
Appendices
Appendix A: The automated model behavioural analysis framework (AMBA)

In designing the framework for automated model behavioural analysis (AMBA), the
routines for integration, the model equations and the behavioural analysis were separated
as much as possible. They are independent entities exchanging information, each having
with their own responsibilities. This modular and generic set up allows us to replace and
change any one of the three routines without affecting the others. The three parts of the
framework for automated model behavioural analysis exchange information as depicted
in Figure 1.

Figure 1: Information exchanged in the framework for Automated Model Behavioural
Analysis

Appendix A.1:Main procedure
The main procedure executes model runs and analyses; linking the separate parts of the
AMBA framework together. It calls the functions required for the structural and
dominance analyses of the model, while using the solver to run the model. The procedure
needs the following inputs: (i) a location reference to the model in a representation
suitable for use within the framework, (ii)a vector of time steps for the integrator, (iii) a
separate vector of times at which to perform the analysis, and (iv) a location reference to
the solver to be used.

After performing an initial structural analysis, the procedure runs the model until the first
moment at which a full behavioural analysis is required. This analysis is performed, the
results stored and the interrupted run is continued until the next moment at which full
behavioural analysis is required. This continues until the last snapshot time for
behavioural analysis has been reached. The Matlab Code of the main procedure is
included in Appendix A. For an overview see Figure 2.

Figure 2: Flowchart of the main procedure of the AMBA framework. The structural analysis uses
the algorithms defined by (Oliva 2004) . The block “perform behavioural analysis” executes the
model behavioural analysis at a specific point in time.

Appendix A.2:Model Representation
The model is designed to keep all unnecessary complexity away from the other AMBA
components. It is an outer shell, hiding its internal workings from the rest of the
framework. It supplies all the information needed to run and analyse the behaviour of the
model. This includes linearizing and building adjacency matrices (Oliva 2004) as well as
calculating the net rates of change of state variables. At this stage, edge gains for the
linearizations are calculated using simple finite differences, but these can be calculated

analytically on a per variable basis should this prove necessary. To summarize, the
model:

• Receives the results of the integration for each time step from the integrator and in
turn provides the net rates of change of the state variables to the integrator.

• Provides the behavioural analysis routine with a graph representation (an
adjacency matrix, for instance) of the model so that structural analysis can be
performed.

• Provides the behavioural analysis routine with the information needed to perform
the dominance analyses.

Appendix B: Yeast Model

Appendix B.1: System Structure

Table 1: Directed Cycle Matrix of the Yeast Model

Edge Loop
From To L1 L2 L3 L4
Cells Births 1 0 0 0
Births Cells 1 0 1 0
Cells Deaths 0 1 0 0

Deaths Cells 0 1 0 1

Cells
Alcohol

Generation
0 0 1 1

Alcohol Alcohol 0 0 1 1

Generation
Alcohol EffAlcBirth 0 0 1 0

EffAlcBirth Births 0 0 1 0
Alcohol EffAlcDeath 0 0 0 1

EffAlcDeath Deaths 0 0 0 1

Appendix B.2: Properties of the gain matrix of the Yeast model

Figure 3: Condition number of the eigenvalues of the Yeast model

Figure 4: Determinant of the matrix of right eigenvectors of the Yeast model

Appendix C: Matlab code

Appendix C.1: The main analysis procedure
function [realRes, imagRes, overRes, eigenRes, t, y , condires, auxvals]...
 = automagicTestK(theModel, timespan, snapShots, integrator)

 % Model made global for wrapper function when i ntegrating. simpleInteg
 % just wraps a matlab function around the java model making its easier
 % to integrate
 global model

 % Java imports
 import nl.tudelft.tbm.pa.rubberband.util.*;
 import nl.tudelft.tbm.pa.rubberband.*;

 % Model reference
 model = theModel;

 % Assuming constant structure, do the structura l analysis first.
 % Do not include model parameters
 adjac =...
 model.getAdjacencyMatrix(AdjacencyMatrix.EX CLUDE_PARAMETERS);
 % Get the DCM and related edges. Requires trans lation from output by
 % oliva.
 [edges DCM] = getSilsDCM(adjac);

 % Determine the end of time
 endOfTime = timespan(numel(timespan));

 % Initialize vectors for results of integretati on
 y = zeros(1, model.getStates().length);
 t = 0;

 % Initialize contros for time and snapshots
 snapIndex = 1;
 tLast = timespan(1);
 deltat = .1;
 % Time at which to analyze
 snapTime = snapShots(snapIndex)
 remainingTime = timespan;
 finished = 0;

 % Run while taking stopping the model at for a nalyses.
 % Analyse model snapshots in separate (nested) function.
 while ~finished
 % Get the snapshot, else if (time < snapsho t) run till snapshot
 if tLast == snapTime
 % Analyze and store results in a 3d res ult matrix
 % Call the Kampmann analysis functions
 [realR, imagR, eigenss, condi] =...
 analyzeKampmann(model, edges, DCM);
 % Rescale the results for readability
 % Real part of the elasticity
 realRes(:,:,snapIndex) = reScale(realR, 1);

 % Imaginary part of the elasticity
 if nnz(imagR) > 0
 imagRes(:,:,snapIndex) = reScale(im agR,1);
 else
 imagRes(:,:,snapIndex) = zeros(size (imagR));
 end

 % Overall elasticity
 overRes(:,:,snapIndex) = ...
 reScale(abs(complex(realR, imagR)), 1);
 % Eigenvalues of the model
 eigenRes(:,snapIndex) = eigenss;
 % condition number of the eigenvalues
 condires(:,snapIndex) = condi;

 snapIndex = snapIndex +1;
 if snapIndex > length(snapShots) | snap Time == endOfTime
 finished = 1;
 else
 snapTime = snapShots(snapIndex);
 end
 else
 % Run till snapshot
 % Determine the vector of the timespan until the next snapshot
 % first.
 idx = find(remainingTime >= snapTime, 1 , 'first');
 tidx = remainingTime(idx);
 % If snaptime falls exactly on a timest ep
 if tidx == snapTime;
 integVector = remainingTime(1:i dx);
 remainingTime = remainingTime(idx :numel(remainingTime));
 % Else if it falls between timesteps
 elseif tidx > snapTime
 integVector = [remainingTime(1: idx-1) snapTime];
 remainingTime =...
 [snapTime, remainingTime(idx:nu mel(remainingTime))];
 end
 states = model.getStates();
 for statesIdx = 1:length(states)
 inits(1, statesIdx) = states(states Idx).getValue();
 end
 % Integrate. Integrator is a function h andle, which
 % should cover the independency.
 [ts ys] = integrator(@simpleInteg, inte gVector, inits);
 % Vertcat the solution, do not include redundant steps.
 t = vertcat(t, ts(2:length(ys)));
 y = vertcat(y, ys(2:size(ys,1),:));
 % Determine the current time of the mod el
 tLast = integVector(numel(integVector)) ;
 end
 end

 % Remove dummy rows from result matrices
 t(1,:) = [];
 y(1,:) = [];
end

Appendix C.2: Code for the modified version of evaluating the contribution
function varargout = eigenValueContribution(model, deltat, t)

 % This is a rewrite of EvCont, slightly modifie d to show testresults.
 % model : A reference to the system,
 % deltat : the deltat used to calculate the cha nge in slope
 % (independent from integration and analysis ti mes)
 % t : current time in the model
 % x : the current state of the system

 % Get the current rates of change (slopevector) from the model
 slps = model.getNetRates(t);
 % Get the gain matrix from the model
 gainMatrix = desc2jacob(model.getDescriptor(0)) ;

 % Calculate linearized slopes
 slopes_zero = slopesAtT(slps, gainMatrix, 0);
 slopes_delta = slopesAtT(slps, gainMatrix, d eltat);

 % Get the difference between t(0) and t_delta. Relative to deltat
 slopechange = (slopes_delta - slopes_zero)/delt at;

 % Reduction to real seems to work, the imaginar y
 % part of the contribution of the eigenvalues a lways
 % occurs in conjugates, making the net
 % slopechange completely real. So, since that n et effect is zero,
 slopechange = real(slopechange);

 function scs = slopesAtT(slps, gains, dt)

 % Vectors and eigenvalues all complex form, scs always result in
 % complex conjugates.
 [vectors lambdas] = eig(gainMatrix);

 % The fundamental matrix.
 % (Boyce and DiPrima 1996)
 psi = vectors*(exp(lambdas*dt).*eye(siz e(lambdas)));
 % Calculate alphas based on current slopes. Alphas can be complex
 alphas = inv(vectors)*slps;
 % Diagonalize alphas
 alphas = diag(alphas);
 % calculate slope components, retain in 2d form to conserve
 % information about different lambdas
 scs = psi*alphas;
 end

 varargout{1} = slopechange;
 % As said before, the imaginary part of the act ual slope can be
 % ignored. Net effect is zero due to being comp lex conjugates.
 % used to compare with numericallly solved syst em to verify method
 varargout{2} = real(sum(slopes_delta, 2))';
 % Eigenvalues, used for another consistency che ck
 varargout{3} = diag(lambdas);

end

