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ABSTRACT 

Inventories of finished goods are added to the static input-output model. This addition allows one 
to relax the assumption that production can instantaneously track incoming orders. The 
reformulated input-output model exhibits production-inventory cycles over a wide range of 
parameter constellations. The model can be used for an extensive dynamic analysis of short-term 
production-inventory fluctuations in different sectors of the economy. In particular, it can be 
utilized to understand the extent to which each sector's fluctuations are synchronized and dependent 
on the fluctuations in the other sectors. 

The cause for the potentially oscillatory behavior of the model is analyzed. It is shown that the main 
reason for the oscillations lies in the assumption that the actors in the model do not know why 
orders are issued. They cannot distinguish whether incoming orders are issued because the 
recipients want to adjust their inventories or whether they are issued because the recipients have 
changed their long-term production plans. This result points out that one dimension of a successful 
stabilization policy might be an improved information policy. It is suggested that an extension of 
the model could be used to explain the production-inventory fluctuations during business cycles 
and to achieve a more detailed understanding of the behavior of different sectors during such 
cycles. 

INTRODUCTION 

The analyses of dynamic effects in input-output models has proceeded in two main directions. 
First, there is the analysis of what have become known as "dynamic input-output models". In this 
line of research the introduction of capacity, and thus growth is the focus of analysis (Leontief 
1953). A thorough discussion of the assumptions of dynamic input-output models is provided in 
Dorfman(1958). Second, there is the analysis of what can be described as multiplier dynamics. 
Authors in this line of research showed, how the input-output matiix can be used to compute 
disaggregated Keynesian multipliers and investigated the conditions that must hold for the 
input-output matrix to lead to a stable dynamics (Goodwin 1947, Goodwin 1949, Chipman 1950, 
Metzler 1950, Solow 1952). The research presented in this paper focuses on short-term dynamics 
and is more closely related to the latter type of models, since it does not deal with aspects of 
growth. 

Most of the input-output multiplier models consider flows only and do not deal with the dynamics 
caused by the introduction of stocks and stock adjustment policies. It was Metzler(1941, 1947) 
who first stressed the importance of inventories for understanding production fluctuations. 
Subsequent studies (Abramovitz 1950, Holt 1960, Mack 1967, Belsley 1969, Hirsch 1969) have 
added to our understanding of the importance of inventories and of the way companies ad just their 
inventories. 
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There have been only a few attempts to combine input-output models with inventory models 
(Romanoff 1985). In this paper I show how finished-goods inventories and inventory adjustment 
policies can be added to the input-output multiplier models. The resulting model increases 
significantly the range of questions that can be analyzed. In addition to the traditional computation 
of equilibrium behavior it is now possible to address the important question of short-term 
dynamics. The model exhibits production - inventory cycles over a wide range of parameter 
constellations. The model can be used to understand the cause of those fluctuations and be used to 
analyze how the fluctuations in one sector depend on the policies of the affected sector and also on 
the policies of all other sectors in the economy. 

It is the dynamic hypothesis of this paper that the existence of finished-goods inventories and 
inventory adjustment policies can be central in causing production fluctuations. It is well known 
that the introduction of delays increases the potential of a system to show oscillations and/or 
instability. To demonstrate the importance of finished-goods inventories for production-fluctuation, 
the paper retains the equilibrium-flow character of the original input-output model to a maximum 
extent and does not introduce any additional delays. In particular, shipments take no time and 
orders are filled instantanously. Thus, companies do not need to hold any inventories of 
intermediate goods.1 

MODEL DESCRIPTION 

The model retains all assumptions of a simple, open input-output model. A closed economy with n 
intermediate sectors and one final demand sector is considered. A linear production function with 
constant technology is assumed for each sector. There are no constraints on capacity. Prices are 
fixed. The only change made to the standard input-output model is the relaxation of the assumption 
that production and incoming orders have to be equal all the time. The provision of a temporary 
disequilibrium requires an introduction of finished inventories as a buffer between production and 
sales. It is assumed that the goods produced are manufactured to standard specifications, placed in 
stock, and shipped out on orders of customers.2 · 

In a model with finished inventories the production decision can be thought of as being separated 
into two parts. First, production provides an adjustment mechanism to meet incoming orders. 
Second, production provides an adjustment mechanism to close any gap between desired and actual 
inventory. Total production (x\) in the i-th sector then can be split into two parts: 

where x0 i denotes production due to order adjustments and xhi denotes production due to inventory 
adjustments. The assumptions made about the underlying mechanisms governing these two 
production adjustment processes have an important influence on model behavior. They are 
discussed in detail in the following sections. 

Determining a best possible rule for the value of x0 i is one of the central issues in production 
planning. The task is to find a rational way to react to the day-to-day changes in incoming orders. 
Changes in orders consist of permanent and transitory components. A production manager will 
tend to ignore temporary changes, but will have to react to permanent changes. The two 
components cannot be reliably separated, however. It takes time to gather information and to 
distinguish between temporary changes in orders and permanent changes. Permanent changes 
cannot be identified immediately. Rather, a gradual adjustment of beliefs about the permanent 
values of the order stream will occur. Following this reasoning, the production decision is modeled 
as an adaptive process. · 
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Using a differential equation and assuming a non-discriminatory adaption process with respect to 
the origin of orders, the adaption of production to orders for the i-th sector in ann-sector economy 
can be written as: 

In this equation, orderii denotes orders from sector j to sector i and yi denotes the final demand for 

the goods of the i-th sector. The policy parameter ui determines, how fast the sector adjusts 
production to incoming orders. A high adjustment speed implies that production closely tracks 
incoming orders. While a high adjustment speed has the advantage that production quickly will 
adjust to permanent changes in orders, it has the disadvantage that temporary changes in orders 
affect production to a large extent. As a consequence production will show much of the 
randomness of the incoming order stream. A low adjustment speed on the other side will lead to a 
much more stable production pattern. However, production will adjust only slowly to permanent 
changes in orders. The long-lasting gap between production and orders has to be buffered by the 
finished-goods inventory, making a large inventory necessary. 

Before the second component of total production, production due to inventory adjustments (x\) 
can be discussed, it is necessary to explain the assumptions made about the reasons for holding an 
inventory of finished goods. The decision about what amount of inventory to hold is based on a 
trade-off between the cost of inventory-holding and the costs that are associated with running short 
of inventory, being unable to deliver and probably loosing costumers. The higher sales are, the 
more inventory is needed to buffer unexpected temporary changes in orden.. In this paper I assume 
for simplicity that each plant manager tries to maintain a constant inventory I sales coverage. Such a 
goal might be specified as trying to maintain an average inventory of four weeks worth of sales, for 
example. 

If actual inventory is below desired inventory, production will be increased to make up for the gap. 
Vice versa, if actual inventory is higher than desired, production will be reduced. Let ci be the 

constant coverage factor in sector i. Since expected orders(= expected sales) are equal to x0 i, 

desired inventory can be expressed as (ci * x0 i).3 Let hi be the actual inventory of finished goods 

in sector i. The inventory gap is then computed as (ci * x0 i- hJ It is up to management policy to 
decide upon how any exisiting inventory discrepancy should be removed. For mathematical 
simplicity it is assumed that production due to inventory adjustment ( xhi ) is proportional to the 
inventory gap: 

(3) x\ =vi* (ci * x0 i- hi ) . 

Management has to decide upon the speed (vi), with which an inventory gap should be closed. 

Again management faces a trade-off. A high value for (vi) implies that inventory will deviate little 
from the desired inventory level but that at the same time production has to be very flexible to 
eliminate quickly any inventory discrepancies. A small value for (vi) on the other hand allows a 

stable production pattern but implies that any inventory discrepancy (and the stresses created by this 
situation) will last for a long time. 

Decisions concerning the three policy parameters ui (the speed with which to adjust the expectations 

about permanent orders), ci (the inventory I sales coverage), and vi (the speed with which to adjust 

any inventory discrepancies), cannot be made separately but depend on each other. For example, if 
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the company decides upon a high inventory - sales coverage ratio, it is in a position to allow a slow 
inventory adjustment speed, since it is not likely to run out of inventory. To determine the optimal 
values for the three parameters, the underlying cost assumptions and the assumptions about the 
statistical properties of the incoming order stream have to be made explicit. The values for the 
parameters are then found as the solution to the resulting optimal control problem. 

The remaining equation for orders and actual inventories are easily specified. Orders from sector j 
to sector i are dependent on total production in sector j (xti) and on the input coefficient aij· A 

time-invariant technology is assumed. 

Making use of (1) and substituting for xhi' the term can be written as: 

The inventory of finished goods is defined as the accumulation of production minus shipments. 
Since incoming orders are filled instantanously,4 shipments equal orders and the change in 
finished inventory can be written as: 

(5) (d/dt)h
1
. = xt. - 1:,. 1 (order .. ) - Y

1
· I J= .. n IJ 

Substituting (4b) into ~2) and into (5) yields the following two equations that completely describe 
the behavior of the i-th sector over time: 

(d/dt)x0
1· = -u.*x0

1· + u.*l:,. 1 (a .. *x0 J· + a .. *v.*c.*x0J·)- u.*l:,. 1 (a .. *v.*h.) + u.*y. 
I I J= .. n IJ IJ J J I J= .. n IJ J J I I 

(6) 

Figure 1 on the next page shows the stock-flow diagram for the model. 
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Figure I: Stock-flow diaoram 

Sector 1 

Vi 

MODEL ANALYSIS 

Define the following diagonal matrices for inventory coverage (C), speed of production adjustment 
to orders (U) and speed of inventory-gap adjustment (V) for ann-sector economy: 

I cl I ul I vl 

I 0 I 0 I 0 

c =. I ci u =I ui V= I vi 

I 0 I 0 I 0 

I en I un I vn 

Further, let A be the input coefficient matrix, X0 the vector of planned production due to incoming 
orders, H the vector of finished inventory in each sector andY the vector of final demand: 

all aln I X0
1 I I h1 I I Y1 I 

I. I I. I I· I 
A= aij xo = I X0i I H= I h; I y = I Yi I 

I . I 1- I I· I 
anl ann I xo n I I hn I I Yn I 
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The equation system (6) then can be written as: 

I (d/dt)X0 I I -U *(I- A- A*V*C) : -U*A*V I I X0 I I U I 
(7) I - - - - - - I = I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I I - - - I + I - - I * Y 

I (d/dt)H I I (I" A) * (I+ V*C) : -(I- A)* V I I H I I -I I 

Using Laplace transforms, the time-response of the system with respect to orders from final 
demand can be expressed as: 

(8a) 

or as: 

(8b) 

where 

I xo(s) I I s*I + U*(I- A- A*V*C) : U*A*V I (-1) I U I 
I - - - - I I -- ----------- -------- - ------- ------- - -- I 1-- I * Y(s) 
I H(s) I I -(I- A) * (I+ V*C) s*I +(I- A)*V I I -I I 

I xo(s) I I [na- nbnd<-llnc](-1) : -na(-l)nb [nd- ncnaH)nb](-1) I 
I - - - - I 
I H(s) I 

1----------------------------------------- I 
I -ndHlnc [na- nbndHlnc]<-tl : [ nd- ncn/tlnb]<-tl I 

na = s*I + U*(I- A- A*V*C) 

nb =- U*A*V 
~= (I-A)*(I+V*C) 

~ = s*I + (I- A)*V 

IU I 
I- - I * Y(s) 
I -I I , 

As shown in Appendix Ia, the resulting equilibrium (for all parameter constellations that lead to a 
stable adjustment path) is computed as: 

I xo (s->0) I I (I- A)<-tl I 
(9) I - - - - - - - I = I - - - - - - - - - - I * Y 

I H (s->0) I I C* (I- A)<-tl I . 

The result is as expected. The equilibrium value for production confirms the solution for the static 
input-output model, and inventory equals desired inventory in equilibrium. More interesting than 
the computation of equilibrium values, is an examination of the·disequilibrium properties of the 
system. While a comprehensive analysis of the transient and frequency response of the model is 
beyond the scope of this paper, an eigenvalue analysis of the system provides a good first insight 
into the dynamic response of the model. The 2*n eigenvalues of the model are computed by solving 
equation (10) with respect to s: 

(10) DET{ [s*I + U*(I-A-A*C*V)]*[s*I+(I-A)*V] + (I-A)*(I+V*C)*U*A*V} = 0 

Without solving explicitly, it can be seen that the behavior modes of production and finished 
inventory in one sector, depend on the input coefficients and the policy parameters in all other 
sectors. The system exhibits oscillations over a wide a range of parameter constellations and can be 
unstable. An example might be useful to illustrate the behavior of the system. I set n=2 and 
assumed for convenience identical production and inventory planning policies in each of the two 
sectors. I chose as parameter values: inventory coverage = 2 months of production, average 
adjustment time of inventory= 3 months and average time to adjust to orders= 2 months (c1=c2=2, 

v1= v2= 0.33, u1= u1= 0.5). I assumed a symmetric input-coefficient matrix with a11 = a12 = ~1 = 
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Fi&;ure 2a: Inventory and production in sector 1: 

1 h 1 2 xt1 3 xo1 4 y1 

i} 400.000 

il 300.000 

j} 200.000 

i} 100.000 

il 0.0 
0.0 20.000 40.000 60.000 80.000 

Figure 2b: Inventorv and production in sector 2: 

1 h2 
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1 

/ ~1-----1----1---1--1---
1 

~2~2~23--23---23----235----

20.000 40.000 80.000 
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az2 = 0.3. A system initially in equilibrium with h1= h2= 40, x\= xh2= 0, x\=x0
1= xt2=x0

2=100 

andy 1=y2=40 exhibits the behavior shown in Figures 2a and 2b in response to a sudden 20 unit 

increase in exogenous orders for sector 1 at time=5. 

Why does the system tend to oscillate? The underlying cause is an information problem. Production 
managers cannot tell whether an incoming order reflects changes in long - term demand patterns or 
whether an incoming order is issued "merely" because of inventory adjustments in other 
companies. Both types of orders occur simultaneously in response to a change in final-demand. 

First, as sector 1 gradually adjusts its belief about higher permanent orders in response to the 
increase in exogenous orders, production increases. Higher production in sector 1 implies higher 
orders for intermediate inputs to sector 2 and sector 1. By means of the well-known multiplier 
chain, both sectors adjust gradually their production in response to the higher final demand for 
sector 1 and to the increased need for intermediate inputs it implies. This change in production 
reflects a necessary adjustment to a long-lasting change in orders. 

Second, both sectors face an initial decline in inventories, since production lags behind the increase 
in sales. Production has to temporarily increase to close the gap between actual inventories and 
desired inventories. Again, the higher production implies higher orders for intermediate inputs. As 
both sectors adjust their production and desired inventory levels to the increased need for 
intermediate inputs, they do not take into account that all orders issued to accommodate an 
inventory adjustment can only be temporary. Once the inventory adjustment is complete, 
production due to inventory adjustment declines back to zero. This decline in production implies a 
decline in the need for intermediate inputs. Once it becomes apparent that the production level in 
both sectors is higher than justified by long-term demand, the economy faces a downturn and 
inventory and production eventually undershoot their long-term equilibrium values. As a response a 
new upturn begins etc. until the economy gradually swings into a new equilibrium. 

The assumption of incomplete information seems to reflect the real-world situation. In a 
hypothetical model world, however, it is possible to change this assumptions in order to test the 
hypothesis that it is indeed incomplete information that is at the base of the fluctuations. 

Assume that each order has a label attached to it, describing it either as an order issued to adjust 
inventories or as an order issued to meet long-lasting demand. Thus, total orders can be expressed 
as sum of long-lasting orders and of temporary orders (due to inventory adjustments) or: 

order\ = order0 ii + order\i , where 

orderDii = aii * x0i 

order\i = aii * xhi = aii * vi * (ci * x0i -hi ). 

Provided with the additional information, it is possible to make the expectations about permanent 
orders a function of long-lasting orders only. Disturbances created by short-run orders are no 
longer transmitted into the planning decisions, but are buffered by finished inventory. The changes 
of production in response to orders can now be formulated as: 

The equation for production due to inventory adjustments and the equation for inventory behavior 
remain unchanged. Thus: 
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Substituting for ordet'ii and order\j, respectively, yields the revised system description: 

(6*) 

Comparing (6*) with (6) shows that the expectation about long-lasting orders (x0i) is no longer 

influenced by the existence of temporary orders due to inventory-adjustments. In particular, (x0 i) is 
no longer dependent on the state of actual inventories in the n-sectors (hp .. ,hn). The system is now 
partially decoupled. 

0 

The new' equation system can be written as: 

I (d/dt)X0 I I -U * (I -A) : 0 I I xo I I U I 
(7*) I - - - - - - I = I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I I - - - I + I - - I * Y 

I (d/dt)H I I (I- A)* (I+ V*C) : -(I- A)* V I I H I I-I I 

Using Laplace transforms again, the time-response of the new system with respect to orders from 
final demand is expressed as: 

I X0 (s) I 
(8a*) I - - - - I 

I H(s) I 

or as: 

I X0 (s) I 
(8b*) I - - - - I 

I H(s) I 

where 

I s*I + U*(I- A) 0 I (-l) I U I 
I----------------------------------- -I I-- I* Y(s) 
I - (I- A) * (I+ V*C) : s*I + (I- A) * V I I-I I 

I ni1l 0 I IU i 

I --------------------- ---------------- -I 1-- I * Y(s) 
I - nd<-llnc na<-ll nd <-ll I I-I I , 

na = s*I + U*(I - A) 

nc = (I-A)*(I+ V*C) 

nd = s*I + (I- A)*V . 

Applying the Final Value Theorem again, yields that the equilibrium values are unchanged (see 
Appendix lb): 

I X0 (s->0) I 
(9*) I - - - - - - - I 

I H(s->0) I 

I (I- A)<-ll I 
1----------I*Y 
I C * (I - A)<-ll I 

The 2*n eigenvalues of the model are computed by solving equation (9*) with respect to s: 

(10*) DET{[s*I+U*(I-A)]*[s*I+(I-A)*V]} = DET{[s*l+U*(I-A)]} * DET{[s*I+(I-A)*V]} = 0 

Now the system is partially decoupled. The parameters that govern the inventory policies no longer 
influence the production response. Inventory coverage does not influence the modes at all. The. 
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Figure 3a: Inventory and production in sector 1 (information a.c!ded)· 
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Figure 3b· Inventory and production in sector 2 (information added): 
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system is now distinctively more stable.To illustrate the behavior of the system, the behavior for 
the revised system is shown in Figures 3a and 3b. The same parameter values as above are 
assumed. 

The system no longer oscillates in this example. Total production overshoots its long-run equilibrium 
once. This one-time overshoot is necessa~y to make up for the initial fall in inventories and to adjust 
inventories to the new desired value. However, the overshoot in production and the implied temporary 
increase in orders fur intermediate goods does not change the long-run ~roduction and inventory plans. 
Thus, the economy adjusts to the new equilibrium without oscillations. 

CONCLUSIONS 

The model of inventory-production fluctuations developed in this paper showed how intended rational 
decisions about production and inventory management in a decentralized system can lead to an overall 
economic performance that is less than optimal. The model analysis revealed that insufficient 
information is the cause for the sub-optimal behavior of the overall system. By associating costs to 
inventory discrepancies and to production fluctuations and by comparing the economic performance in a 
system with and without information, it would be possible to explicitly assess the value of the missing 
information. 

The type of information provided to the decision-makers in this paper can be contrasted with the 
information embedded in expectations. More accurate expectations of the future could also, 
presumably, improve performance. An interesting extension to this paper would be a detailed 
consideration of the costs and benefits of improved expectation formations versus the costs and benefits 
of the type of information discussed in this paper. 

No attempts have been made in this paper to empirically test the model and to compare the fluctuations 
produced by the model to empirically observable business-cycle fluctuations. The model is based on a 
minimum set of variables and assumptions. It does not contain interest rates, prices or wages nor does 
it contain a labor or capital market. Since the business cycle is a phenomenon that involves more 
variables than just production and inventories of finished goods, the model might be considered a 
bare-bones business-cycle model. However, it seems that an extension of the model could be very 
useful in moving towards a behaviorally based, sectorally disaggregated theory of business cycles. 

Sectorally disaggregated models provide an understanding of business cycle that is far more detailed 
than insights gained by aggregated models alone. Disaggregated models allow one to come to sector­
specific results. For example, one outcome of the model discussed in this paper is to expect that sectors 
with different inventory policies will be influenced quite differently during the business cycle. It is then 
possible to derive sector-specific policy recommendations rather than undifferentiated global advice. 

The main advantage of behaviorally based models is that it is easily possible to assess what bounds on 
information availability are central in causing an overall behavior that is less than optimal. Based on this 
know ledge, it is possible to define policies that are directed at the causes of the underperformance rather 
than at its symptoms. Such a business cycle model might help to deemphasize attempts to counteract 
cycles by means of fiscal and monetary measures and shift attention towards creating a business cycle 
information system. 
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NOTES: 

1 The strong focus on inventories for finished goods does not imply that inventories of 
intermediate goods and delays in shipment and production processing are unimportant for the 
dynamics of the system. See an earlier paper (Diehl 1985) for an integrated treatment of these 
factors. 

2 While I deal in this paper exclusively with production to stocks, it is not conceptually difficult to 
allow for production to orders. One consistent way of mocieling such a situation is to endow each 
sector with n backlogs, allowing the sector to keep track of not yet filled orders. In such a model, 
shipments can no longer be instantaneously equal to orders. Now, they are dependent on the rate 
with which the delivering sector reduces its backlog. Analogous to the inventory adjustment policy, 
the backlog adjustment policy could be modeled as an adjustment process towards a desired normal 
backlog that each sector wishes to maintain. Note that such a model extension would imply 
considerable mathematical complications, since n*n states would be added to the model. 

3 It is important to specify desired inventory as a function of (x0 i) and not as a function of (xti). 

Since production due to inventory adjustment (x\) is one component of (x\), a specification of 
desired inventory as a function of total production would introduce artificial fluctuations into the 
system: As desired inventory goes up, production due to inventory adjustment (and thus total 
production) increases, leading artificially to an even higher value for desired inventory. One 
consequence of the distinction is to use sales figures instead of production figures in an 
econometric investigation of production-inventory behavior. 

4 Since shipmen~ are not constrained by available inventory, the model does not prevent inventory 
from becoming negative in the case of unanticip;lted high orders, One might want to think of this 
model as a linearized version of a more realistic non-linear model about a "normal" point of 
operation. · 

5 Although the economy is distinctively more stable in the case with information, oscillations 
cannot be completely ruled out for specific parameter constellations, as can be seen through an 
analysis of the eigenvalues of the system. However, those specific oscillations have a different 
cause. As an intuitive example, consider an economy where sector 1 delivers only to sector 2, 
sector 2 delivers only to sector 3, etc. until finally sector n delivers only to sector 1 and thus closes 
a chain. Imagine a increase in final de.mand for sector 1. The induced increase in orders for 
intermediate inputs "travels" slowly through the sectors of the economy until it reaches sector n. At 
the time when sector n finally reacts and increases its orders to sector 1, sector 1 has already 
completed its initial production adjustment to the change in final demand. Now sector 1 faces a new 
increase in orders and sets off a new wave of adjustments. 
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APPENDIX Ia: FINAL VALUE COMPUTATION FOR BASE MODEL 

Taking equation (8b) and applying the Final Value Theorem, the equilibrium values (for all 
parameter constellations that lead to a stable adjustment path) are computed by solving: 

where 

I xo(s->0) I 
1------ I 
I H(s->0) I 

I [na- nbnl1lncJ(-I) * U*Y + n.<-IJnb [nd- ncn/llnbJ(-I) * Y 1 

1---------------------------------------------l 
1- nd(-l)nc [na- nbni-llncJ(-1) * U*Y - [ nd- ncnaHlnb]C-Il * y I 

na = U*(I- A- A*V*C) 

nb =- U*A*V 

f.!c = (I - A)*(I + V*C) 

~ = (I- A)*V. 

Substituting: 

X0 (s->0) = { [U*(I-A-A*V*C)]- [U*A*V][(I-A)*V]<-1>[-(I-A)*(I+V*C)] }<-1>*U*Y 
+ na(-l)nb *{[(I-A)*V] + [(I-A)*(I+ V*C)]* n/llnb}(-lhy 

{ U*(I-A~A *V*C) - (U* A)*(I+ V*C)] }Hl*U*Y 
+ na<-llnb*{ [(I-A)*V*nb(-l)na + (I-A)*(I+V*C)]* naHlnb}(-l)*y 

Y + [V*nb(-l)na + (I+V*C)]<-1>*(I-A)<-1l*Y 
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Y + [V*V(-1l*AHl*u<-1hU*(I- A- A*V*C) + (I+V*C)]<-1h(I-A)<-1l*Y 

(I-A)*(I-A)<-1hy + [A <-1l -I- V*C +I+ V*C)]<-1l*(I-A)<-1hy 

(I- A+ A)*(I-A)<-1hy = (I-A)Hl*Y 

H(s->0) = [(I-A)*V]Hl(I-A)*(I+ V*C) 
*{U*(I-A-A *V*C) - [U* A *V][(I-A)*V]Hl[-(I-A)*(I+ V*C)]}(-1l*U*Y 
- { [(I-A)*V]- [- (I-A)*(I+V*C)] na(-1lnb }Hhy 

= v<-1h(I+V*C) * {U- U*A- U*A*V*C + U*A*(I+V*C)}<-1hU*Y 
- { [(I-A)*V*~Hlna + (I-A)*(l+V*C)] na(-Ilnb }<-1l*Y 

= v<-1h(I+ V*C) *Y 
- { [(I-A)*A<-1h(I-A-A*V*C) + (I-A)*(I+V*C)] n/Ilnb }(-1l*Y 

= y(-1h(I+V*C) *Y- {[(I- A)*A(-1)] *(I-A-A*V*C)(-1l*A*V }(-1l*Y 

= v<-1h(I+V*C) *Y- v<-1hA(-1h(I-A-A*V*C)*A*(I-A)<-1l *Y 

= [v<-1h(I+V*C) *(I-A)- v<- 1l*A<-1l*(I-A-A*V*C)*A] * (I-A)<-1l *Y 

= [v<-1l + C- v<-1hA- C*A - v<-1l +V<-1l*A + C*A]*(I-A)<-Il *Y 

= C * (I-A)<-1l *Y 

Thus, we obtain the result: 

1 xo (s->0) I 
1-------1 
I H (s->0) I 

I (I- A)<-Il I 
1----------I*Y 
I C* (I- A)<- 1l I . 
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APPENDIX Ib: FINAL VALUE COMPUTATION FOR MODEL WITH ADDffiONAL 
INFORMATION 

Taking equation (8b*) and applying the Final Value Theorem, the equilibrium values (for all 
parameter constellations that lead to a stable adjustment path) are computed by solving: 

where 

I X0 (s->0) I 
1------ I 
I H(s->0) I 

n. = U*(I- A) 

I ni1l* u * Y I 

1-------------------------- I 
I - nd(-1)nc n/1) * U *Y - nd(-1) * I*Y I 

nc = - (I - A)*(I + V*C) 
nct = (I - A)*V . 

Substituting: 

Thus: 

X0 (s->0) [U*(I- A)]<-1) *U*Y 

(I- A)<-1hu<-1hU*Y 

(I- A)(-1hy 

H(s->0) = -[(I- A)*V](-lh[-(I- A)*(I + V*C)]* [U*(I- A)J(-1hU*Y- [(I- A)*V](-1hy 

= v<-1h(I- A)<-1h(I- A)*(I + V*C)*(I- A)<-1l*u<-1hU*Y - y(-1h(I- A)(-1hy 

= y(-1h(I + V*C)*(I _ A)<-1hy _ y(-1)*(1 _ A)(-1hy 

= [V(-1) + y(-1)*V*C- y(-1)]*(1- A)(-1)*Y 

= C*(I- A)<-1l*Y 

I X 0 (s->0) I 
1-------- I 
I H(->0) I 

I (I- A)<-1l I 
1- - - - - - - - - - - I * Y 
I C *(I- A)<-1l I 




