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In order to examine different strategies in the search for more resistant 
bacterial cultures, we have simulated a variety of growth, mutation, 
competition and selection processes that may arise in interacting populations 
of bacteria and phages. Our model considers a culture containing several 
variants of the same bacterium, each sensitive to attacks from a specific 
phage. The culture is growing in a chemostat with a continuous supply of 
nutrients. Surplus bacteria and vira are removed through dilution. Depending 
on the rate of dilution, the model exhibits a stable equilibrium, self-sustained 
oscillations, quasi-periodic behavior, deterministic chaos, or extinction of 
certain species. The model can also be used to describe evolutionary changes in 
the composition of the microbiological system. 

Introduction 

Interacting populations of bacteria and phages (i.e., vira) play an important role in many 
microbiological applications. The homogeneous bacterial cultures used in modern cheese 
production, for instance, are often quite sensitive to attacks from phages, and considerable 
efforts are invested into the search for more resistant cultures. As a means to evaluate 
different strategies for this search, we have developed a model which can be used to 
simulate a variety of different processes that may arise in interacting populations of 
bacteria and phages. 

The model considers a population containing several variants of the same bacterium, each 
being sensitive to attacks from particular phages. In such an attack, the phage will adsorb 
to the bacterial surface and attempt to transfer its DNA into the cell. This can lead to (i) 
a lytic response in which the virus programs the bacterial cell to replicate the phage 
DNA, (ii) a lysogenic response in which the viral DNA is inserted into the bacterial DNA 
with the result that the cell becomes partly resistant to new attacks, or (iii) a lethal 
response in which the bacterial cell is killed before additional vira can be produced. It is 
also possible that the attack can fail, the penetrating phage being destroyed by the 
bacterial restriction enzymes, or that the cell spontaneously mutates into a cell with a 
different resistance. Under stress, a lysogenic bacterium may again release its viral DNA, 
providing in this way for the possibility of a renewed infection. 

To enable us to study evolutionary processes, we have adapted the general modeling 
framework proposed, for instance, by Bruckner, Ebeling and Scharnhorst (1989). In this 
framework one considers an enumerable set of fields (populations) each characterized by 
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the properties of its occupying elements (individuals). Within and between these fields a 
variety of processes can take place, including spontaneous generation, self-reproduction, 
error production, death of elements, and transitions from one field to another. Mutation 
represents an example of a process by which individuals of one population are transformed 
into individuals of another population. Infection, by which an individual is transferred 
from exposed to infectious, is another example. 

Since the first occupation of a new field necessarily starts with very few individuals, a 
discrete, stochastic approach is needed to simulate evolutionary dynamics. A similar 
approach is also appropriate for many epidemic problems where an infection may start by 
the random contamination of a single individual. However, the transition probabilities 
associated with the various processes need not be linear. Processes that involve 
individuals from two different populations typically contain bi-linear terms, and higher 
order terms may become significant in the presence of heavily populated fields. The 
presence of such terms allows the systems to exhibit highly nonlinear dynamic phenomena 
such as multistability, self-sustained oscillations, quasi-periodic behavior, deterministic 
chaos, and simultaneously existing periodic or chaotic orbits. 

Deterministic chaos and other highly nonlinear dynamic phenomena have previously been 
reported for a variety of different predator-prey models. Of particular interest to the 
present study are investigations of complex dynamic phenomena in the interaction 
between HIV and the immune system (Anderson and May, 1989), and studies of chaos in 
models of childhood diseases'(Olsen, Truty and Schaffer, 1988). Compared with previous 
work on bacterium-phage interactions (Levin 1986 and 1988), our model distinguishes 
itself by considering a more complex situation involving several variants of the same 
bacterium. At the same time we combine the stochastic description of fields with few 
elements with the nearly deterministic description of heavily populated fields. 

The Simple Model 

In the first version of our model we consider a bacterial population consisting of two 
variants: unmodified bacteria which are relatively sensitive to phage attacks, and 
modified bacteria for which the infection probability is many times as small. The modified 
bacteria are assumed to be produced by mutation of unmodified cells, and the reverse 
process in which modified cells lose their resistance to phage attacks is also accounted for. 
This is illustrated in the flow diagram of figure 1. Except for such reverse mutations, the 
modification is inherited by daughter cells. The reproduction rates for the two types of 
bacteria are taken to be 0.05/min and 0.047 /min, respectively. This implies that the 
resistance to phage attacks is "payed for" by a slightly slower rate of reproduction. 

The culture is assumed to grow in a chemostat with a continuous supply of nutrients. 
With increasing bacterial populations, the growth rates are reduced because of decreasing 
resource availability. This decrease is described by a logistic growth correction which is 
assumed to depend on the total bacterial population. In addition there is a continuous 
wash out of bacteria by dilution. In the absence of vira, the population of unmodified 
bacteria will therefore outgrow and suppress the population of modified cells, and a stable 
equilibrium exists in which the population of unmodified bacteria is controlled by the 
supply of nutrients and the rate of dilution. 

From time to time, a virus particle may enter the system. If the virus succeeds in 
infecting a bacterial cell, it will program the cell to reproduce the viral DNA. This leads 
to a rapid multiplication while at the same time the cell is depleted of some of its 
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Figure 1. In its simplest form, our model considers a population consisting of 
two variants of the same bacterium: unmodified cells which have the 
advantage of a faster reproduction rate, and modified cells which are 
significantly less sensitive to phage attacks. There is a small probability that 
a viral DNA- molecule penetrates the restriction system of a modified cell. 
This will give rise to the reproduction of modified vira that can infect other 
modified cells. 

essential compounds. At the end the cell disintegrates (lyses), and a burst of vira is 
liberated. The burst size {3 is typically of the order of 100. If, on the other hand, the cell is 
resistant to the viral attack, it will destroy the intruding DNA by means of its 
restriction/modification system. This involves the combined action of modification 
enzymes that encode all DNA molecules produced by the cell, and restriction enzymes 
that destroy uncoded DNA. 

In a few cases, a virus particle may succeed in penetrating the restriction system and 
infecting a modified bacterial cell. The new vira which are produced in this way will be 
encoded in accordance with the modification system of the cell. As a result these vira can 
infect other modified cells. Of course, a modified virus can also infect an unmodified cell. 
However, the vira produced in such a process have lost their modification. 

To allow us to describe processes in which very few individuals are involved, the model 
equations are formulated in terms of discrete, stochastic transitions. At the same time, we 
have adopted a generic representation which allows us to describe many different 
problems, depending upon the choice of parameters. Thus, the bacterial populations are 
represented by a vector POP i' with i = 1, 2--- n identifying the particular variant. 

Similarly, the populations of phages are represented by the vector PHA l where j = 1, 2 -

-- k may encompass a large number of different species. In the present case i = j = 1 for 
unmodified bacteria and vira, and i = j = 2 for modified bacteria and vira, respectively. 

The lytic reaction in which a phage of type j infects a cell of type i to produce {3 new vira 
of type i may be represented as 
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where, as previously noted, /3 is the burst size. Assuming that the chemostat is effectively 
stirred such that the populations are homogeneously distributed over the available 
volume, the intensity of the above process may be expressed as 

w1 t. = a .. x POP. x PHA , 
y ZC ZJ Z J 

Here, the rate constants 

Bu = B12 = B22 = 2 ·I0-7 /min 

for unrestricted lytic response, and 

B21 = 5 ·I0-11 /min 

for the infection of a modified cell by an unmodified virus. This implies that a modified 
cell is 4000 times as resistant as an unmodified cell towards attacks from unmodified vira. 

The parameters B ij may be considered the basic rate constants of the model relative to 

which many of the other rate constants are scaled. The actual magnitudes of B ij primarily 

depend upon the diffusion constants for the vira and upon the probabilities that a phage 
adsorbs to a cell. This probability again depends upon the density of specific receptors on 
the cell surface. · 

Destruction of vira by resistant bacteria is expressed by 

POP., PHA .---+POP., PHA .-1. 
z J z J 

The intensity of this process is 

wd t t. = c .. x POP. x PHA . es rue zon ZJ z J 

with 

c21 = 2 ·10-7 /min 

for attacks of unmodified vira on modified bacteria. In the other cases where the cell has 
no particular resistance towards the intruding vira we have taken 

Cu = C12 = C22 = IO-Sjmin. 

Thus, in these cases, about 5% of the vira are destructed. 

Mutation processes are expressed by 

POP., POP .---1 POP .-1, POP·+ 1. 
z J z J 

The intensity is here 
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W tt· =M .. xPOP. mu a zon ZJ z 

with M12 ~ M21 = 5 ·10-4 /min. This implies that approximately 1% of all bacterial 
reproductions leads to a mutation. 

The resource limited bacterial growth processes are described by 

POP.-+ POP.+ 1 z z 

with 

W th =A .x POP .x [1-~.POP. /POPM]. grow J J z z 

As previously noted, the rate constants are taken to be A1 = 0.050/min and A2 = 
0.047 /min, respectively. In the simulations to be presented here we have taken POPM = 
3000. Thus, due to limited resources, the total bacterial population ~iPOP i is restricted 

to 3000 cells. Because of the simultaneous removal of cells through dilution, the actual 
bacterial population will not attain this value. 

The dilution process is described by 

POP.-+ POP .-1 z z 

with the intensities 

w z= POP. x DFLOW remova z 

or 

W removal= PHAj x DFLOW. 

Here, DFLOW is a control parameter which is varied from simulation to simulation. A 
typical value is DFLOW = 0.02/min, corresponding to a time of occupancy in the 
chemostat of 50 min. The bacterial growth rates of 0.05 and 0.04 7 /min correspond to 
doubling times of the order of 30 min. 

Finally, the spontaneous contamination of the chemostat by unmodified vira is expressed 
by 

PHA .-+ PHA ·+ 1 
J J 

with 

W spontaneous = G j 

Here, G1 = 0.1/min, and G2 = 0. 

The various processes occur with vastly different intensities and also with intensities that 
vary orders of magnitude over time. Reproduction of bacterial cells and replication of vira 
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in lytic reactions thus occur at much higher rates than the processes by which bacteria 
and vira are modified. To attain a reasonable dynamic range in the stochastic model, we 
have represented the various transition rates as Poisson processes. This implies that the 
probability that k transitions of a given type will take place during the time increment 
DT is given by 

with W being one of the above calculated intensities. In this way we can simulate the 
model with significantly larger DT than it would otherwise be possible. For very fast 
processes we have replaced the Poisson distribution by a normal distribution with the 
appropriate mean and variance. 

Simulation Results 

Our simulations with the simple 2 x 2 population model were all performed with similar 
initial conditions. We start with 5 unmodified bacterial cells and 0 modified cells. The 
initial population of unmodified vira is assumed to be 105 minx DFLOW. For DFLOW = 
0.040/min, this corresponds to a viral population of 4000 particles. In addition there is a 
random contamination of the chemostat corresponding to an average inflow of 0.1 
unmodified virus per minute. The simulation period is 10,000 min, or approximately 1 
week. 

Figure 2 shows the results obtained for a dilution rate of DFLOW = 0.040/min. This 
corresponds to an average time of occupancy for cells and vira in the chemostat of 25 min. 
With this relatively high rate of dilution, the presence of vira has little significance. As a 
consequence of their higher rate of reproduction, the unmodified bacteria outgrow the 
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Figure 2. With a rate of dilution of DFLOW = 0.040/min, the viral 
populations are suppressed, and the population of unmodified cells dominates. 
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population of modified cells to reach a stable saturation level of approximately 1700 cells. 
By mutation, a population of approximately 200 modified cells is maintained. The initial 
population of unmodified phages is almost completely washed out, before a significant 
bacterial population is established. From time to time, minor epidemics of attacks by 
unmodified vira break out. These epidemics never develop into anything significant, 
however, and they rapidly die out again. 

A somewhat lower rate of dilution allows the phages to establish a major attack on the 
population of unmodified bacteria. This is illustrated in figure 3 for DFLOW = 
0.030/min. The reduction in the population of unmodified bacteria brought about by the 
infection gives a better chance to the modified bacteria. On the other hand, the growth of 
this population curbs the viral infection, and the population of unmodified bacteria soon 
reassumes its dominance. Somewhat later, a new infection occurs. The bacterial 
population is still stable against viral infections, however, and these infections occur as a 
purely stochastic phenomenon, since very few viral particles are present in the 
intermediate periods. 
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Figure 3. With a somewhat lower rate of dilution (DFLOW = 0.030/min), the 
phages can establish major attacks on the population of unmodified cells. The 
bacterial population is still stable against viral infections. 

With further reduction in the rate of dilution, the phage attacks become more severe, 
and also more regular. This is illustrated in figure 4 where DFLOW = 0.0225/min. Viral 
populations of the order of 50- 100,000 particles are now attained in the infections. Each 
time, however, the growth of the population of modified bacteria brought about by the 
infection kills off the vira, and one can envisage that the system will develop a regular 
oscillatory mode with a period of the order of 3000 min. This period is controlled mainly 
by the time it takes for the population of unmodified bacteria to recover after an 
infection, i.e., by the time it takes the bacterial population to forget the resistance 
developed during the infection. 
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Figure 4. With DFLOW = 0.0225/min, the infections become more severe but 
also more regular in their appearance. Each time, however, the induced shift in 
the composition of the bacterial population brings the infection to an end. 

If the rate of dilution is further reduced, a qualitative shift in the behavior of the model 
tends to occur as modified vira now appear in the system. Hereafter, the cells are no 
longer capable of killing off the phages, and a predator-prey relation between modified 
vira and modified bacteria develops. The appearance of modified vira is conditioned by 
the simultaneous existance of large populations of unmodified vira and of modified 
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Figure 5. With DFLOW = 0.0215/min, modified vira tend to appear in the 
system. Hereafter, the cells are no longer capable of killing off the phages, and 
an oscillatory predator-prey relation between modified vira and modified 
bacteria develops. 
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bacteria. In figure 5, where DFLOW = 0.0215/min, modified vira emerge during the 
second infection, i.e. at about time 3000 min. From then on, the system enters a 
self-sustained oscillatory behavior with a period of approximately 200 min. It is 
interesting to note that the two bacterial populations vary in phase, and that the same is 
true for the two viral populations. However, the populations of unmodified bacteria and 
vir a remain low. 

If DFLOW is further reduced, modified vira emerge even earlier. This is illustrated in 
figure 6 for DFLOW = 0.015/min. At the same time, the intensity of the oscillations 
between modified bacteria and vira becomes higher, and the oscillations become more 
regular. The period of these oscillations also increases slightly. With a rate of dilution as 
low as 0.007 /min, the population of modified vira becomes strong enough to kill off the 
bacterial population (see figure 7). Thereafter, the vira can no longer multiply, and the 
viral population is soon washed out of the chemostat. 

400000 

UJ 
<Ll 

g'200000 
...c 
0.. 

.~ 2000 
1-
<l.l ...., 
u 
0 

..0 

2000 

0 2000 

DFL0Wz0.015 

4000 6000 8000 10000 

4000 6000 8000 10000 

time (min) 

Figure 6. With DFLOW = 0.015/min, modified vira emerge already in the 
first infection, and the oscillatory behavior associated with the interaction 
between modified vira and modified cells becomes more intense. 

For comparison with the above simulations which were performed with a continous 
dilution, figure 8 shows the results of a simulation in which a small sample (2%) of the 
existing culture is taken every 400 min and allowed to regrow in an otherwise 
uncontaminated chemostat. This resembles the manner in which bacterial cultures as 
applied, for instance, in cheese production have been maintained for decades or maybe 
even centuries. In the simulation shown in figure 8, modified vira never emerge, and we 
see a modulation of the composition of the bacterial population in response to more or less 
random viral infections. Due to the stochasticity involved, with the same basic 
parameters other simulations may result in the development of modified vira, yielding a 
completely different behavior of the system. 
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Figure 7. With DFLOW = 0.007 /min, the population of modified vira 
becomes strong enough to kill of{ the bacterial populations. Hereafter, the vir a 
can no longer replicate, and they too, soon disappear. 
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Figure 8. In this simulation, a small sample of 2% of the culture is taken out 
every 400 min and allowed to grow in another chemostat. Observe the 
modulation in the composition of the bacterial population in response to viral 
infections. 

Discussion 

As illustrated by the above simulations, the rate of dilution is a significant control 
parameter which shifts the balance between vira and bacteria. From a physical point of 
view, dilution is a source of dissipation in the system, and low rates of dilution therefore 
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predispose the system for unstable behavior. 

At high dilution rates, the vira are effectively suppressed, and unmodified bacteria 
dominate. At lower dilution rates, the virus population becomes strong enough to disturb 
the competition between rapidly growing, relatively sensitive cells and the less rapidly 
reproducing, modified bacteria. In a certain range of parameters, the presence of vira thus 
increases the diversity of the bacterial population. Besides the rate of dilution, other 
significant control parameters are the bacterial growth rates, the supply of substrate, the 
burst size, the adsorption rate of vira to the cell surface, the mutation rates, and the 
probability that an unmodified virus can penetrate the restriction system of a modified 
cell. 

We have also performed a series of simulations with a slightly different model in which 
three variants of the same bacterium are considered. Each variant is assumed to be 
sensitive to a particular phage and resistant to the phages which attack the other 
variants. In this model we have accounted for the replication delay associated with a lytic 
response. On the other hand, mutation between the 3 bacterial variants is neglected.:. 
Finally, the supply of nutrients has been increased, and saturation now occurs at 
populations of the order of 106 cells. Thus, in practice the model is deterministic. 

The behavior of this 3 x 3 system is very similar to the simple migration model considered 
by Sturis and Mosekilde {1988). If a particular bacterial variant happens to become more 
frequent than the others, and if the growth rates are similar, this variant will outgrow and 
start to suppress the others. However, this makes the population more sensitive to 
infections by the phage which attacks the predominant variant. As a result, a significant 
reduction of this population may occur, and another variant may start to dominate. This 
cyclic behavior may produce a self-sustained oscillation between the bacterial variants. 
With sufficient symmetry, the system will show two coexisting solutions: one which 
rotates between the variants in the order 1-+2-+3, and one which rotates in the opposite 
direction 1-+3-+2. The solution that the system will choose in a given situation depends 
upon the initial conditions. It is interesting to note, however, that the boundary between 
those initial conditions which give one solution and those which lead to the other is likely 
to be fractal. Thus, the behavior of the system is extremely sensitive to the initial 
conditions. 

Figure 9 shows the phase plots of two such coexisting periodic solutions. As a control 
parameter is changed, the system passes through a series of qualitative changes by which 
various quasi-periodic and periodic solutions are produced. In certain parameter ranges, 
coexisting with the periodic or quasi-periodic solutions one also finds chaotic solutions. 
This type of solution is illustrated in the phase plot of figure 10 which was obtained with 
the same parameter values as figure 9, only with a different set of initial conditions. 

By virtue of the positive feedback associated with reproduction processes, because of the 
time lags associated with incubation and maturation delays, and because of the nonlinear 
interaction terms, population dynamics involving more than a few species is almost bound 
to produce complex modes of behavior. As illustrated by the above simulations, even a 
system with only 3 bacterial and 3 viral populations can produce almost any kind of 
complex behavior, including coexisting periodic and chaotic solutions. 

Because of their short generation times, microbiological systems lend themselves very 
directly to studies of these types of behavior. Such systems can also be prepared in a 
variety of well-controlled conditions. The selective pressure provided by the presence of 
vira plays an important role for the evolutions of new bacterial variants. This evolution 
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again influences the direction in which new vira develop. Interacting populations of vira 
and bacteria are therefore also a natural subject for studies of evolutionary dynamics. 
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Figure 9. A model with three bacterial variants each sensitive to a particular 
phage can produce coexisting self--.sustained oscillations. Which of the two 
solutions a or b the system chooses depends upon the initial conditions in an 
extremely critical manner. 
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Figure 10. Phase plot of a chaotic solution which exists for the same parameter 
values as the periodic solutions in figure 9. 
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