
Appendices 
Appendix A: The automated model behavioural analysis framework (AMBA)  

In designing the framework for automated model behavioural analysis (AMBA), the 
routines for integration, the model equations and the behavioural analysis were separated 
as much as possible. They are independent entities exchanging information, each having 
with their own responsibilities. This modular and generic set up allows us to replace and 
change any one of the three routines without affecting the others. The three parts of the 
framework for automated model behavioural analysis exchange information as depicted 
in Figure 1.  
 

 
Figure 1: Information exchanged in the framework for Automated Model Behavioural 
Analysis 

Appendix A.1:Main procedure 
The main procedure executes model runs and analyses; linking the separate parts of the 
AMBA framework together. It calls the functions required for the structural and 
dominance analyses of the model, while using the solver to run the model. The procedure 
needs the following inputs: (i) a location reference to the model in a representation 
suitable for use within the framework, (ii)a vector of time steps for the integrator, (iii) a 
separate vector of times at which to perform the analysis, and (iv) a location reference to 
the solver to be used. 
 
After performing an initial structural analysis, the procedure runs the model until the first 
moment at which a full behavioural analysis is required. This analysis is performed, the 
results stored and the interrupted run is continued until the next moment at which full 
behavioural analysis is required. This continues until the last snapshot time for 
behavioural analysis has been reached. The Matlab Code of the main procedure is 
included in Appendix A. For an overview see Figure 2. 
 



 
Figure 2: Flowchart of the main procedure of the AMBA framework. The structural analysis uses 
the algorithms defined by (Oliva 2004) . The block “perform behavioural analysis” executes the 
model behavioural analysis at a specific point in time. 

Appendix A.2:Model Representation 
The model is designed to keep all unnecessary complexity away from the other AMBA 
components. It is an outer shell, hiding its internal workings from the rest of the 
framework. It supplies all the information needed to run and analyse the behaviour of the 
model. This includes linearizing and building adjacency matrices (Oliva 2004) as well as 
calculating the net rates of change of state variables. At this stage, edge gains for the 
linearizations are calculated using simple finite differences, but these can be calculated 



analytically on a per variable basis should this prove necessary. To summarize, the 
model: 
 

• Receives the results of the integration for each time step from the integrator and in 
turn provides the net rates of change of the state variables to the integrator. 

• Provides the behavioural analysis routine with a graph representation (an 
adjacency matrix, for instance) of the model so that structural analysis can be 
performed. 

• Provides the behavioural analysis routine with the information needed to perform 
the dominance analyses. 

 

Appendix B: Yeast Model 

Appendix B.1: System Structure 
 

Table 1: Directed Cycle Matrix of the Yeast Model 

Edge Loop 
From To L1 L2 L3 L4 
Cells Births 1 0 0 0 
Births Cells 1 0 1 0 
Cells Deaths 0 1 0 0 

Deaths Cells 0 1 0 1 

Cells 
Alcohol 

Generation 
0 0 1 1 

Alcohol Alcohol 0 0 1 1 



Generation 
Alcohol EffAlcBirth 0 0 1 0 

EffAlcBirth Births 0 0 1 0 
Alcohol EffAlcDeath 0 0 0 1 

EffAlcDeath Deaths 0 0 0 1 
 

Appendix B.2: Properties of the gain matrix of the Yeast model 
 

 
Figure 3: Condition number of the eigenvalues of the Yeast model 

 

 
Figure 4: Determinant of the matrix of right eigenvectors of the Yeast model 



Appendix C: Matlab code  

Appendix C.1: The main analysis procedure 
function [realRes, imagRes, overRes, eigenRes, t, y , condires, auxvals]... 
    = automagicTestK(theModel, timespan, snapShots,  integrator) 
 
    % Model made global for wrapper function when i ntegrating. simpleInteg 
    % just wraps a matlab function around the java model making its easier 
    % to integrate 
    global model 
     
    % Java imports     
    import nl.tudelft.tbm.pa.rubberband.util.*; 
    import nl.tudelft.tbm.pa.rubberband.*; 
     
     
    % Model reference 
    model       = theModel; 
     
    % Assuming constant structure, do the structura l analysis first. 
    % Do not include model parameters 
    adjac       =... 
        model.getAdjacencyMatrix(AdjacencyMatrix.EX CLUDE_PARAMETERS); 
    % Get the DCM and related edges. Requires trans lation from output by 
    % oliva. 
    [edges DCM] = getSilsDCM(adjac); 
         
    % Determine the end of time 
    endOfTime   = timespan(numel(timespan)); 
     
    % Initialize vectors for results of integretati on 
    y = zeros(1, model.getStates().length); 
    t = 0; 
     
    % Initialize contros for time and snapshots 
    snapIndex       = 1; 
    tLast           = timespan(1); 
    deltat          = .1; 
    % Time at which to analyze 
    snapTime        = snapShots(snapIndex) 
    remainingTime   = timespan; 
    finished        = 0; 
     
    % Run while taking stopping the model at  for a nalyses. 
    % Analyse model snapshots in separate (nested) function.     
    while ~finished 
        % Get the snapshot, else if (time < snapsho t) run till snapshot 
        if tLast == snapTime 
            % Analyze and store results in a 3d res ult matrix 
            % Call the Kampmann analysis functions 
            [realR, imagR, eigenss, condi] =... 
                analyzeKampmann(model, edges, DCM);  
            % Rescale the results for readability 
            % Real part of the elasticity 
            realRes(:,:,snapIndex) = reScale(realR, 1); 
             
            % Imaginary part of the elasticity 
            if nnz(imagR) > 0 
                imagRes(:,:,snapIndex) = reScale(im agR,1); 
            else 
                imagRes(:,:,snapIndex) = zeros(size (imagR)); 
            end 



            % Overall elasticity 
            overRes(:,:,snapIndex) = ... 
                reScale(abs(complex(realR, imagR)),  1); 
            % Eigenvalues of the model 
            eigenRes(:,snapIndex)  = eigenss; 
            % condition number of the eigenvalues 
            condires(:,snapIndex)  = condi; 
             
            snapIndex   = snapIndex +1; 
            if snapIndex > length(snapShots) | snap Time == endOfTime 
                finished = 1; 
            else  
                snapTime = snapShots(snapIndex);          
            end 
        else 
            % Run till snapshot 
            % Determine the vector of the timespan until the next snapshot 
            % first. 
            idx = find(remainingTime >= snapTime, 1 , 'first'); 
            tidx = remainingTime(idx); 
            % If snaptime falls exactly on a timest ep 
            if tidx == snapTime; 
                integVector     = remainingTime(1:i dx); 
                remainingTime   = remainingTime(idx :numel(remainingTime)); 
            % Else if it falls between timesteps 
            elseif tidx > snapTime 
                integVector     = [remainingTime(1: idx-1) snapTime]; 
                remainingTime   =... 
                    [snapTime, remainingTime(idx:nu mel(remainingTime))]; 
            end             
            states = model.getStates(); 
            for statesIdx = 1:length(states) 
                inits(1, statesIdx) = states(states Idx).getValue(); 
            end 
            % Integrate. Integrator is a function h andle, which 
            % should cover the independency. 
            [ts ys] = integrator(@simpleInteg, inte gVector, inits); 
            % Vertcat the solution, do not include redundant steps.             
            t = vertcat(t, ts(2:length(ys))); 
            y = vertcat(y, ys(2:size(ys,1),:)); 
            % Determine the current time of the mod el 
            tLast = integVector(numel(integVector)) ; 
        end         
    end 
     
    % Remove dummy rows from result matrices 
    t(1,:) = []; 
    y(1,:) = [];     
end 



Appendix C.2: Code for the modified version of evaluating the contribution 
function varargout = eigenValueContribution(model, deltat, t) 
 
    % This is a rewrite of EvCont, slightly modifie d to show testresults. 
    % model : A reference to the system,  
    % deltat : the deltat used to calculate the cha nge in slope  
    % (independent from integration and analysis ti mes) 
    % t      : current time in the model 
    % x      : the current state of the system 
     
    % Get the current rates of change (slopevector)  from the model 
    slps = model.getNetRates(t); 
    % Get the gain matrix from the model 
    gainMatrix = desc2jacob(model.getDescriptor(0)) ; 
     
    % Calculate linearized slopes 
    slopes_zero     = slopesAtT(slps, gainMatrix, 0 ); 
    slopes_delta    = slopesAtT(slps, gainMatrix, d eltat); 
     
    % Get the difference between t(0) and t_delta. Relative to deltat     
    slopechange = (slopes_delta - slopes_zero)/delt at; 
     
    % Reduction to real seems to work, the imaginar y  
    % part of the contribution of the eigenvalues a lways 
    % occurs in conjugates, making the net 
    % slopechange completely real. So, since that n et effect is zero,  
    slopechange = real(slopechange);  
     
    function scs = slopesAtT(slps, gains, dt) 
         
        % Vectors and eigenvalues all complex form,  scs always result in  
        % complex conjugates. 
        [vectors lambdas] = eig(gainMatrix); 
         
        % The fundamental matrix.  
        % (Boyce and DiPrima 1996) 
        psi     = vectors*(exp(lambdas*dt).*eye(siz e(lambdas))); 
        % Calculate alphas based on current slopes.  Alphas can be complex 
        alphas  = inv(vectors)*slps; 
        % Diagonalize alphas 
        alphas  = diag(alphas); 
        % calculate slope components, retain in 2d form to conserve 
        % information about different lambdas 
        scs     = psi*alphas; 
    end 
 
    varargout{1}    = slopechange; 
    % As said before, the imaginary part of the act ual slope can be  
    % ignored. Net effect is zero due to being comp lex conjugates. 
    % used to compare with numericallly solved syst em to verify method 
    varargout{2}    = real(sum(slopes_delta, 2))';  
    % Eigenvalues, used for another consistency che ck 
    varargout{3}    = diag(lambdas);    
     
end 

 
 


