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A B S T R A C T 

This paper focuses on the aggregation that is implicit in the use of distri
buted delays in dynamic models. 'fhe aggregation pro"ess relates the continu
ous time-dependent response of a delay structure to the underlying distribu
tion of delay times of the disaggregated events which constitute the d<>lay. 
1'he discussion covers in particular the special case of exponential delays 
used in system dynamics models. 
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I N T R 0 D U C T I 0 N 

One of the characteristic features of a system dynamics study is the 

emphasis placer! on delays in the system. From one point of view, delays are 

non-events; something happens in a system and no change is observed immedia

tely elsewhere, but after a delay or a time-lag a reaction occurs somewhere 

else in the system. For example, a salesman writes an order for one hundred 

units and after some period of time, a delay, the order is delivered to the 

customer. In this sense a delay oneans a time-interval between a causal action 

and the effect of that action. 

Another aspect of delay structures that is frequently used in system 

dynamics modeling is the creation of average values of system variables that 

change with time. Typically, a special delay structure called S!400'l'H .is used 

to define an average over past values of a variable with the weight or rela

tive contribution of the values declining continuously (exponentialiy) the 

further the value is in the past. Thus a sudden change in the variable being 

averaged is distributed over some characteristic time. The full impact is 

not felt immediately because the average does not change immediately to the 

new value of the input variable. The .process of smoothing and the effects of 

this smoothing are given excellent treatment in Appendix E and chapter 9 of 

Industrial Dynamics (Forrester, 1961). 

But in system dynamics studies more emphasis is placed on another aspect 

of so-called delay structures. (A delay structure is any combination of rates 

and levels in series). This aspect is the distortion or tt·ansformation that 

such a delay structure imposes on any input to the system. In the example 

of our salesman, it may well happen that all one hundred units ordered are 

not delivered on the same date-part of the order could be filled from the 

inventory, part from current production and perhaps part must be bought from 
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a competitor to meet a delivery deadline. Thus the response to the impulse 

given by the order for one hundred units may be the delivery of one hundred 

units distributed over several days depending on the source of the unit, me

thod of transport etc. It is this kind of transformation of the original in

put rate of an order for one hundred units into a delivery rate stretching 

over several days that characterizes the delay structure of the system. 

From the simple example of the salesman 1 s order it is clear that the 

transformation aspect is an a~gregation of discrete events. Each unit may 

have a serial number and a precise delay time may be associated with the de

livery of each unit. But if all units are functionally equivalent, for exam

ple 100 television sets for a new hotel, it is useful to consider the ae,gre

gate result expressed in terms of the delivery rate following the order i.e. 

in terms of the number of TV sets delivered per day. The aggregation process 

converts a set of discrete delay events into a continuous flow rate. of out

put in response to a flow rate of inputs. 

The purpose of this paper is to describe the relationship between the 

first aspect. of a delay as a discrete lag and the third aspect of delays as 

structures that transform the behaviour of input variables. A great deal of 

time is spent on the transformation aspect of delays when teaching system 

dynamics. It is hoped that a clearer perception of the nature of the aggre

gation process implicit in many uses of delays will aid in the conceptuali

zation and' comprehension of the relationship between the model and the system 

being modeler!. 

A G G R E G A T I 0 N 0 F D I S C R E T E E V E N T S 

Consider a typical discrete process as mailing a sinF,le letter, or 
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ordering a single widget. We can imagine the process to consist or two events. 

First, o. co.uso.l event such as plo.cing the letter in a mailbox or asking a 

so.lesman ror a widget. Second, a result event such as the arrival or the let-

ter at its destination or the receipt of a widget rrom the retailer. 'l'hese 

two events are sepo.rated by an interval or time, a delo.y or a time-lag or a 

speciried length. Some types or discrete-event simulation deal with just such 

discrete, specific time-lags in a system and accumulate statistics based on 

repeated evaluation or the events occurring in a system in which the time-

lags between events are random variables i.e. have valtie!l determined by a given 

probo.bilit~distribution. 

In system dynamics models one considers instead many such delay-events 

aggregated according to two principles. Namely, many similar events are as-

sumed to be occuring simultaneously and independently. For example, many let-

ters are posted each day, many orders are written each week. From these exam-

ples simultaneity is interpreted not in the strict physical sense of ~xact 

coincidence in time (not all letters are mailed at ll. 32 a.m.), but in the 

sense that several events occur over a time interval, D'r, that is short com-

pared to the time-horizon or the model. In this case we speak or a flow of 

events (the number or letters mailed per day in a model with a horizon of 

months or years) as. representing simultaneity. 'fhese events. are o.ls.o assumed 

to occur independently, that is, the occurrence or one event does not influ-

ence the occurrence or non-occurrence or another. There is no reedback b<>twE'en 

simultaneous events. 

In the aggregation process, the lumping together of many causal events 

to form a flow of causal events or input leads to a lumping together or the 

result events to form a rlow of results or output, modiried by the distribution 

or values for the lags of the individuo.l events. For example, the mailing 

rate (letters per day) results in a delivery rnte influenced by the distri-
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bution or the delay times or the individual letters aggregated into the mai-

ling rate. 

To make the nature or the innuence or the distribution or delays more 

explicit, consider the rollowing derinition: 

Then 

Let; 

C(t) 

c(t-r) 

p( z: )dt: 

the inflow rate of letters at time t. 

the inrlow rate or letters at time t- r. 

the probability that a letter is delivered between 
r and "I' +d time-units arter it is mailed. 

Consider the case when there are no letters in the mail system initio.lly, 

then the delivery rate is just the sum of all the letters mailed at a previous 

time (that is, at time t-t:) multiplied by the probability that these letters 

are delivered arter a delay or r time-units. That is the delivery rate at 

timet (the.rlow of results) is .. 
R(t) = 1 C(t-t:) p( 1: )dz: 

" 
=I C(tl.) p(t-t')dt' ... 

(1) 

(2) 

Eq. (1) means that the aggregate result from a delay process with a dis-

tribution or delay times is a weighted sum over all past aggregate causal 

events where the weighting runction is the probability distribution1 of the 

delay times. The rorm of this result is well known to engineers. 2 However, 

the relationship between the distribution or discrete events (the delny times 

or each letter)· and the aggregate delays are rarely emphasized. I have found 

this interpretation extremely userul when considering the justification for 

1. In this paper (probability) distribution functions denote what many sta
tisticians prerer to call frequency runctions (llcGee, 1971). 

2. 'l'he above derivation was inspired by lecture notes prepared by T. Manetsch 
(Nunetsch anrl Park, 1973). 
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using a particular delay form and when considering the relationship between 

difference equation and differential equation simulation models. On this 

latter point, it is interesting to note that Dhrymes (Dhrymes, 1971) in his 

magnum opus on distributed lags in econometric models, describes lag struc-

tures. for which all co-efficients are non-negative and sum to one andre-

fers to an interpretation of these structures in terms of discrete probabi-

lity distributions. By the above argument this interpretation is elevated 

to a theorem: with p(Z") a discrete .distribution of delay times, eq. (1) says 

that the output of such a system is a sum over past inputs at discrete times 

in the past weighted by the probability that such inputs are delayed by the 

appropriate discrete amounts. .The importance of having non-negative lag co-

efficients cannot be over-emphasized. Distributed lags with negative co-

efficients do not represent distributed delays in the sense of this paper. 

Instead such structures are attempts to replace more complicated causal 

structures by "black-boxes" or transformations of the inputs. 

Let us now examine the relationship between eq. (l) and first-order 

delays as they are used in system dynamics. The differential equation for 

a first-order delay is 

dL 
dt 

C(t) - L 
AT 

The solution is 

L(t) Le-t/AT+ 
0 . 

j C(t 1 )e -(t-t 1 )/ATdt' 
0 

(3) 

(4) 

where L
0 

is the initial content of the level. If L
0 

= o, as we assumed in 

deriving eq. (1), the output rate is 

L 
AT 

t J C(t' )e -( t-t' )/ATdt' 
o · AT 

(5) 
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Referring to eq. (2) and noting that for a system that starts at time 

t = 0 we have C(t 1 ) = 0 fort'~ 0, we get for eq. (2). 

R(t) j C(t') p(t-t' )dt' 
0 

(6) 

Thus the probability distribution of delay times for a rirst-order_delay 

is 

P(t) 
e-t/AT 

AT (7) 

In fact the firs~-order exponential delay is a member of a family of delays 

for which the distribution of delay times are the Erlang distributions, namely 

P(t, AT;n) 
tn-le-t/(AT/n) 

(AT)n (n-l)l 
n 

(8) 

When n = 3 we have the distribution of delay times corresponding to a third-

order delay. From eq. (6), if the input rate is a unit pulse at time zero 

we see that the output rate is 

R(t) p(t) (9) 

so that the shape of the distribution is evident as the response to a pulse, 

Two generalizations of the delay structures available in DYNAMO suggest 

themselves immediately. First, we can consider the sum of several distri-

butions of delay times, appropriately weighted so that the cumulative distri-

bution function of the sum tends to one in the limit as the delay time goes 

to infinity. Thus one could have 

p(t) (10) 
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to represent a two-humped distribution if AT1 and AT2 are sufficiently 

different. Further in this line of thought, if empirical evidence of a par-

ticular delay distribution were available, one could attempt to fit the data 

with a combination of exponential delays of different orders and different 

average delay times. Non-linear estimation techniques would be required. 3 

Another generalization derives from eq. (3) where the differential 

equation of the first-order delay is given. There we see that a delay can 

be determined from a non-homogeneous differential equation for the distribu-

tion function with the input rate as the non-homogeneity. Thus if we have a 

differential equation for a distribution function, the corresponding aggregate 

delay is easily written. Unfortunately, distribution fUnctions suitable for 

use with DYNAMO are not easy to find and in fact seem to be restricted to the 

Erlang family of distributions otherwise known as exponential delays. 

C 0 N C L U S I 0 N 

This paper has attempted to make explicit the relationship between a mass 

of separate events occuring at discrete times and the underlying probability 

distributions governing those events in order to justiry the use of aggregate 

variables in simulation modeling. Although the formal structure of system 

dynamics models is deterministic, the probabilistic nature of many real systems 

is not thereby ignored. Rather certain statistical aspects are retained in 

delay structures and the question becomes one of verifYing that the representa

tion of the delay time distributions is accurate or at least satisfactory. 4 

3. Some idea of the problems involved even in the simple, case of one 
distribution are discussed by M. Hamilton in these proceedings. 

4. This latter question is treated in detail in Hamilton's paper in these 
proceedings. 
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As a final remark, it will be noted that the relationship between 

delay structures and the underlying distribution of delay times has been de-

veloped for material delays only. For this type of delay, as the Markov 

process interpretation makes clear, the definition of an .event as the change 

from one state to another is particularly easy to make. In the case of in-

formation delays, it may be inappropriate to speak of a delay event and the 

distribution of delay times since the information delay may actually repre-

sent a formal data-smoothing process used by a decision-maker as part of his 

policy or rate equation definition. Such a formal transformation of data 

has no direct, physical, relationship with an implicit distribution of delay 

events. 
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