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ABSTRACT 

The relationship between system dynamics<SD> .and other research 
areas is a subject of universal interest. Attention of the paper 
is to the possible links between SD and GERT <short for Graphical 
Evaluation and Review Technique>. 
A new simulating design for a class of GERT network is proposed 
and the equivalence of GERT networks to SD models established, 
thus a new solution to the network obtained. 
Accorging to the approach, a GERT network is converted into a SD 
model in which levels are used to model the random variables 
associated with the network, such as the expected time to realize 
a node and the probability that it is realized. The resulting 
basic model can be used for calculations of any parameter of 
interest in the analysis of GERT networks. 
Its advantages and implications are discussed. 
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I. INTRODUCTION 

System dynamics CSD> is designed primarily for the analyzing and 

modelling of managerial, organizational, and socioeconomical 

problems. But now we focus our attention to the relationship, if 

any, between SD and GERT <abbreviated from Graphical Evaluation 

and Review Technique> and its applications. 

GERT is a network technique evolved out of CPT/PERT, whereas SD 

is based on feedback control systems principles. However, it is 

not surprising that GERT is chosen as the partner of SD. First, 

the basic element of GERT network shown in Fig.1 is similar in 

composition to that of SD flowgraphs illustrated in Fig.2. Either 

of them consists of a line with arrow <arc or flow line> and two 

end points<nodes or levels). Its appeal, most importantly, stems . 

Figure.1 GERT element Figure.2 SD element 

from following considerations: the GERT network with Exclusive-or 

nodes on their receiving sides<GERT-E network> can be modelled by 

Semi-Markov processes <SMPs>; on the other hand, SD models are 

Markovian<Sahin,1979> and Markov processes<MPs> are equivalent to 

a class of SD models<Sahin,1979), therefore, Markov processes may 

be the medium of establishing the link between GERT and SD. Of 

course, the variables considered by us are not limited to "transit 

probability" as in the case of MPs. 

Implicit motivation of the research is from the wonder that any 

relationship between SD models and signal flow graphs <SFGs) exist 
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there. It is well known that the type of GERT network mentioned 

above ,after a transformation of variables, can be viewed as a kind 

of SFGs. While Professor Jay W. Forrester had borrowed the concepts 

of SFGs to portray visually underlying cause and effect connections 

in the systems <Roberts, 1978, PP.S>. Obviously, it is desirable 

to travel the full circle: from SFG graphical representation to 

the SD'flowgraph to the GERT graphical represention and agai11 to 

SFG. 

As a result of the research, an equivalence of GERT to SD is 

established and a new solution to GERT networks 

name of which is GERT-SD. 

is developed, the 

The presentation here assumes that the ~eader has a basic knowledge 

of GERT. Therefore, the concepts and conclusions concerned with 

GERT will be cited directly. 

II.A BRIEF DESCRIPTION OF GERT 

GERT network is a stochastic system characterized by states<nodes) 

and transitions <occurances of activities) from one state to 

another. Therefore, which state will be realized after nth 

transition is a random event. The main objective of analyzing 

a GERT network is to find the statistic outcomes of key nodes 

<often terminal nodes): the probabilities that they are realized 

and the distributions of the time to realize them and so on. 

Consider mth route < path or chain ) from an origin to a terminal 

Cit may be,in fact, any node of interest) in a GERT-E network and 



-944-

index the nodes on the route 1, 2, ... Nm, S in such a way that 

1 is origin, S terminal. According to the theoretical analysis 

<Sun, 1985) that the probability that S is realized is 

Nm 
Ps = L< rr Pij) ( 1) 

m i =1 

in which, Pij is transition probability of activity i-j;, and the 

expected time to realized the nodes obeys normal distribution: 

Ts "' N ( Es, Ds ) ( 2) 

ln which, 
Nm Nm 

Es = L:[<TI pi j) ( LTijlJ (3) 

m i=1 i=1 

Nm Nm 
and Ds = L[< TIP i j ) ( L <!lj).) ] 

m i=1 i=1 
( 4 ) 

in which Tij and 2. 
<Tij are respectively the time to 

complete activity i-j and its variance. It should be noted that 

equations (2)...,(4) are suitable to other parameters such as cost 

as well as time. 

The main idea of GERT-SD is to view a GERT-E network as a Markov 

process and then model its steady state(according to Markov theory 

a Markov process will reach a steady state after enough times of 

transitions) by SD method, thus obtaining the statistic outcomes 

of the nodes being investigated. The resulting basic SD model 

includes two sub-ones, i.e. P-model and T-model, which, 

respectively, model the probabilities of nodes being realized and 

the expected times experienced when they are realized at those 

probabilities. The basic model can also be used for the 

calculations of other parameters and· the discussion concerned can 

be seen in section V. In next section, PIT-models are developed. 
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III. THE BASIC MODEL OF GERT-SD 

A. The mathematical model 

Consider a GERT-E network with N nodes and let the probability that 

node j 11<j<Nl is realized at times n be Pj(n) and he expected 

time experienced, correspondently, be Tj(n). Here ,by the time n we 

mean the end of the nth transition (activity) of a network system. 

Thus we have stochastic arrays CPj(n)} and CTj(n)}. A simulatio11 

method for them will be proposed. 

Our basic assumption is that CPj<nll is the stationary distribution 

of the markov process CXjlnll, in which Xj<nl is the random variable 

determined by whether node j is realized at the time n, i.e. 

Pj<nl = L Pii11-1>·Pij 
i 

<1{i,j~Nl ( 5) 

in which Pij is the probability that activity i-j will be realized, 

given that node i is reaiized. we shall call it the "transition 

probability". The initial co:nditio11 of (5) 

N 
L Pj(O) =1 
i=1 

is 

( 6) 

According to above assumption and the definition of Tj<n>, it can 

be derived that 

Tj(:nl = L [Tj<n-1l·Pij + Pi(n-1>·Tij PijJ 
i =1 

(1~i,j.(Nl ( 7) 

in which Tij is the expected time required to complete the activity 

i- j . ( 7) 's in it 1 a 1 c 011d it ion is 

Tj<O> = 0 ( 8) 

(5) and (6) is the mathematical model regarding CPj(n)) and CTj(nl). 
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From Eq.C5lNC8l, the following conclusion can be proved (Sun, 19851 

if a terminal nodeS is chosen as an absorbing node, i.e. let Pss=1, 

when the network system, as a Markov process, reaches its steady 

state, we have 

Ps<+oo) = Ps ( 9) 

and Ts < + 00) = Ts <10) 

i:t1 which Ps(+!)O) and Ts<+oo) are respectively the steady values of 

Ps<n> and TjCnl, and Ps and Ts respectively the probability and the 

expected time of the node S being realized. 

B. The SD Description of the mathematical model: PIT-Models 

Since the "transitio11 probabilities" from :node i (1~i~N) to all its 

succeeding nodes must satisfy the conditio:n 

L Pij = 1 
j 

C 1.0, j~N > ( 11) 

as far as a GERT-E network coricerned. In the light of the property, 

equations (5) and <7> can be changed respectively i:nto the forms 

Pj<:n>=Pj<n-1)+ 1: Pi<n-11Pij- L: Pj(n-11Pjk (12.) 
iC~jl kC~j) 

and 

Tj<n>=Tj(n-1)+ L Ti<n-1>Pij- L Tj<n-i>Pjk+ L Pil11-11TijPij 
i(~j) k(~j) i 

<13) 

In a SD model the general equation of level Lj is 

Lj.K=Lj.J + DT*[ 1: RINij.JK - i: ROUTjk.JKJ ( 14) 
i(~j) kC~jl 

Comparing <12.> and (13) with (14>, we set up the cou:nterparts as 
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indicated in Table 1. 

TABLE 1 

1(141: K : J lLj.K : Lj.J RINij.JK : ROUTjk.JKlDT: 
:----:---:---:-----:-------:------------------------:--------------: 
: <12): n :n-1:Pj(n) lPj<n-11: Pi <n-1>Pij lPj<n-11Pjkl 1 : 
:----:---:---:-----:-------:----------:-------------:--------------: 
: (131: n ln-1:Tj(n) lTj(n-11 lTi<n-11PijlPi<n-11TijPijlTj<n-11Pjk: 1 : 

The SD description of Eq.<121 is 

L Pj.k=Pj.J+DT*[ 2: PRij.JK- l: PRjk.JKJ (15) 
i(*i_j) k(~j) 

in which, R equations of PRij and PRjk are 

R PRij.KL = Pi.K * Pij (16) 

R PRjk.KL = Pj.K * Pjk <171 

Eq.<151 is the general form of level equations of P-model. Eq.(161 

and (171 mean that the inflows and outflows of levels are linear 

functions of the levels from which they originate. DT=1 implys one 

transition in Markov processes is equivalent to one pace of 

simulation in SD models. 

The SD description of 113) is 

L Tj.k=Tj.J + DT*EDRj.JK+2: TRij.JK-~ TRjk.JKJ (18) 
i(~j) k(='lj) 

in which,R equations of DRj, TRij and TRjk are 

R DRj. KL = L: Pi<n-1l*Tij*Pij ( 19) 
i 

R TRij.KL= Ti(n-1l*Pij (20) 

R TRjk.KL= Tj<n-11*Pjk (21) 

<18>N<211 are the basic equations ofT-model. The meaning of DT is 

the same as in the case of P-model and inflows and outflows are also 

the linear functions of the levels from which they are released. 

What is different from <15) is that Eq.(191 has an inflow DRj while 
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there is not such a counterpart in Eq.(15), which is resulting from 

the fact that it takes time to transit from one node to another. 

From Eq.C19), DRj is the linear combinations of probability levels 

of the nodes preceding node j; 

a source. 

C. Conversion Steps 

it is diagramed as an inflow from 

Figure 3N4 gives an example of conversions from GERT to SD. No~ 

Fig.3 Original Fig.4 Equivalent 

let's state the basic rules of convrersions from GERT to SD. 

(i) Each node j in a GERT network is correspondent to two levels, 

Pj and Tj; 

Cii) Each receiving branch of node j forms an inflow and each 

releasing branch forms a outflow; the inflows or outflows are 

all the linear functions of the levels from which they 

originate and the proportional constants are the transition 

probabilities of the correspondent activities; the general 

forms of them are C16)N(17) and C20)NC21). 

(iii) Each receiving branch produces an additional inflow DRj, 

which is the linear combination of the probability levels 

of the nodes preceding node j, and the general form of which 

is 119). 
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Civ) DT=1. The simulation LENGTH is dependent on the stracture of 

the network under consideration; its determination method 

will be presented in next section. 

IV.THE DETERMINATION OF SIMULATION LENGTH 

When feedback loops or self loops exist in a network, the 

simulation error is inevitable. However, so long as simulation 

LENGTH is long enough, error can be controlled in the permitted 

range. The method of determining LENGTH is given as follows. 

A. The case' of no feedback or self loop 

In this case there are finite paths from an origin to any terminal, 

so it is possible to obtain the exact answer. Suppose that there 

are r paths and they include N1, NZ, ... , Nr activities 

respectively, then 

LENGTH= Nmax =MAX CN1, NZ, ... , Nrl ( 13) 

B. The case of feedback or self loop 

It is clear that the probability levels of all terminal nodes must 

be 1 and any probability level of other nodes be 0 in the steady 

state of the network system being modelled. Thus the sum of 

probability levels of all non-terminal nodes when stopping 

simulation is a measure of the system deviating from its steady 

state. By controlling the deviation, we can obtain the relative 

accuracy of the outcomes associated with the system. It is owing to 

the existance of feedback/self loop that the probability levels of 

some nodes are not zero. Therefore, LENGTH in the case should be 

Nmax determined by Eq.C13) as if all feedback/self loops did not 
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exist, plus the number of transitions, Nf, required to ensure that 

the total error resulting from all feedback/self loops is not 

beyond the given range, i.e. 

LENGTH = Nmax + Nf (14) 

Suppose there are m feedback nodes(a feedback node is the node in 

which a feedback or self loop is formed) and the permitted error 

of probability 1s 4P 1 then .the average permitted error of each 

feedback node is 

APe = ,Ap/m (15) 

Consider a feedback node* i and let the sum of probabilities of its 

feedback/self branches is Pi, then the condition to be satisfied is 

the numlter of tra.nsi tiona 

Ni ~ fi [Log (APol + 1 J 
pi 

( 16) 

in which, fi is the maxist of the numbers of branches of feedback 

loops originated from i, and in the case of self loops, fi = 1. Thus 

Nf = max{ Ni l = maxlfi [Log <APol+1J ( 17) 
i i pi 

Now, LENGTH can be determined from Eq.<17l, (13l and (14). For 

the convenience of application, Table 2 gives Ni evaluated at 

different APe and Pi when fi=1<correspondent to the case of self 

loops). If the values of APe or Pi faced are not in the list 

enumerated, Ni should be chosen from the table valves whose APo 

and Pi are respectively less and greater than the faced 4Po and 

Pi. 
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TABLE 2 
(fi=1) 

--------------------------------------------------------------
Ni Pi l 

: Po 0 . 1 0 : 0 . 1 5 : 0 . 20 : 0 . 2 5 : 0 . 3 0 : 0 . 3 5 : 0 . 4 0 : 0 . 4 5 : 0 . 50 : 
:-------:-----:-----:-----:-----:-----:-----:-----:-----:-----: 
:0.01 3 4 4 5 5 6 6 7 7 
!-------:-----:-----:-----:-----:-----:-----:-----:-----:-----: 
:0.001 4 5 6 6 7 8 9 10 11 
:-------:-----:-----:---~-:-----:-----:-----:-----:-----:-----: 
:0.0001 5 6 7 8 9 10 12 12. 15 
:-------:-----:-----:-----:-----:-----:-----:-----:-----:-----: 
:0.00001: 6 8 9 10 11 12 14 16 1B 

V.OTHER FUNCTIONS OF THE PIT MODELS 

The function of PIT-models is not limited to the calculation of 

Ps and Es. It can be for computions of other parameters.Now let's 

give a brief introduction. 

A.The Variance of Time Distribution 

Review (3) and (4) and it is clear that the expression of the 

variance of time distribution is similar to that of the expected 

time in structure. If we replace Pij wit6 Pij in P-model and Tij 

"' with <1Jj in T-model, the steady time level of the termi11al node 

is the variance of the time distribution. 

B.Other attibutes 

The attibute parameters with activities of a GERT network, except 

time, may be cost, power and other resources. Since the computing 

method of these attibutes is the same as that of time, the 

PIT-models an be used to treat them. The operation concerned is to 

input the parameter of each activity under consideration to the 
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correspondent variable Tij in T-model and rerun the basic model. 

The steady level of a terminal is the expected value of that 

parameter. The above-mentioned method of computing time variance 

is also suitable to other attibutes. 

C. The Expected Number of executions 

In the analysis of GERT networks, it is of interest to know the 

expected number of executions of a given node, branch(activityl 

or portion of the graph, because the expected number of executions 

of a given element represents the extent to which the element is 

critical in the network. Now we will say that the basic model of 

GERT-SD is also useful in this respect. The operation concerned 

is to assign 1 to the variable Tij associated with a give11 branch 

and 0 to all other Tij in the network if the branch is concerned; 

or 1 to Tij of the receiving branches of a given node and 0 to 

all other Tij if the node concerned; or 1 to 

a given portion of the network and 0 to all 

Tij of branches of 

other Tij if the 

portion of the network concerned, and then run the basic model. As 

a result, the steady levels of the terminal node output answers. 

VI. EVALUATIONS OF GERT-SD AND DISCUSSION 

Except the GERT-SD d~veloped in the paper, two types of solution 

to GERT networks, i.e. the analytic solution and GERT simulation 

IGERTsl exist. The analytic solution is concerned with too much 

mathematics, such as Moment Generating Funtion and SFG theory, so 

that it is not ~asy for unsophisticated managers to accept. When 

GERT-SD is used , however, the SD description associated with each 
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node or branch of a network is regular and the regulation is simple 

in mathematics. Importantly, DYNAMO used by the method is easy to 

grasp and, in fact, only a part of functions of DYNAMO are 

concerned. Moreover, sensitivity analysis of parameters becomes 

easier than the case of analytic method because of the function 

RERUN of DYNAMO. 

Compared with GERTs, GERT-SD method saves much computer time in 

simulation. This is because GERTs is a random simulation approach 

based on the time-consuming Monte Carlo techniques, whereas 

GERT-SD is a deterministic modelling and can output statistic 

outcomes through a single time of simulation. An example<Sun, 1985) 

shows that the computer time consumed by GERT-SD is only 1/53 

that by GERTs. This advantage is especially clear in sensitivity 

analysis of parameters. 

There is one point to be argued. It seems that the SD 

flowgraphs of complex networks will become so complicated that the 

diagraming of the SD flowgraphs is almost impossible. Our argument 

is that it is not always necessary to a skilled user to illustrated 

the SD flowfraph because of the regulation of conversion rules of 

GERT to SD. Another approach to release the point is to compile 

a general program in line with the principles of GERT-SD and, 

fortunately,such a program had been written with FORTRAN<Sun,1985>. 

VII. SUMMARY 

GERT and SD are two methodologies evolved out of different 

philosophies to treat seemingly different classes of problems. 
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The equivalence between them has inaugurated new and fertile 

horizons in both fields. GERT-SD will increase the potentialities 

of GERT due to its advantages over other existing solutions. 

Conversely, the applications of GERT-SD to practical problems can 

strengthen the position of SD as a management science tool. 

Moreover, since a GERT-E network can be transformed into a Signal 

Flowgraph as indicated in the introduction of the paper, the 

equivalence of GERT-E to SD makes a similar relationship between 

SFGs and SD expected. 
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