes that at no time
permits the complexity introduced to exceed our ability to understand. This should enable us
to build models of problems that are exceedingly complex, and in theory at least have
unlimited complexity.

 The systems engineering approach also facilitates management of construction of the
model in its most-highly aggregated form by enabling the group modelling leader having the
overall responsibility for model construction to reflect upon the known behaviour of building
blocks of structure. Feedback loops of archetypical system dynamics structures will frequently
exist across the boundaries of the modules defined for the group modelling activity. Whilst the
group modelling leader will be able to seek out instances of archetypical structures, he or she
will be able exploit these structures by coordinating their linkage across the architecture and at
each of the defined module / sector / co-model boundaries. The systems engineering approach
has the added advantage that it routinely enables the discovery of those feedback mechanisms
(and the emergent properties with which they are associated) even when those building
individual modules, say as described in Figure 5, do not know explicitly that inputs or outputs
to the module they are currently working on are part of a feedback loop.

 To manage complexity, therefore, we need to be able to specify the requirement for our
model, allocate these requirements appropriately to sectors and then, within sectors, allocate
requirements to modules. Having developed and tested the modules, we integrate them into
sectors, test the sectors against the subset of requirements, integrate sectors into the model and
then test against the system-level requirements. The ‘testing’ (verification and validation) is
discussed in more detail in Section 3.2.4.

3.2.2. Reducing Complexity

 Managers often face socio-technical problems of order in the range 10th to 100th (Forrester,
1975: 66). It is acknowledged that order is only one indicator of complexity. This complexity
easily outmatches our ability to reliably use judgement and intuition. Sterman (2000: 29)
observes that our cognitive capability is barely sufficient to enable us to mentally simulate a
first-order linear positive feedback system. Using the Complexity Index C defined by Kline
(1995) such a system would be defined by C ≈ 4. The problems of interest to system dynamics
modellers, such as those identified by Forrester (1975) have complexities characterised by C
>> 106. Kline suggests real problems we face can be characterised by values C in the range 109
to 1013, noting that for these problems C is the product of the number of state variables, the
number of independent parameters describing the problem and the number of feedback loops
(endogenous feedback loops plus those which cross the boundary of the problem space, linking
to exogenous factors). We need effective ways of reducing the complexity encountered as we
progress through each stage of model building, even though we aim to build models of highly
complex problems.

 A study (McLucas and Ryan, 2005) of 30 models published in System Dynamics Review,
since 1985 (for which full code listings were available), each held up as exemplars of system
dynamics modelling practice, suggests that:

• we successfully and consistently use system dynamics modelling to analyse
problems having complexity 10–1,000 times our inherent cognitive capability, the
complexity modelled having a mean of 100 times; and

• these models typically contain 3–20 modules (the mean being nine), where we have
the cognitive capability to analyse each in isolation.

 Interestingly, without formally observing any stated systems engineering methodology, it
appears that the experienced builders of the models sampled coped intuitively with the
complexity of the problem being modelled by breaking the task down into modules of
manageable complexity. Because most of these models were built using software applications
which demanded high levels of skill in writing code, discipline in model construction was
essential (particularly in formulation of blocks of code for functional modules). While we
might expect such intuition from experienced modellers, a more-formal approach is necessary
to ensure that top-down decomposition is a mandatory element of system dynamics modelling,
particularly when being taught to, and applied by, novice modellers. Arguably, this is more
important where object-oriented system dynamics software applications are commonplace and
building fully ‘wired-up’ models is quick and easy, and potentially erroneous as a result.

3.2.3. Emergent Properties

 Traditional problem solving involves working from the bottom up. The bottom-up
approach assembles well-known, well-understood and manageable components into
subsystems. Emergent properties therefore cannot be predicted solely by looking at the
components (Stevens, et al., 1998: 94). A bottom-up approach does not deliberately enable the
discovery of emergent properties. In system dynamics modelling, analysing reference modes of
behaviour as part of a top-down approach (consistent with systems engineering) systematically
aids discovery of one particular form of emergent property. This is complex dynamic
behaviour produced by feedback and delay. Without this aspect of methodology, the emergent
properties and the real causes for them being produced may remain undiscovered.

3.2.4. Verification and Validation

 In engineering there is a very strong link between the model and causal explanations
underpinning the model, as evidenced by physical laws and the emphasis placed by
Engineering Faculties on studying those physical laws. In systems engineering it is expected
that these causal explanations can be ‘proven’. In system dynamics modelling, despite the
warning provided by Forrester (1961: 115-129) that we must explain real-world behaviour
through the structure and equations which reflect the real causal relationships in the real-world
system, examples of system dynamics models which mimic the real world (but for which there
is no real ‘proof’) can be found. Unfortunately, the consequence is poorly built models in
which we can have little confidence (though they might be ‘sold’ to clients as affording
powerful insights into their problems). The reasons for this are neither trivial nor does it
necessarily suggest deliberately poor modelling practice.

 System dynamics models frequently contain multiple (and non-linear) feedbacks which
readily elude our human cognitive capability—where multiple feedbacks exist, we need to be

able to develop comprehensive tests to assure that our models behave as they should. The
problem that this presents to modellers is that, if we do not have the cognitive capability to
understand the feedback mechanisms, how can we know that the tests we design and
implement actually verify that our models work as they should?

 We can improve our system dynamics modelling by use of molecules of system dynamics
structure which we study in detail. Knowledge of these molecules and their behaviour can
augment strategies for model testing, if we acknowledge that they can be constructed and
tested separately then progressively combined to produce a model whose behaviour is
compared with the model we have constructed through the top-down approach described.

 Without systems engineering and the rigour it brings through progressive verification, we
cannot expect to build sophisticated models of complex problems and have those models work
properly.

 When we combine systems thinking and system dynamics modelling with systems
engineering concepts our focus changes to the fundamental building blocks of structure where,
through a top-down approach, we define and build components parts (modules or building
blocks), each designed with specific functionality in mind. We also have to pay close attention
to management of the interfaces between the component parts we can build correctly
functioning models. Each of these is developed for a specific purpose with specific
representations of particular real-world problems.

 We must also determine whether the model is a sufficient representation for our purposes.
That is, we must test the model, ensuring as far as possible that it is correctly constructed and
behaves correctly. We must also test that it faithfully represents the real world (Forrester,
1961: 115-129), but in both necessary and sufficient ways (Ashby, 1956: 202-218; McLucas,
2005: 151-152; Williams, 2002: 43; Wittenberg, 1992: 22-23).

 Systems engineering as it is applied to system dynamics modelling can be described as a
sequential process of requirements creation and integration into a model following the arrows
in Figure 4, (adapted after Forsberg, et al., 2000: 116). The ‘Vee’ model is also described in
standard systems engineering texts (Blanchard and Fabrycky, 1998; Sage and Rouse, 1999).
The development of the system dynamics model follows the sequence from the top left of the
‘Vee’, to the bottom, then back up to the top right.

Understand
stakeholder

requirements.
Develop Model
Validation Plan

Develop Model
Specification.

Develop Model
Verification Plan

Expand Model
Specification to Create
Sector Specification.

Develop Sector
Verification Plan

Expand Sector
Specification to Create
Module Specification.

Develop Module
Verification Plan

Code Module to
“Build-to”

Documentation

Demonstrate and
Validate Model to
Validation Plan

Integrate Model and
Perform Model

Verification to Model
Verification Plan

Assemble Model
Sectors and Perform

Verification to
Specifications and

Sector Verification Plan

Test Module to “Build
to” Documentation

and Verification Plan

In
te

gr
ati

on
 a

nd
 V

er
ific

at
io

n
Decom

position and Definition

Figure 4. The basic systems engineering ‘Vee’ model applied to system dynamics model building.

 Two essential model-building activities are verification and validation. Unfortunately these
two terms are often used interchangeably, which leads to confusion. Verification and validation
involve two distinctly different types of activities but which are inseparable when it comes to
system dynamics modelling.

 For our purposes, verification can be defined as (Jones, 1996: 94-96; Rakitin, 1997: 51-66):

The process of determining whether or not the products of a given phase of
the system dynamics modelling development cycle fulfil the requirements
established during the previous phase.

 Another way to view verification activities is that verification helps us answer the question:
“Are we building the model right?’

 In system dynamics modelling, verification is all about ensuring that the governing
business rules have been correctly coded, that the structure in which those rules operate results
in correct replication of the reference modes of behaviour identified in an earlier stage (and
specified as requirements for the model we are building).

 In essence, IEEE (1983) explains that validation is the process of evaluating models at the
end of the model building-process to ensure that they comply with model requirements (from
the client’s perspective). When we validate a model we seek to answer the question: “have we
built the right model?”

3.2.4.1. Verification—Considerations for Design of Testing

 Verification involves designing and applying a sufficiently exhaustive set of tests that

measure how individual modules or complete models behave. This behaviour is compared with
the modes of behaviour we have specified for individual modules or complete models.

 Modules are designed to perform functions that are critical to the operation of the model as
a whole. The tests we design and apply will establish the extent to which this is so.

 Models must sufficiently and faithfully incorporate the governing business rules to produce
behaviour over time that is representative of the reference modes defined a preceding stage.
Again, the tests we design and apply will establish the extent to which this is so, including:

• logical tests to assure verification of parameters, integrity of dimensions of units,
correct sequence of calculation, and correct form of output;

• extreme-value tests to assure stability under exposure to extreme conditions and
extreme policies; and

• mass-balance tests to assure that physical flows do not violate the basic requirement
for physical flows into a module, sector or model either accumulate or flow out.

3.2.4.2. Validation—Considerations for the Design of Testing

 When we validate system dynamics models we seek to determine the extent to which two
criteria are satisfied (Forrester, 1961: 115-129), the model must:

• generate behaviour that does not differ significantly from the real system, and

• explain real world behaviour through the structure and equations which reflect the
real causal relationships in the real-world system.

 The importance of the second criterion is that any number of models can be constructed to
mimic the real world—that is, they can reproduce a given set of behaviours without faithfully
representing real-world causal structures (cause-and-effect relationships).

 This leads us to focus our validation activities for real-world problems on two types of test
(McLucas, 2005):

• structural tests to assure boundary accuracy and structural accuracy; and

• behavioural tests to assure reproduction of behaviour, plausible behaviour
prediction, identification of behavioural sensitivity, and identification of
behavioural anomalies.

 Validation testing, therefore, aims to identify cause-and-effect mechanisms and determine
the extent to which the way we have represented them in our models is a sufficiently faithful
representation of the real world to meet our needs. We must remain mindful of the fact that we
cannot establish truth through system dynamics modelling (Sterman, 2000: 846). The best we
can achieve is confidence that our models are necessary and sufficient representations of real-
world cause-and-effect structures.

3.3. System Optimization and Balance

 It should be noted that, as in engineering, the basic functions of system dynamics

modelling are taught and conducted bottom-up. That is, we take the basic structures and join
them together to produce modules and thence sectors (subsystems) and models (systems). In
engineering, therefore, there is a continual struggle during design to stay at an appropriate level
of abstraction, or its inverse, aggregation, (principally by using the top-down approach) to
ensure that requirements and complexity are appropriately managed.

 The top-down approach has the additional benefit of contributing to system optimization
and balance. That is, by using a higher-level methodology such as Soft Systems Modelling
(SSM) before focusing on lower-level tools such as causal loop diagrams or influence
diagrams, we can ensure that we stay focused on the problem in context and therefore achieve
and maintain system-level optimization before dropping down to the detailed modelling tools
(causal loop and influence diagrams) to apply rigour to the working elements of the model.

4. CONCLUSION

Systems engineering and system dynamics modelling have a common heritage. While they
have diverged somewhat over the last 40 years, systems engineering has much to offer system
dynamics modelling, particularly in terms of the discipline and rigour associated with
requirements engineering, a top-down approach to managing and coping with complexity,
validation and verification, and providing a mechanism for integrating a number of disciplines
and specializations when engaging in group model building activities. Models built using the
proffered methodology should enable model building with deliberate and careful management
of the complexity introduced at each stage of the model building process. This should
engender greater confidence that system dynamics models we build address clearly specified
problems and that those models work correctly. As a consequence system dynamics modelling
will be strengthened. The greatest potential gain accruing from application of additional rigour
consistent with systems engineering practice will be improved acceptance of system dynamics
modelling as a discipline, which would be of enormous benefit.

References

ANSI/EIA-632-1998, 1999, ‘Processes for Engineering a System’, Electronic Industries

Association (EIA), Washington, D.C.
Ashby, W.R., 1956, ‘An Introduction to Cybernetics’, Chapman and Hall.
Blanchard, B.S. and Fabrycky, W.J., 1998, ‘Systems Engineering and Analysis’, 3rd ed.,

Prentice Hall.
Checkland, P.B., 1981 (1993), ‘Systems Thinking: Systems Practice’ John Wiley, Chichester,

England.
Checkland, P.B. and Scholes, J., 1999, ‘Soft Systems Methodology in Action’ John Wiley &

Sons, Chichester, England.
Coyle, R.G., 1996, ‘System Dynamics Modelling: A Practical Approach’, Chapman and Hall,

London.
Defense Systems Management College (DSMC), 1990, ‘Systems Engineering Management

Guide’, U.S. Government Printing Office: Washington, D.C.
Diehl, E. and Sterman, J.D., 1995, ‘Effects of feedback complexity on dynamic decision

making’, In: Organisational Behaviour and Human Decision Processes, Vol. 62, No. 2.
Dörner, D., 1980, ‘On the difficulties people have in dealing with complexity’, in: Simulation

and Games. 11: 87-106.

EIA/IS 632, 1994, ‘Systems Engineering’, Electronic Industries Association (EIA),
Washington, D.C.

Faulconbridge, R., and Ryan, M., 2003, ‘Managing Complex Technical Problems: A Systems
Engineering Approach’, Artech House, Boston, MA.

Forrester, J.W., 1961, ‘Industrial Dynamics’, Productivity Press, Portland, Oregon.
Forrester, J.W., 1971, ‘Counter intuitive behaviour of social systems’, in: Technology Review

No. 73, January: 52-68.
Forrester, J.W., 1975, ‘The impact of feedback control concepts on the management sciences’,

in: Collected Papers of Jay W. Forrester, Productivity Press: 45-60.
Forrester, J.W., 1985, ‘The ‘model’ versus the modelling process’, in: System Dynamics

Review, Vol. 1, No. 1, Summer.
Forrester, J.W., 1994, ‘System dynamics, systems thinking and soft OR’, in: System Dynamics

Review, Vol. 10, No. 2-3, (Summer-Fall): 245-256.
Forsberg, L., Mooz, H. and Cotterman, H., 2000, ‘Visualising Project Management’, 2nd ed.,

John Wiley & Sons.
Goodman, M.R., 1989, ‘Study Notes in System Dynamics’, Productivity Press, Portland,

Oregon.
Graham, A., 1977, ‘Principles on the Relationship Between Structure and Behaviour of

Feedback Systems’, Ph.D. Dissertation, Department of Electrical Engineering and
Computer Science, MIT, Cambridge, MA.

Hines, J., et al., (1996; 1997); 2000, ‘Molecules of Structure: Building Blocks for System
Dynamics Models’, Version 1.4, LeapTec and Ventana Systems, Inc.

Homer, J.B., 1996, ‘Why we iterate: Scientific modelling in theory and practice’, in: System
Dynamics Review, Vol. 12, No. 1: 1-19.

IEEE, 1983, ‘ANSI / IEEE Standard 729-1983: IEEE Standard Glossary for Software
Engineering Terminology’.

IEEE-STD-1220-1994, 1995, ‘IEEE Trial-Use Standard for Application and Management of
the Systems Engineering Process’, IEEE Computer Society, New York, N.J.

Kleinmuntz, D.N., 1985, ‘Cognitive heuristics and feedback in dynamics decision
environment’, in: Management Science, Vol. 31, No. 6: 680-702.

Kleinmuntz, D.N., 1993, ‘Information processing and misperceptions of the implications of
feedback on dynamic decision making’, in: System Dynamics Review, Vol. 9, No. 3 (Fall
1993): 223-237.

Kline, S.J., 1995, ‘Conceptual Foundations for Multidisciplinary Thinking’, Stanford
University Press, Stanford, California.

Jones, C., 1996, ‘Software defect-removal efficiency’, in: IEE Computer, Vol. 29, No. 4, April:
95-96.

Lake, J., 1996, ‘Unraveling the Systems Engineering Lexicon’, Proceedings of the INCOSE
Symposium.

McLucas, A.C., 2005, ‘System Dynamics Applications: A Modular Approach to Modelling
Complex World Behaviour’, Argos Press, Canberra, Australia.

McLucas, A.C. and Ryan, M.J., 2005 (forthcoming), ‘Combining Generic Structures and
Systems Engineering to Manage Complexity in System Dynamics Modelling’ in:
Proceedings of International System Dynamics Conference, System Dynamics Society,
Boston, MA.

Morecroft, J.D.W., 1992, ‘Executive knowledge, models and learning’, in: European Journal
of Operations Research, Vol. 59, No. 1: 9-27.

Morecroft, J.D.W. and Sterman, J.D. (eds) 1992, European Journal of Operations Research –
Special issue on ‘Modeling for Learning.

Morecroft, J.D.W. and Sterman, J.D., 1994, ‘Modelling for Learning Organizations’,
Productivity Press, Portland, Oregon.

Mosekilde, E. and Larsen, E.R., 1988, ‘Deterministic chaos in the beer production-distribution
model’, in: System Dynamics Review, Vol. 4, Nos. 1-2: 131-147.

Mosekilde, E, Larsen, E.R. and Sterman, J., 1990, ‘Coping With Complexity: Deterministic
Chaos in Human Decision Making Behaviour’, in: J. Casti and A. Karlqvist (eds.), Beyond
Belief: Randomness, Prediction and Exploration in Science. CRC Press, Boston, 1990.

Paich, M. and Sterman, J.D., 1993, ‘Boom, bust, and failures to learn in experimental markets’,
in Management Science, Vol. 39, No.12: 1439-1458.

Rakitin, S.R., 1997, ‘Software Verification and Validation: A Practitioner’s Guide’, Artech
House: 51-66.

Richardson, G.P., 1990, ‘Feedback Thought in Social Science and Systems Theory’, University
of Pennsylvania Press.

Richardson, G.P. and Pugh, A.L.III, 1981, ‘Introduction to System Dynamics Modelling’, MIT
Press / Wright-Allen, Portland, Oregon..

Sage, A.P. and Rouse, W.B., 1999, ‘Handbook of Systems Engineering and Management’,
John Wiley & Sons, New York.

SECMM-95-01, 1995, ‘Systems Engineering Capability Maturity Model’, Version 1.1,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, P.A.

Sterman, J.D., 1989a, ‘Misconceptions of feedback in dynamic decision making’, in
Organisational and Human Decision Processes, No. 43: 301-335.

Sterman, J.D., 1989b, ‘Modeling managerial behavior: Misperceptions of feedback in a
dynamic decision making Experiment’, in: Management Science, Vol. 35, No. 3: 321-339.

Sterman, J.D., 1989c, ‘Misperceptions of feedback in dynamic decision making’, in: Milling,
P.M. and Zahn E.O.K. (eds), International System Dynamics Conference: Computer-Based
Management of Complex Systems. International System Dynamics Society, Stuttgart: 21-31.

Sterman, J.D., 1994, ‘Learning in and about complex systems’, in: System Dynamics Review,
Vol. 10, No. 2-3, (Summer-Fall): 291-330.

Sterman, J.D., 2000, ‘Business Dynamics: Systems Thinking and Modelling for a Complex
World’, Irwin McGraw-Hill.

Sterman, J.D., 2002, ‘All models are wrong: reflections on becoming a systems scientist’, in:
System Dynamics Review, Vol. 18, No. 4, (Winter): 501-531.

Stevens, R., Brook, P., Jackson, K. and Arnold, S., 1998, ‘Systems Engineering: Coping With
Complexity’, Prentice Hall, London.

Sweeney, L.B. and Sterman J.D., 2000, ‘Bathtub dynamics: initial results of a systems thinking
inventory’, in: System Dynamics Review, Vol. 16, No. 4, (Winter) 2000.

Wiener, N., 1948, ‘Cybernetics: or Control and Communication in the Animal and Machine’,
MIT Press, Cambridge, MA.

Williams, T., 2002, ‘Modelling Complex Projects’, Wiley
Wittenberg, J., 1992, ‘The idea of a model in Kuhnian Science’, in: System Dynamics Review,

Vol. 8, No. 1, Winter: 21-33.
Wolstenholme, E.F., 1990, ‘System Enquiry: A System Dynamics Approach’, John Wiley and

Sons, Chichester. UK.

