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Abstract 

An abstract model of a local photovoltaic market was developed from a model-based field study.  

The system described by informants displays features of distributed and embedded agency: 

actors have the ability to take meaningful action, but that action and its effects are limited by the 

complexity of the system and by the actions of other actors.  The structures necessary for 

dynamic growth are present, as expected in an industry that has had the growth of the PV market 

so far.  Under several reasonable conditions, growth can be halted before reaching its potential: 

if reinforcing feedback processes saturate; if industry capacity grows too slowly; or if goals are 

too low or if they erode.  Coordinated actions—multiple small interventions—are more effective 

than isolated large actions as a policy for market growth. 
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Introduction 

Renewable energy technology is a necessary part of the solution to major energy related 

problems: improving access to energy services, avoiding dangerous climate change, and 

reducing dependence on scarce resources.  Deploying renewable energy has been a major 

challenge—despite the efforts of entrepreneurs and policy makers, and despite more than 30 

years since the oil crises raised public interest, renewables represent a tiny fraction of energy 

consumed.  Creating major change in the energy system will require coordinated action guided 

by an understanding of the complex system in which it occurs.  This research is designed to 

develop that understanding, so that policy and strategy can work to deploy renewable energy.  

How does the renewable energy industry work as a system, and how could that system work 

better? 

I address that question by collecting the mental models of experts in one segment of the 

renewable energy industry, and using system dynamics to organize the knowledge gained.  I 

develop a behavioral theory of the photovoltaic (PV) market in Massachusetts which accounts 

for the full range of dynamic processes perceived by its participants.  This theory is in the form 

of an abstract model of the system that can be used for policy analysis.  Simulations using this 
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model reveal that the future growth rate of the market is highly dependant on the strength of the 

feedback processes, initial conditions, and policy interventions.  The strengths of the feedback 

processes in the industry are a more powerful influence on its behavior than the value of any 

variable.  Although parameter values are too uncertain to make predictions on the state of 

growth, under a wide range of possible conditions policies that increase the attention paid to 

renewable energy are highly effective.  The highest growth rates result from policy or strategic 

interventions that include multiple elements.  Action that is both coordinated and sustained is 

important to getting the benefits from the multiple elements. 

In this paper, I outline the methods and the data on informant mental models; a more 

complete description of these is found in (Jones, 2008).  I describe an abstracted model of a local 

PV market which has high feedback complexity but low detail complexity.  I analyze the 

behavior of two versions of that model: simulating observed market growth, and starting from 

equilibrium.  I interpret the behavior to understand the interventions of industry actors, and to 

draw lessons regarding policy and strategy for industry growth. 

Methods 

The research design is a model-based field study: experts in the PV industry from private, 

public, and non-profit sectors were interviewed; the knowledge they conveyed was expressed as 

system dynamics models; those models were characterized, compared, combined, and analyzed.  

To view the renewable energy industry as a system in the system dynamics tradition is to see it 

as set of variables and the relations between them, changing over time, that exist because of 

choices and behavior of actors.  This relates well to Garud & Karnøe’s (2003) concept of 

distributed and embedded agency—what the actors are embedded in is a set of feedback 

processes, and each has awareness and power over only part of the system.   

A model-based field study (Forrester, 1994; Lane, 1994) adds formal modeling language 

to the techniques exploratory qualitative research, making it possible to draw conclusions about 

system behavior from knowledge of system structure.  The research drew on methods for 

grounded theory, particularly as applied to management research (Glaser & Strauss, 1967; 

Locke, 2001; Strauss & Corbin, 1994).  Seventeen experts were interviewed, drawn from a 

deliberate or theoretical sample.  Because their beliefs were a topic of research, the informants 

should be considered research subjects and I followed protocols for the protection of their rights 

including confidentiality and preventing disclosure of information with business value.  

Structured, open ended interviews were recorded; in addition, data included diagrams and 

sketches produced on oversize newsprint to provide a visual aid for feedback and initial analysis 

during the interviews.  Questions probed each informant’s knowledge about system structure and 

behavior, and their strategies and goals for their part of the system. 

During analysis, system dynamics diagrams and models were constructed in place of the 

coding schema of more traditional grounded theory research.  The information from each 

interview was examined for beliefs in causal links, feedback processes, dynamic hypotheses, and 

the structure implied by informants’ descriptions.  Based upon similarities in their mental 

models, informants were grouped into five clusters, four of which were the basis for building 

complete simulation models.  Based on the lessons learned from these interim models, a 

combined model that incorporated all of the data and lessons from prior theory was constructed.  

The combined model, described below, was used to test policy and develop an understanding of 

the system as it is perceived by—and created by—those actors embedded in it. 
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Data 

Informants described their industry as one of mostly dynamic growth processes pushing 

against static barriers.  Each interview revealed several processes that depend on reinforcing 

feedback; on average, an informant described six of the fourteen reinforcing loops that were 

revealed in the data.  In contrast, only seven of the seventeen informants identified one or two 

balancing loop processes.  Most informants believed that feedback structures leading to falling 

cost were most important to market growth; a few believed that increasing capacity was more 

important, and two described a goal-seeking approach to some implicit desire for PV being the 

most important feedback process. 

The structure of the system arises from the decision processes of customers as much as 

the physical flow of components.  Most importantly, in both residential and commercial 

segments of the market, informants perceived a separation between the processes that lead 

customers to consider PV, and those that lead to the final decision.  The difference between 

attention and attractiveness was exemplified by one informant, who described the most important 

factor in PV as the price of gasoline, and “after they get started, then it’s an economic decision.”  

The decision processes of PV firms result in investments in capacity; the most common 

described heuristics were chasing subsidies, chasing market size, and steady growth.  After 

testing several formulations of these decision processes and comparing the results with data, the 

following model was found to adequately capture both the behavior and description of the local 

market for PV. 
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Model 

The level of detail included in this version is designed to test policy and industry-level 

strategy, and develop common understanding.  Figure 1 shows the central stock and flow of a 

system that matches informants’ descriptions of the adoption process.  Some fraction of people 

aware of the option decides to purchase a PV system, subject to capacity constraints; those 

decisions result in installations which accumulate in installed base.  Panels last on average 30 

years, which is modeled as a three-stage aging process.  Tests with the interim models revealed 

no value in modeling an explicit stock of people considering PV, or of orders in process, since 

residence in those stocks is short compared to the timescale of industry dynamics. 

Install Rate in kW/year is the product of Attention, Fraction Adopting, and System Size 

limited by Capacity using a soft minimum labeled as the Limit function: 

Install Rate = Capacity*Limit(Desired Install Rate/ Capacity) 

Desired Install Rate = Attention*Fraction Adopting*System Size 

System Size is fixed at 5 kW per customer for most runs.  Attention, in customers per 

year, varies depending on feedback and inputs.  Fraction Adopting is an S-shaped function of 

Attractiveness, which in turn depends on feedback and inputs; both are dimensionless ratios.  

Finally, Capacity in kW per year adjusts over time, once again depending on feedbacks and 

inputs.  These components incorporate the insight from the informants—that there exist some 

factors that potentially have a continuing positive effect and others that reach some maximum.  

While this model retains the names of processes described by informants, the same structure 

could apply to any processes with these properties.  Attractiveness can drive Fraction Adopting 

only to one; Attention could reach any value; and Capacity can continue to grow but has delays.   

Figure 1: Combined model structure (Central flow) 
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Also in Figure 1 is the feedback from accumulations of installs to the components of 

Install Rate.  Processes that depend on the current market are based on Market Size, a running 

average of Install Rate that represents industry reports or other sources of market information.  

Effects that depend on the physical existence of PV panels are based on Installed Base, the most 

obvious accumulation of installs.  Effects like learning-by-doing are based on constructs 

representing accumulated knowledge.  A few informants called this concept “local experience”, 

but others used “experience” to mean awareness about the benefits of PV from other projects in 

operation.  This model avoids that term by defining two classes of Cumulative Installs—short 

term and long term—to capture learning or resources from past installations that persist for some 

finite time.  Market Size is a simple smoothing function of the current install rate; Cumulative 

Installs builds up and decays over medium or long decay times: 

Market Size = SMOOTH(Install Rate, MktSizeSmthTime) 

MktSizeSmthTime = 0.5 year 

Cumulative Installs[term] 

= ∫ Install Rate – (Cumulative Installs[term]/CI DecayTime[term]) dt 

term ∈ [long term, short term] 

CI DecayTime[short term] = 5 years 

CI DecayTime[long term] = 25 years 

Each of these accumulations could affect the components of Install Rate, completing 

many feedback loops.  Informants perceived several processes that would form such loops.  I 

combined parallel loops to reduce complexity.  Table 1 shows them sorted into a matrix of net 

feedback effects, justified by specific processes identified by informants.  Market Size, 

Cumulative Installs, and Installed Base are called the “origin” of the feedback effect because 

those stocks are the logical cause of changes in mediating variables.  The cells of Table 1 are 

associated with a matrix (symbolized by the Greek letter gamma, �) which represents the 

strengths of the feedback loops.  This structure abstracts out inter-related effects such as cost and 

benefits, or detailed predictions of future markets by different methods.  The model concentrates 

on total effect, with positive strength indicating a reinforcing loop and negative strength 

indicating a balancing loop.  In this form, all of the feedback loops include an equation in the 

same form as a learning curve function (Argote & Epple, 1990). 
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Effect of origin on component = (origin / originreference)^ �component,origin 

where originreference is the base or goal value for the origin stock 

and � is a matrix over [component,origin] 

origin ∈ 

[Market Size, Cumulative Installs short, Cumulative Installs long, Installed Base] 

component ∈ [Attention, Attractiveness, Capacity]  

For most of the elements of �, a value of zero (no feedback) or a fraction represents 

realistic feedback rules.  In the simulations below, values of 0.1-0.3 fit with complete feedback 

conditions, and values of 0.4-0.6 fit if there are only a few non-zero elements.  The effect of 

Market Size on Capacity is the exception: a value of one represents the heuristic “grow capacity 

at the same rate as market growth”.  Values slightly above or below one represent an 

exaggeration or discount of indicated growth.  Within these guidelines, the magnitudes of � are 

varied in model testing.   

Some of these feedback effects, particularly balancing feedbacks, include the possibility 

of delay.  Three auxiliary stocks are modeled to represent these effects.  Their names reflect the 

most prominent construct in informant beliefs; however these variables can represent more 

general and multi-dimensional constructs with similar feedback processes.  Capacity directly 

Table 1: Loops by origin and component of Install Rate 
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limits Install Rate; Local Supply acts as the reference for the balancing effect of Market Size on 

Attractiveness; Desire acts as the reference for the balancing effects of Installed Base on 

Attention and Capacity.   

Capacity is one of the determinants of Install Rate, but unlike the others cannot change 

quickly.  Workers have to be trained and equipment purchased to be able to install PV; 

informants report it takes about 6-18 months to add local capacity.  Two rules for the investment 

in Capacity are defined, either or a combination could apply.  Some informants perceived 

capacity growth from workload; this is formulated by having a target Capacity Utilization—if 

firms are too busy they expand, too idle they contract.  Other informants perceived capacity 

growth arising from predictions of market size, often based on the scale of incentive programs, 

and subject to feedbacks from Market Size, Cumulative Installs, and Installed Base.  The 

feedback structure of capacity is shown in Figure 2. 

Capacity = SMOOTH3i(Target Capacity, Cap Delay Time, Init Cap) 

Target Capacity = 

(Cap Util Wt)*Target CapacityUtilization + (1-Cap Util Wt)*Target CapacityPrediction 

Target CapacityUtilization = Market Size / Tgt Cap Utilization 

Target CapacityPrediction = 

Init Cap * effects of [Market Size, Cumulative Installs, Installed Base] 

Figure 2: Combined model structure (Capacity) 
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Local Supply represents the ability to source PV panels and other components; shortages 

of these have an impact on price, sales lead time, or other determinants of attractiveness.  It is the 

interaction described by informants between the local and global markets—how much of the 

global supply chain can the local market capture.  Absent other action, Local Supply adjusts to 

Market Size as a delay with a lag time of 6 months.  Local Supply plays in the balancing effect on 

Figure 3: Combined model structure (Attractiveness) 

 

Figure 4: Combined model structure (Attention) 
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Attractiveness from Market Size; the effects were described by informants as supply pressure.  

Local Supply and other feedback processes of attractiveness are shown in Figure 3. 

The construct of Desire was a particular insight of informants in the Desire and Actor 

clusters.  A gap between installed PV and some target creates a sense of urgency, a perceived 

need, which drives investments in the PV industry and sales PV systems.  Success in getting PV 

installed can actually reduce that sense of urgency.  The goal or target is vague and implicit and 

is perceived differently by different stakeholders; the variable Desire captures the net of these 

effects.  Different options for the specification of Desire are tested, including a constant level, an 

eroding goal mechanism, an anchor on actual Installed Base, and a rising target.  All the 

feedback loops acting on attention processes are shown in Figure 4. 

Table 1 and Figures 1 through 4 depict the combined model which is used for policy 

testing.  Attention, Attractiveness, and Capacity each depend on the product of ratios of stocks to 

reference points raised to exponents; the reference points and exponents can be varied to change 

the effective feedback structure of the system.  In addition to the equations describing the 

system, exogenous inputs are used during model testing, or the behavior of variables is 

overridden, to simulate the actions of agents through policy or strategic intervention.  A model in 

Vensim format is included as a supplemental file; an excel file is also included which includes 

both the valves of � and the parameters used in model runs. 

Behavior of the Combined Model 

Although depicting a local market, in building an endogenous model the feedback loops 

incorporate changes that occur on the global scale.  This is in effect an assumption that many 

local markets are acting similarly.  The combined model can reproduce the observed growth of 

the Massachusetts photovoltaic market under conditions which imply a wide range of future 

trajectories.  To illustrate the model behavior, I fit output to past data under several feedback 

conditions; I then test the sensitivity of future trajectory to key model parameters and policy 

interventions.  Later, I present policy testing using counterfactual equilibrium market conditions 

to more clearly measure policy impact. 

Massachusetts energy regulators estimate that there were approximately 500 kW of PV in 

service in 2000, and 4 MW at the beginning of 2008 (EOEEA, 2007).  This constitutes an 

average growth of 29.5% per year in installed base; if the growth is steady, there would be a 

similar growth rate in market size.  Figures 5 and 6 show plots of Installed Base (in kW) for 

several feedback conditions fitted to that data.  Fitting was done using Vensim’s optimization 

function, set to adjust Base Attention and Base Attractiveness, and the reference points and initial 

conditions on Market Size, Cumulative Installs, and Installed Base, but holding feedback 

strengths and policy inputs fixed.   

Even for the same model parameters and feedback conditions, more than one trajectory 

can match past data.  In general, any Install Rate could be the result of high Attention with low 

Fraction Adopting, or vice versa—Attention and Attractiveness can substitute for each other.  

Since Fraction Adopting can only rise to one, future growth is higher if Attractiveness starts low 

than if Attention starts low; changes in both variables take advantage of reinforcing feedback 

loops for longer.  The different trajectories diverge rapidly, but over the limited time early in the 

market growth for which we have data they cannot be distinguished.  This path dependence is 

one of the features seen in the model behavior. 
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Figure 5 shows simulations with only positive feedbacks, representing a simple system.  

These runs have non-zero values of � only for learning-by-doing, education, and capacity 

investment type effects—only one reinforcing feedback loop for each component.  The “strong” 

and “weak” feedback conditions have overall feedback strengths 20% higher or lower than the 

“medium” case; all of these start in 1990 with high Attention (~100 people/year) and low 

Fraction Adopting (~2%).  The “strong / attractive” case has the same feedback parameters as 

“strong”; but starts with ~17 lookers per year of whom ~10% adopt.  Even though all these 

simulations fit with prior data, the “strong / attractive” case is slightly closer to informants’ 

descriptions of the “tire kicking” rate.   

Figure 5: Behavior of combined model – Positive feedback only 
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Figure 6 shows simulations with the full range of reinforcing and balancing feedback 

loops active, a more fully embedded system than in Figure 5.  Here, the “strong” and “weak” 

feedback conditions have a slightly higher sum over the positive elements of � as “strong” and 

“weak” in the simple cases, but the values are spread over all the feedback loops and there are 

negative entries for balancing feedbacks.  The values of � for all these cases are shown in Table 

2.  Also tested is a “strong balance” condition, with the same strength positive feedback loops as 

the “strong”, but triple the strength of balancing feedback.  As in the simulations with positive 

feedback only, simulations with complete feedback can match past data with high Attention, 

implying higher future growth, or low Attention, with lower future growth.  The “strong balance” 

feedback has lower future growth than “strong” from high Attention but faster growth from low 

Attention (curves labeled s2 and sb2).   

Figure 6: Behavior of combined model – Complete feedback 
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The trajectories represented by weak feedback strengths and by low initial Attention 

clearly are the more challenging for industry and for policy makers.  For example, a proposal by 

Massachusetts Governor Patrick set a goal to have 250 MW of PV installed by end of 2017 

(EOEEA, 2007).  Specific interventions were not detailed, but assuming that systemic changes 

could be accomplished by 2010, there would have to be an increase in the growth rate to about 

63% per year, more than twice the current rate, or even higher if it takes longer to ramp up.  The 

higher trajectories under both simple and embedded cases reach that goal without further 

intervention—we would interpret the Governor’s announcement and subsequent incentives as 

part of the evolution of the system rather than a change of trajectory. 

Table 2: Feedback strength for model runs 

 

Simple Embedded 

 MS CI s CI l IB  MS CI s CI l IB 

Attn 0 0.4 0 0 0.1 0.2 0.1 (0.1) 

Attr 0 0 0.4 0 (0.1) 0.2 0.2 0 weak 

Cap 1 0 0 0 

weak 

1 0.05 0 (0.05) 

Attn 0 0.5 0 0 0.2 0.2 0.2 (0.1) 

Attr 0 0 0.5 0 (0.1) 0.3 0.3 0 medium 

Cap 1 0 0 0 

strong 

1 0.1 0 (0.1) 

Attn 0 0.6 0 0 0.2 0.2 0.2 (0.3) 

Attr 0 0 0.6 0 (0.3) 0.3 0.3 0 strong 

Cap 1 0 0 0 

strong 

balance 

1 0.1 0 (0.3) 
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If conditions are such that the trajectory does need to change, multiple interventions are 

required to reach the goal.  Figure 7 shows two similar trajectories that accomplish the same 

goal.  The feedback conditions are the “strong simple” and “strong embedded” from Table 5.2; 

initial conditions are high Attractiveness and low Attention.  The minimum changes required to 

reach 250 MW at the end of 2017 depend on the feedback conditions.  In the simple, pure 

reinforcing condition, Target Capacity must rise by 2000 kW/year in 2008 anticipating future 

sales, and in 2010, programs attract an additional 7000 people per year in Attention.  For the 

more embedded case extra Desire must be generated equal to the 250 MW goal, which attracts 

attention and spurs capacity building; and in 2010 an extra 5700 people per year worth of 

Attention.  In neither feedback condition can any one parameter change shift the trajectory to 

reach 250 MW by the end of 2017. 

Both of these feedback conditions are optimistic, in that without further intervention the 

systems they describe would grow rapidly into the future.  These two scenarios start from 

unfavorable initial conditions compared to other possibilities that fit past data, and we are unable 

to distinguish which conditions are more accurate.  Even so, large parameter inputs, representing 

large and multifaceted policy or strategic interventions, are needed to have them match stated 

goals.  These particular policy interventions—focusing on attention and capacity—work because 

under these initial conditions attractiveness does not have far to grow before changes in attention 

are worthwhile.  Under conditions such that the market has not moved past its “tire-kicking” 

phase, interventions in attractiveness are more important. 

Sensitivity testing 

Sensitivity analyses measure the relative impact of various changes in a more systematic 

way.  Starting in year 2008 from a midpoint of possible fits to historic data, with moderate 

Attention and room for improvement in Fraction Adopting, the following tests vary parameters 

one at a time to measure the impact on market outcomes.  These tests are centered on the “strong 

embedded” feedback condition, and vary the magnitudes of � between 0 to 0.5 (0.8 to 1.2 for 

Figure 7: Response to aggressive policy 
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�cap,MS).  Also tested are inputs to Attention and Attractiveness, both positive and negative, to 

represent problems or policy interventions. 

Figure 8 shows the range of possible trajectories that result from changes in single 

parameters, starting from the same initial conditions.  The central trace reaches 29 MW in 2020 

and over 90 MW by 2030, in the middle of the simulations shown in Figures 5 and 6.  Half of all 

trajectories (the dark grey band) are within 30% of the central trace.  The extremes on the high-

growth end all result from very strong feedback loops on Attention.  The lowest traces, which 

peak early and decline to below the 2008 Installed Base, can result from absent or extremely 

weak feedbacks on Attractiveness, or strong negative inputs to Attractiveness; missing feedback 

loops on Attention lead to trajectories nearly as bad.  From these particular initial conditions, the 

market may reach its upper limit based on Capacity for short periods of time, but the overall 

trajectory is only limited by Capacity in the extremely high growth conditions. 

Examining the outliers in the sensitivity analysis illustrates what are potentially the worst 

problems and most transformative areas for improvement.  For static barriers, a reduction in 

Attractiveness is worse than a reduction in Attention, but a simple improvement in either one 

offers relatively little compared to the base case on its own.  For dynamic changes, breaking any 

of the reinforcing feedback loops can prevent the growth of the market, and strengthening 

positive feedback loops that act on Attention are by far the most powerful single actions.  

Informants’ self-described actions also make sense in light of these tests: much of the work of 

the institutional entrepreneurs in this system can be interpreted as ensuring that positive feedback 

processes exist.  For example, publicizing success stories helps the feedback from installations to 

familiarity; convening market participants and sharing best practices helps the feedback from 

installations to learning and lower cost. 

Extreme changes in parameter values represent major problems or major interventions.  

For more moderate action, policy elasticities (Sterman, 2000: 854) are a guide to the relative 

Figure 8: Sensitivity analysis 
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power of various changes in the system.  Policy elasticity is defined as the change in a policy 

relevant outcome resulting from a change in a model parameter; if a 10% increase in price results 

in a 10% decrease in growth rate, the policy elasticity for growth rate on price is -1.0.  In Table 

3, the outcome of interest is the level of Installed Base in 2020, chosen because goals often target 

that year.  Policy elasticities are shown for two initial conditions, two classes of policy inputs, 

and the values of feedback loop strength.  These elasticities only apply to small changes near the 

center trace because growth has a non-linear response to each of these parameters, but the 

ranking of elasticities applies over a much wider range.  The normal case is the same sensitivity 

test as shown in Figure 8; the supply constrained case has slightly lower Initial Capacity 

balanced with higher Base Attention to result in the same trajectory, but the limiting factor is 

capacity growth.   

When capacity is sufficient for growth, the parameters of greatest impact are the strengths 

of reinforcing feedback processes that act on Attention.  After feedbacks on Attention, the next 

most powerful changes are the reinforcing feedbacks on the Attractiveness of PV, followed by 

direct inputs to Attention.  Direct inputs to Attractiveness and changing the feedback strength for 

capacity investment each have moderately strong impact.  In terms of strategic and policy 

actions, these parameter changes correspond to changing the process by which PV becomes 

familiar, then the process of economies of scale or learning, then a direct program of raising 

attention, followed by a tie between the cost effect of an incentive program and adjusting how 

capacity investments follow market growth.  If the market starts from a condition where the 

capacity to deliver PV is the limiting factor, than changing how capacity decisions are made is 

by far more effective than any other intervention.  In the conditions tested here, the industry is 

not overly affected by balancing feedback effects—price is not strongly increased by supply-

Table 3: Policy elasticity from sensitivity analysis 

 

Parameter Normal case 
Supply 

constrained 

Attention Input 1.53 0.22 

Attractiveness Input 0.92 0.33 

� [Attn,MS] 2.24 0.45 

� [Attn,CI s] 2.21 0.47 

� [Attn,CI l] 2.39 0.51 

� [Attn,IB] -0.057 -0.002 

� [Attr,MS] -0.007 -0.001 

� [Attr,CI s] 1.8 0.54 

� [Attr,CI l] 1.92 0.55 

� [Cap,MS] 0.94 2.89 

� [Cap,CI s] 0.075 0.23 

� [Cap,IB] -0.046 -0.17 
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demand imbalance, the desire for clean energy or lack thereof does not come to dominate the 

market.  Like the supply constrained case, the model can be manipulated into a condition where 

those do become limiting, in which case the balancing feedback strengths have higher policy 

elasticities.   

These simulations and sensitivity tests indicate the importance of structure, in the form of 

feedback strengths, over other parameters.  Changing the process by which people come to 

consider PV is much more powerful than injecting new people interested in PV.  The relative 

effectiveness of single changes can be judged from the policy elasticities, but it is difficult to 

evaluate more complex strategic moves.  All these cases are based on parameters fitted to past 

data, and therefore must already incorporate existing policy into their feedback strengths.  In the 

growing systems it is particularly difficult to separate the components of Install Rate—until 

Fraction Adopting reaches its limit, changes in Attractiveness and Attention can substitute for 

each other.  The simulations in Figures 5 and 6 show the sensitivity of the future to baseline 

values—which are uncertain as seen by the diversity in the trajectories that fit observed data.  To 

more carefully explore the policy space I take advantage of the ability inherent in formal 

modeling to simulate counterfactual conditions and test the system’s response as changes are 

made from an equilibrium condition.   

Policy testing 

With no changes to the structure, the combined model is set into equilibrium conditions, 

with installations exactly making up for decommissioning.  This could only occur if market size 

were held constant for several lifetimes of PV systems.  Despite the departure from reality, 

testing from equilibrium has several advantages.  From equilibrium, it is easier to compare small 

changes.  Testing allows looking at the system without confounding current policies with the 

natural system response.  We can examine different policy and feedback conditions to see which 

have permanent effect and which are only transient.  And, since we suspect we are actually in a 

growing system, we can get an idea of the way actors must currently be affecting the system in 

order for that to be so. 
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The model is simulated for 30 years, from 2005 to 2035, and various policies are changed 

in the year 2010.  These runs start from a Market Size of 1000 kW per year, approximately the 

current value; Attractiveness is such that 30% of people looking buy; Capacity and Attention are 

at the levels to sustain these rates.  For the same level of Attractiveness, two equilibrium cases, 

normal and supply constrained, are constructed by changing the bases on Attention and Initial 

Capacity.  In equilibrium, Desire must be equal to Installed Base and the installs are equally 

distributed among vintages; equilibrium Installed Base is Market Size times Lifetime or 30 MW.   

For the purposes of policy testing, three of the strong feedback conditions from Table 2—

strong simple, strong embedded, and strong balancing—are tested against several policies.  Table 

4 reproduces the values of � with the names used in this section.  No matter what the feedback 

parameters, all values remain constant until interventions occur.  Possible policy or strategic 

Table 5: Policy elements for policy testing 

 

Policy Element 
Parameter 

change 

Marketing Attention 

Incentive Attractiveness 

Installer Target Capacity 

Distributor Local Supply 

Vision Extra Desire 

 

Table 4: Feedback strength for policy testing 

 

 MS CI s CI l IB 

Attn 0 0.6 0 0 

Attr 0 0 0.6 0 simple 

Cap 1 0 0 0 

Attn 0.2 0.2 0.2 (0.1) 

Attr (0.1) 0.3 0.3 0 embedded 

Cap 1 0.1 0 (0.1) 

Attn 0.2 0.2 0.2 (0.3) 

Attr (0.3) 0.3 0.3 0 
high 

inertia 

Cap 1 0.1 0 (0.3) 
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interventions are represented by temporary inputs that increase model parameters; Table 5 gives 

intuitive names for the policies along with the model parameter affected.  Thus, policy testing 

includes two capacity cases (normal and constrained), three feedback conditions (simple, 

embedded, and high inertia), and five policy elements. 

Table 6 shows sensitivity tests on these thirty combinations.  A marketing policy—

raising Attention—is the most effective single intervention under all conditions tested; an 

increase in Attention results in a greater change in the Installed Base in year 2020 than an equal 

change in other parameters.  An incentive type of program that raises Attractiveness is the second 

most effective in all cases.  A policy to increase installers has no effect if Capacity is already 

sufficient, but that becomes a moderately effective policy in the capacity constrained case.  

Interventions on Local Supply and Desire have no effect in the simple feedback condition—those 

balancing feedbacks are simply not active—and limited effectiveness in the embedded feedback 

condition.  They are moderately effective however in the high inertia condition where balancing 

feedbacks are strong. 

Note that these measures of effectiveness, policy elasticities, compare equal relative 

changes in parameter values, not equivalent effort.  It may be less expensive, for example, to 

make a large change in the implicit variable Desire by setting forth a bold vision than to change 

Attractiveness by a few percent through a rebate program.  Lacking information on how achieve 

a given change in parameter, we can still use the change in the parameter as a proxy for the size 

of intervention.  For the policy tests below, I mix multiple policy elements to demonstrate the 

effects of combined and coordinated action.  The size of each element is defined as a percent 

change from the base value; the programs are temporary and can vary by duration and start time.  

Table 6: Policy elasticities from policy testing 

 

Normal case 

Policy Element simple embedded high inertia 

Marketing 0.092 0.11 0.10 

Incentive 0.085 0.10 0.094 

Installer 0 0 0 

Distributor 0 0.008 0.023 

Vision 0 0.007 0.022 

Capacity constrained case 

Policy Element simple embedded high inertia 

Marketing 0.082 0.098 0.093 

Incentive 0.075 0.088 0.083 

Installer 0.023 0.027 0.026 

Distributor 0 0.007 0.021 

Vision 0 0.011 0.032 
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For example, and incentive program might raise Attractiveness by 10% its equilibrium value for 

five years, meaning a few more percent of those who look will adopt. 

Combinations of policy elements are usually more effective that elements in isolation.  In 

Figure 9, combinations of incentive and marketing programs are implemented from 2010 to 

2015, in a world of capacity constraint and high inertia.  As expected from sensitivity testing, a 

marketing program that raises Attention by 30% results in higher growth than an incentive 

program that does the same for Attractiveness.  The difference in Installed Base increase is 12%, 

approximately the percent difference in their policy elasticities.  What could not be seen from 

policy elasticities is that a mix of marketing with incentives is above marketing alone; the best 

ratio of about 27% effort into incentives results in a 2% higher Installed Base than marketing 

alone.  Even though marketing is the best single action to take based on system response, 

transferring some of that effort to a less effective action mobilizes additional reinforcing 

feedback loops.  For changes on this scale, a combination of marketing and incentive is the best 

policy under any of the capacity or feedback conditions, even though the best ratio and the 

resulting growth is different for each. 

For large interventions, combined policy is even more important, since growth can 

actually lead to new problems.  A ten-year marketing program that can raise Attention by 200% 

will lead to 85.6 MW of installed PV by 2035 in the capacity constrained high inertia case, but 

the market is suppressed for many years by being at the absolute limit of capacity, waiting for 

investments to catch up.  As seen in Table 7, combinations of marketing and installer policies 

beat marketing alone or marketing and incentives, which is never the case for smaller 

interventions.  A combination of all three policies is even better, and the best intervention that 

could be found includes diverting even more effort from marketing to make a small investment 

Figure 9: Effect of combined policy elements 
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in raising the level of Desire.  For large changes from equilibrium, the best policy is sensitive to 

feedback and initial capacity conditions, since different limiting factors are reached in each case, 

but some combinations of several policy elements are always better than a single large parameter 

change. 

Timing plays a role in the effectiveness of combined action as well.  Coordinated action 

results in higher growth than sequential action, and large interventions of short duration are 

inferior to sustained small interventions of the same total magnitude.  Figure 10 shows both 

features of the system for combinations of incentive and marketing policy elements.  A 20% 

increase in both parameters sustained for ten years is the best combination, superior to sequential 

five year programs raising Attention and Attractiveness by 40% each, in what ever order, despite 

the same total intervention and duration.  All of these ten-year policies are superior to raising 

Attractiveness and Attention by 40% for five years together. 

Table 7: Combined policy elements for high growth 

 

Policy Elements 

(% change) 

Installed Base  

in 2035 (MW) 

Marketing (200) 85.6 

Marketing (180) + Incentive (20) 90.3 

Marketing (180) + Installer (20) 95.4 

Marketing (160) + Incentive (20) 

+ Installer (20) 
100.3 

Marketing (130) + Incentive (30) 

+ Installer (35) + Vision (5) 
103.5 
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Taken together, these behavioral tests indicate the system as modeled does match the 

behavior of the photovoltaic market as described by informants, and that a system with the 

structure they describe has features common to many complex systems.  The structure of the 

system, its feedback strengths and initial conditions, is far more important in determining future 

trajectories than other parameter values.  In the system as modeled, feedback strengths and 

policy actions that affect the attention paid to renewable energy are more important than those 

that affect the attractiveness or capacity to install it.  Though policies on attention are higher 

leverage than others, combined and coordinated action is important—particularly when growth 

leads to reaching new limiting conditions.  Interventions with many policy elements, that occur 

concurrently, and that spread the effort over longer durations are superior to other policies. 

Conclusion 

The large scale behavior of the renewable energy industry results from the fine scale 

structure of individual and organizational decisions.  A behavioral theory of the Massachusetts 

photovoltaic market, in the form of a system dynamics model which incorporates the details 

described by industry experts, matches the observed behavior of the market and gives important 

insights for policy and strategic action  Details of the PV market—the difference between 

exploration and adoption, the way firms invest in capacity, the perception of solar power by 

potential customers—interact with higher order phenomena to determine the trajectory of the 

system.  There is no simple relationship for market penetration as a function of cost; the 

diffusion of photovoltaics follows a path that depends on initial conditions, policy, strategic 

action, and system structure.  The best interventions include multiple elements and coordinated 

and sustained action at several points in the system.  The strengths of the feedback processes in 

the industry exert a more powerful influence on its behavior than any other factor. 

Figure 10: Effect of coordinating policy elements 
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Although parameter values are too uncertain to allow for predictions of market growth, 

policy testing reveals lessons about policy that are robust to changes in assumptions.  Over 

different feedback and capacity conditions, an intervention that raises attention is the highest 

leverage single change, but a combination of increases in attention and attractiveness will 

outperform a single intervention.  The faster the market grows, the more important multiple 

policy elements becomes, because growth can lead to the system reaching new limiting 

conditions.  Timing of interventions plays a role as well: low level sustained interventions are 

superior to short-lived high impact interventions, and multiple element interventions are more 

effective if concurrent than if they are sequential. 

The models developed here are insufficient to determine what size of incentive produces 

what change in market trajectory.  The responses of model behavior to different combinations of 

policy elements, and the difference between the responses of combined programs under different 

sequences, show how effects other than the size of an intervention matter.  It is more important 

to consider the many effects of any strategic or policy choice, and to consider all the choices that 

are needed to have a single effect, than it is to select the correct value for a rebate program. 

An intervention of the scale of Germany’s feed-in tariff law is likely to work in any 

system with positive feedback.  But the lesson is not that it is sufficient to encourage growth to 

institute a large subsidy.  Considering the behavior shown in simulations, the situation in 

Germany was more than a single action.  The German market had for years been building 

supply; the announcement of the new rules attracted great attention and spurred investment in 

capacity; the commitment to renewable energy changes both explicit and implicit goals for the 

system.  These factors are likely to be as meaningful as the economic value of the rules.   

Massachusetts has set a goal of 250 MW of installed PV by the end of 2017 (EOEEA, 

2007).  Simple calculations show the magnitude of the challenge of meeting that goal—an 

increase in growth rate from an already high 30% per year to 63% per year, if that increase can 

suddenly happen in 2010.  Simulations reveal that, in the system described by informants, no 

single intervention is likely to work.  Instead, it requires coordinated action, including a 

preemptive increase in capacity, so that the ability to deliver and install panels in place before the 

demand for them is generated. 

The behavior of models in this research depends more strongly on the feedback 

parameters used than the interventions made.  Feedback loops that act via attention and 

attractiveness have the highest policy elasticities—unless capacity is a limiting factor in which 

case its main loop has the highest sensitivity.  What the policy sensitivities mean is that the 

highest leverage actions are changing the processes by which accumulations of market choices 

lead to greater attention, greater attractiveness, and, greater investment.  These model results 

correspond with some of the activities that informants described, particularly those informants 

who get projects done or grow the market.  Publicizing success stories, convening industry 

actors, sharing information, and building confidence are all means of connecting elements of the 

system.  The real work done by institutional entrepreneurs is the model equivalent of building 

and maintaining critical links in the feedback loops—which turns out to be the highest leverage 

activity.   

The observed growth of the photovoltaic market indicates that reinforcing structures must 

be present, and informants’ mental models include plausible mechanisms by which reinforcing 

loops act.  Individual and firm decisions accumulate to cause higher order phenomena, which in 
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turn affect the trajectory of the industry, mediated by decision processes.  Feedback loops like 

familiarity and learning are assumed to be a natural part of the system, but informants also 

describe the difficult work that goes into creating and maintaining links.  Incentives and 

awareness programs make use of reinforcing feedback processes; the best policy would be to 

support the people who strengthen feedback processes. 
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