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ABSTRACT

The desire to better understand the transmission of infectious disease in the real world
has motivated the representation of epidemic diffusion in the context of quantitative
simulation. In recent decades, both individual-based models and aggregate models (such
as System Dynamics) are widely used in epidemiological modeling. This paper com-
pares the difference between aggregate models and individual-based models in the context
of Tuberculosis (TB) transmission, considering smoking as a risk factor. The merits
and impact of capturing individual heterogeneity is examined via representing Bacillus
Calmette-Gurin vaccination and reactivation in both models. The simulation results of
the two models exhibit distinct discrepancies in TB incidence rate and prevalence. Re-
sults also suggest that, at the level of practical application, individual-based models offer
significantly greater accuracy and easier extension, especially when representing a de-
creasing reactivation rate, waning of immunity and heterogeneous individual attributes.
Another experiment sought to evaluate the impact of network structure on TB diffu-
sion. Simulations are conducted under three widely used network topologies, namely
random, scale-free and small world. The results reveal large differences between results
of individual-based models and aggregate models, which further give insights into the
difference between these two model types in the context of practical decision-making.

Keywords: individual-based modeling, aggregate modeling, infectious disease, network
topology, tuberculosis transmission, epidemiology
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Introduction

Every year, infectious diseases cause more than 13 million deaths worldwide, with two-
thirds of them occurring among children under 5 years old (GAO, 2001). The top
infectious disease killers include Human Immunodeficiency Virus (HIV), Tuberculosis
(TB) and malaria (GAO, 2001). Tuberculosis (TB), as an airborne bacterial infection
caused by bacillus Mycobacterium tuberculosis, is a major cause of global mortality
and morbidity, especially in poor and developing countries with limited health care
resources and weak health care systems. Although it is a curable and preventable
disease, it is reported that two million people die annually from TB (WHO, 2011). In
Canada, despite the adoption of guidelines and prevention programs, the incidence of
TB remains high in certain geographic and demographic zones. In addition, a variety
of epidemiological studies have found that smoking is a risk factor for lung cancer,
chronic pulmonary and cardiovascular disease. The association between smoking and
Tuberculosis is evaluated in many studies, and some evidence suggests that smoking
is strongly associated with development of Tuberculosis, mortality of TB as well as
development of severe (and particularly infectious) forms of active TB (Hassmiller,
2006).

In the past decades, a group of distinguished infectious disease specialists have
contributed remarkable knowledge to mechanisms of infectious disease pathogenesis and
diagnosis. Despite such gains, we are still facing great challenges in early detection and
in the development of effective control programs and policies to avoid global outbreaks.

With growing computational power, modeling techniques have increasingly attracted
attention as ways of enriching understanding of the causal pathways of infectious dis-
ease and for aiding policymakers to implement effective control strategies to prevent
the spread of diseases. Computational modeling offers the ability to analyze various
possibilities of disease containment and to answer “what-if” questions. In current com-
putational simulation studies, two popular approaches to epidemiological modeling are
System Dynamics modeling and agent-based modeling. System Dynamics models of
infectious disease spread commonly implement structural principles drawn from the
most traditional mathematical epidemiology models, which are aggregate in character.
However, there has been a limited amount of System Dynamics modeling performed
at the individual level (Vickers and Osgood, 2007). With respect to dynamics of dis-
ease, the classic System Dynamics model for propagation of infectious disease is the
susceptible-infectious-recovered (SIR) model, firstly developed in 1927 and which has
provided fundamental insights into the disease diffusion (Anderson and May, 1991).
In such aggregate models, individuals are aggregated into larger groups with same ab-
stracted properties.

Although aggregate modeling can offer powerful insights and has allowed the deriva-
tion of the foundational concepts of mathematical epidemiology, there are distinct lim-
itations associated with aggregate modeling when the focus is upon the specifics of the
interactions or social contacts through which the infection is spreading. Spurred by
increasing computer resources and the needs for realistic scenario evaluation, agent-
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based modeling has become increasingly popular. This reflects the fact that it lends
extra flexibility in terms of representing population as a system of interacting agents
with heterogeneous features and abilities. Social network modeling and analysis, as
a complement to agent-based modeling, takes into account the importance of contact
structure, pathways of infection spread across the associated transmission and social
networks.

Both of these two modeling approaches offer some important insights into the mech-
anisms of infection dynamics, but the underlying assumptions of these two simulation
approaches are quite different. In the context of infectious disease, people groups within
same category (stocks in System Dynamics models) are assumed to be homogeneous
and well-mixed, which indicates that each individual has an equal chance to spread the
disease to every other (Rahmandad and Sterman, 2008). As the disease rests purely
upon contacts with infectious individuals, assuming homogeneity and perfect mixing
can reduce accuracy in assessing intervention trade-offs and undermines the validity
of the model. While the random mixing assumption within aggregate models can be
relaxed to allow for representation of distinct groups that exhibit preferential mixing,
the representation of such mixing can be cumbersome and complicated. By contrast,
agent-based models (as a particularly attractive class of individual-based models) not
only can capture feedback effects but also are quite flexible and handy in implement-
ing heterogeneity of individual characteristics (including history information) and for
evaluating the interaction of individuals at certain points in a network. However, agent-
based models carry their own trade-offs, as they suffer from high computational cost –
a substantial concern in light of our limited time and resources, particularly when we
are conducting sensitivity analysis and other forms of model analysis. Which modeling
approach is more efficient or faithful? To what degree does the added flexibility and
finer granularity of agent-based modeling really yield practical benefits when represent-
ing realistic models? When should aggregate modeling approach be used, and when
are agent-based models more suitable? In this paper, we carry out controlled simula-
tions to compare the difference between agent-based models and aggregate models in
the context of M. Tuberculosis transmission. In addition to facilitating an understand-
ing of modeling trade-offs, this approach also aids our understanding of Tuberculosis
transmission by using different methodologies of computational modeling.

The paper is organized as follows: epidemiology of Tuberculosis is introduced in the
next section, then structure of both the aggregate model and the baseline individual-
based model are represented in details. Given the structure of the models, verification
of the baseline models and detailed experimental design are provided afterwards. We
have designed three experiments with respect to BCG vaccination, non-memoryless re-
activation and network topologies. In the last section, the results of the simulations are
illustrated in conjunction with discussion about trade-offs between aggregate modeling
and individual-based modeling.
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Epidemiology of Tuberculosis

Tuberculosis (TB), as an airborne bacterial infection caused by bacillus Mycobacterium
tuberculosis, is a major cause of global mortality and morbidity, especially in poor and
developing countries with limited health care resources and weak health care systems.
TB has infected approximately 2 billion people worldwide, and around 10 percent of
these infected people will develop active TB in their rest of lives (WHO, 2011). Although
it is a curable and preventable disease, it is reported that roughly two million people
die annually from TB (WHO, 2011). In Canada, despite the adoption of guidelines
and prevention programs, the incidence of TB remains high in certain geographic and
demographic zones. Saskatchewan is one of the provinces in Canada possessing a higher
incidence rate of TB; however, this statistic masks the tremendous variability in TB
risk. Most notably, the large majority of cases in Saskatchewan occur in Aboriginal
peoples, including First Nations people.

Before proceeding, we present a brief overview of the terminologies used in the
epidemiological context and throughout the models in this study. It is worth noting
that TB bacteria transmit from person to person through the air. Infection by TB
bacteria does not automatically bring on TB disease. Usually there is an incubation
period before an infected individual physically develop the current disease, and there
are individual differences in latency.

• Active TB Disease. The term “Active TB” typically refers to current disease;
people with Active TB typically feel sick and may have some known pathologies
in parts of their body (such enclosed granulomas in various organs) where the TB
bacteria cluster. Tuberculosis most commonly affects the lungs, yielding what
is known as pulmonary Active TB, and it also can spread to other organs such
as bone and brain. Pulmonary TB can be infectious. People with pulmonary
infectious TB can breathe out tiny droplets containing TB bacteria when they
are coughing, sneezing, singing, and even when just talking (PHAC, 2008). These
TB droplets remain in the air for a couple of hours, and people who breath in
these TB droplets are exposed to TB bacteria.

• Primary Progression. After acquiring TB infection through contact, a small frac-
tion of those infected people will develop active TB in a relatively short period of
time due to ineffective control of infection by their immune systems or some other
reasons. This mechanism, in which the bacteria evade effective control, is termed
as primary progression. The mean time for primary progression varies in different
studies. Since TB is an slowly growing infectious disease, commonly used time
limits for primary progression is 2 years or 5 years (Hassmiller, 2007; Vynnycky,
1996).

• Latent TB Infection. Those infected who are able to effectively control their
TB infection without developing active TB are referred as being in a state of
latent TB infection. Within the latent stage of infection, people are infected but
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they don’t have symptoms and the bacteria remains dormant in their organs.
Most of them will remain in the latent TB infection stage for their rest of lives;
only a small percentage of them will go on to eventually develop active TB.
Such reactivation can be brought on by a weak immune system, poor health
care, or a combination of other complex risk factors. Theoretically speaking,
in a latently infected person, either the TB bacteria is still alive but inactive
in his cells or his immune system might completely kill the bacteria. However,
it is currently impossible to differentiate between them with readily available
diagnostic technologies. Latent TB cases with inactive bacteria can develop the
disease later on in life through re-activation; on the other hand, for those with
killed bacteria, they can develop the disease through re-infection.

• Reactivation. Reactivation refers to the progression to Active TB disease resulting
from a latent infection gained a relatively long time ago. Reactivation can be
triggered by many of complex risk factors such as HIV, use of immunosuppressant
drugs, and weak immune systems.

• Reinfection. When an individual remains in the latent stage, he or she can get
reinfected by another strain of TB bacteria via a mechanism often referred as
reinfection. There is significant controversy regarding the level of reinfection that
occurs within the population.

Because of the complexity of Tuberculosis pathology and heterogeneity of human
immune systems, some of these terminologies or mechanisms are under debate, and
different variations on the above may be used by different researchers and health care
practitioners.

Structure of System Dynamics Model

Following the model structure in the literature (Hassmiller, 2007), Mahamoud et al.
constructed an aggregate model of TB transmission, including smoking as a risk factor.
The model reflects the characteristic stages of TB development as well as a stratification
by smoking status.

A simplified version of the structure of Mahamoud et al.’s model is illustrated in
Figure 1. Within this model, all the population are categorized into 6 stocks distin-
guishing people according to both TB and smoking status.: Uninfected Non-smokers
(Un), Latently Infected Non-smokers (Ln), Active TB Non-smokers (Tn), Uninfected
Smokers (Us), Latently Infected Smokers (Ls) and Active TB Smokers (Ts). As it is
typical in System Dynamics models, the changes in the stocks over time are caused
by inflows and outflows, including recruitment, death from TB or other disease, latent
TB infection, primary progression, reinfection, reactivation, natural recovery and treat-
ment. The time unit for the model is one year. The parameters used in the model are
displayed in Table 1 and Table 2 (Mahamoud et al., 2009).
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Figure 1: A schematic representation of Mahamoud et al.’s aggregate model of TB
diffusion with smoking impact

Tobacco use has been an issue of concern for years, and in Northern Saskatchewan,
the overall prevalence of smoking in 2004 was 41%, compared with 28% across the
province (Nor, 2004). The relative risk for smokers progressing to active TB is much
higher than that for non-smokers (Hassmiller, 2007). Besides those variables used in
measuring the dynamics of TB spread, smoking impacts on TB transmission are cap-
tured using a list of parameters shown in Table 2. Because this TB model has not
been calibrated with empirical data and some parameters are roughly estimated, it is
used more for testing and exploring differences in methodology when measuring the
dynamics of TB spread in North Saskatchewan, considering smoking as a risk factor.

The equations for non-smoker related stocks and flows illustrated in Figure 1 are as
follows:

6



Parameter Description Value Unit
βc The average number of infections an in-

dividual with active TB (T) causes per
year

7.788 person per year

ρ Proportion of newly infected individu-
als progressing to primary TB

0.05 1

α Proportion of the new entrants into the
model who were infected prior to their
entry time

0.054 1

γ Treatment rate of TB 1 per person per year
τ Rate of Natural Recovery 0.25 per person per year
d Rate of Reactivation (Progression from

latent TB to active TB due to endoge-
nous changes)

0.003125 per person per year

e Proportion of latently infected people
with risk of exogenous reinfection

0.25 1

π Number of new 15 years old entrants to
the model per year

720 person per year

µtbn Mortality rate from TB for non-
smokers

0.037 per person per year

µn Mortality rate from other disease
among non-smokers

0.0274 per person per year

p Proportion of the population over 15
years of age

0.66 1

Table 1: Description of the symbols and parameter settings in Mahamoud et al.’s model

λn = pβc
Tn
Nn

[σ8 + (1 − σ8)
Nn

N
] + pβcσ6(1 − σ8)

Ts
N

(1)

d Un
dt

= (1 − σ0)(1 − α)π − λnUn − µnUn (2)

d Ln
dt

= (1 − σ0)απ + (1 − ρ)λnUn + γTn + τTn − eρλnLn − dLn − µnLn (3)

d Tn
dt

= ρλnUn + eρλnLn + dLn − τTn − γTn − µnTn − µtbnTn. (4)

Here, Nn denotes the sum of non-smokers in the population where Nn = Un+Ln+Tn.
Similarly, Ns denotes the sum of smokers where Ns = Us + Ls + Ts. N denotes the
total number of individuals in the population, where N = Nn + Ns. λn is the rate of
new infection for non-smokers. The initial values for the stocks are Un(0) = 11429,
Ln(0) = 2211, and Tn(0) = 24.
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Parameter Description Value
σ0 Percentage of the entering clients who are initially

smoking
0.412

σ1 Relative risk imposed by smoking on the rate of
new infection

1.93

σ2 Relative risk imposed by smoking on reactivation 1.53
σ3 Relative risk of primary progression given smoking 1.53
σ4 Rate ratio for smoking on the natural recovery

from Active TB
0.65

σ5 Relative risk of TB death rate given smoking ex-
posure

1

σ6 Relative risk of becoming infected when contacting
a smoker with Active TB (compared to contacts
with a non smoker)

2

σ7 Factor by which smoking affects the treatment rate 0.8
σ8 Mixing parameter denoting the degree of disas-

sortivity between smokers and non-smokers
0.3

σ9 Relative risk of non-TB death rate given smoking
exposure

1.14

Table 2: Smoking related parameters in Mahamoud et al.’s model

The equations for smokers demonstrated in Figure 1 are:

λs = σ1pσ6βc
Ts
Ns

[σ8 + (1 − σ8)
Ns

N
] + σ1pβc(1 − σ8)

Tn
N

(5)

d Us
dt

= σ0(1 − α)π − λsUs − σ9µnUs (6)

d Ls
dt

= σ0απ + (1 − σ3ρ)λsUs + σ7γTs + σ4τTs − eσ3ρλsLs − σ2dLs − σ9µnLs (7)

d Ts
dt

= σ3ρλsUs + eσ3ρλsLs + σ2dLs − σ4τTs − σ7γTs − σ9µnTs − σ5µtbnTs. (8)

Here, Us(0) = 8008, Ls(0) = 2618, and Ts(0) = 118; λs denotes the rate of new
infection for smokers, and incorporates many factors by which smoking impacts TB
progression. In this model, smokers are more susceptible to TB infection (meaning
that the chance that they get infected given exposure is higher than for non-smokers).
Moreover, smokers are more likely to transmit the disease so that (as given by σ6) the
average number of infections caused by an smoker with active TB (when surrounded
by a given group of people) is twice of that by a corresponding non-smoker when
surrounded by those same people. Besides, smokers also have a relatively high risk of
developing primary progression, reactivation and reinfection. In addition, the death
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rate for smokers is also higher than that for non-smokers. In Equation (1) and (5), the
assortivity coefficient σ8 is implemented to represent the interaction pattern between
smokers and non-smokers. When σ8 = 0, it indicates that all of the population is
randomly mixed with each, with no distinction made according to smoking status;
however, when σ8 = 1, smokers only interact or contact with smokers and non-smokers
only mix with non-smokers. By default, σ8 = 0.3 means individuals with same smoking
status prefer mixing with those sharing their smoking behavior, but also mix with those
of different smoking status.

Structure of Individual-based Model

In this work, we recreated Mahamoud et al.’s model in an individual-based fashion in
the AnyLogic software package, retaining the same parameters, values, transitions rates
and interactions among the agents.

Figure 2: Structure of individual-based Mahamoud et al.’s model of TB diffusion with
smoking impact

Two state charts were created to manage the structure of the model shown in Fig-
ure 2. One state chart represents individual progression of TB infection; the other is
used to represent the smoking status of each individual. The structure clearly shows
two dimensions of each individual: TB infection status and smoking status. All the
transitions are implemented using rates the same as corresponding rates in the aggre-
gate model. It can be observed that there are some differences in the implementation
of these two types of models. In the aggregate SD model, six stocks accumulate and
maintain the population in different categories and the inflows and outflows are used
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to control the level of the stock directly. So, for each stock, the change across a period
of time equals the total inflows minus the total outflows over that period of time.

Each agent is associated with exactly one state of the TB progression state chart and
one state of the smoking status state chart. States in an individual-based model don’t
accumulate a population; they are only used to represent each individual’s state. Fur-
thermore, transitions in individual-based models are quite different from the flows in an
aggregate SD model. All the transitions in an individual-based model can be triggered
at a certain rate, by a timeout, condition or message. Those transition parameters can
be defined differently for individual with different attributes or state, or change over
time. In the individual-based model, more attributes or status of the individual can be
easily represented just by adding additional state charts or variables. Multidimensional
status of individual can be captured without creating combinatorial combinations of
compartments or stocks for each group of individuals with same attributes. Moreover,
maintaining the distinct state charts (one for each transition) permits a “separation of
concerns” (Dijkstra, 1982) that allows a modeler to more transparently understand the
structure of individual progression along a particular dimension. Finally, given such a
representation, it is quite visually clear which aspects of heterogeneity are static in char-
acter (requiring only a parameter), versus which are variable (requiring a state chart or
variable). However, in an aggregate model, multidimensional representation is required
for both static properties and for states (changing dynamically). Adding one more
attribute for the population need to subdivide the existing compartments stratified for
the new state. Within an aggregate model associated with multiple dimensions of het-
erogeneity, the need to distinguish individuals according to both static and dynamic
attributes requires a separation of the stocks along the dimensions of these attributes.
Because the logic associated with progression of individuals along each successive di-
mension of heterogeneity are all combined in a stock, it is not immediately clear which
visual transitions are associated with a certain type of condition. This is particularly
significant in light of the disaggregation required by both static and dynamic attributes,
as it means that a user is unable to visually distinguish static attributes of heterogeneity
from dynamic ones – thereby obscuring the scope of the model. While the rapid visual
growth of the model can be somewhat ameliorated through the use of subscripting, the
use of subscripting comes with its own drawbacks. Most notably, the equations for
progression along different types of subscripts can interact to yield a large number of
equations for each stock.

Methods

The individual-based model was firstly verified, and then controlled experiments were
designed and simulated. The first group of experiments varied the implementation
of individual heterogeneity, and compared the outcome with that of the aggregate
SD model. The second group of experiments focused on different topologies, with
each conducting 10 simulations of the individual-based model to study the degree of
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difference obtaining with the aggregate model.

Verification of Individual-based Model

When first considering this individual-based version of Mahamoud et al.’s model, it is
likely that it will contain bugs. Before proceeding, we sought to verify our model via
making the individual-based model comparable with the aggregate model. The results
of the individual-based baseline model should be analogous to that of the aggregate
baseline model since they share identical values for parameters and transitions rates.

Individual Heterogeneity with Respect to BCG Vaccination

BCG, as a vaccine against TB, provides protection to people. Based on the available
data, Mahamoud et al. estimated a duration of efficacy of 31 years in Saskatchewan, and
the rate of people receiving BCG was assumed to be 20% per year in this simulation.
When we try to integrate BCG as an intervention for TB in the aggregate model,
since individuals are assumed to be homogeneous under the context of aggregate SD
model, everyone administered BCG was assumed to be fully protected for a mean time
of 31 years. While in the protected state, they are assumed to experience no risk of
developing TB Infection.

Figure 3: BCG implementation in the aggregate TB model

Figure 3 shows the simplified implementation of BCG in the aggregate model. The
state equations for implementation of BCG in the aggregate model shown in Figure 3
are

d U

dt
=

B

m
− kU (9)

dB

dt
= kU − B

m
. (10)

To this structure, U denotes uninfected individuals, B represents the people under
BCG protection. k is the BCG rate per year, and m is the mean time of protection
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conferred by BCG. In the aggregate SD model, BCG vaccination is implemented sepa-
rately for smokers and non-smokers by adding two additional stocks to represent those
vaccinated who are either smokers or non-smokers.

Figure 4: BCG Protection Percentage Over Time

However, the assumption that individuals are fully protected for 31 years is not
completely reasonable. Some experts believe that the efficacy of BCG wanes like many
other vaccines. This phenomenon is a reflection of biological understanding of the
mechanisms of immune system memory. For example, antibodies and Cytotoxic T
Lymphocytes decrease over time since last exposure (including vaccination). Moreover,
in this view, individuals following vaccination are not fully protected, although they do
have a lower chance of becoming infected. Given a mean time of protection of 31 years,
we can derive a decreasing protection level from BCG. It is assumed that the BCG
protection of an individual depends on the time since he or she receives immunization.
The longer the time since that individual received the vaccine, the lower the degree
of protection received, and the higher chance that individual will be infected given
exposure (although this rate is still lower than that obtaining among those who do not
receive the vaccine). In Figure 4, a set of equations describing the decreasing protection
of BCG is demonstrated. It shows the fractional degree of BCG protection (y) as a
function of the time since he or she was vaccinated, among those who remain uninfected.

Equation (11), coming from a first-order delay, is the mathematical solution of this
declining protection level. Moreover, since the chance of developing disease among
those who have BCG developing disease is not zero, Equation (12) and (13) are used
to represent their risk of getting infected.

y = e−
1
31
t (11)

λn,b = (1 − y)λn (12)

λs,b = (1 − y)λs. (13)
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Here y is the (fractional) protection conferred by BCG, λn,b denotes the rate of
new infection for the BCG-administered non-smokers remaining uninfected; λs,b de-
notes the corresponding rate for smokers. Using this characterization, we extended
the individual-based baseline model to implement BCG protection based on the period
of time since each individual was vaccinated. This implementation is to evaluate the
impact of heterogeneity of individuals on results. The “fully vaccinated – fully sus-
ceptible” dichotomy is the widely-used and traditional representation of vaccination
effects. This experiment can lend some insights into the implications of different repre-
sentations of BCG protection, and this declining protection of BCG for each individual
can’t be easily captured in an aggregate model given a population that is vaccinated
at different points in time. So the results of these two models are designed to provide
some knowledge about the impact of heterogeneity of individuals on BCG intervention
of TB.

Memoryless vs. Non-Memoryless Reactivation

An additional experiment sought to evaluate the merits and impact of capturing the
heterogeneous individuals in their progression to Active TB via reactivation. In this
experiment, I separately extend the previously created individual-based baseline model.
The new structure of the model is similar to that described by Vynnycky (Vynnycky,
1996), and is shown in Figure 5.

Figure 5: Revised Individual-based Model Structure with Respect to Reactivation

In this new structure, primary progression is no longer represented with a direct
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transition from the uninfected state to the Active TB state. Instead, every individual
is assumed to go to the latent state following infection. After infection, the chance he or
she will develop disease depends on the rate of reinfection and reactivation. Reactivation
in this model represents the progression to active TB, which is different from that in
the model of Mahamoud et al.’s. In contrast to that model, the reactivation rate here
depends on the time since he or she got infected. This reflects the fact that empirical
observations suggests that the per-year chance for an individual to develop TB disease
is relatively high for the first few years after he or she got infected, and then the chance
will decrease over time (Vynnycky, 1996). We note that the “reactivation” transition in
this model conceptually represents both primary progression (for those cases in which
the progression to Active TB takes place in the first years following infection) and what
is classically thought of as reactivation.

This model implements a reactivation rate that varies with the amount of time that
has elapsed since infection. In the previously created baseline model, the reactivation
rate (d) for non-smokers is 0.003125 per year, while that for smokers (σ2d) is 0.0047 per
year. Since the model time line is 50 years, we can derive that the chance that a non-
smoking or smoking individual develops active TB via reactivation over the course of
those 50 years as follows. We note that this calculation ignores the effects of re-infection
and the competing risk of non-TB induced mortality.

Figure 6: Relative risk of developing Active TB reproduced from Vynnycky (1996)

d′n = 1 − e−d×50

= 0.1447 per 50 years

d′s = 1 − e−σ2d×50

= 0.2094 per 50 years.

Figure 6 shows the relative risk of developing active TB since infection. According
the relative size of the rates of years 0 to 5 after infection in Figure 6, we assume the
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reactivation rate maintains an exponential decline throughout these years. Following
the approach of Vynnycky, we assume that the relative risk will keep constant beyond
5 years since infection, remaining at a rate equal to that of 5 years after infection.

Figure 7: Revised reactivation rate since infection

To compare the results of two models on an equitable basis, it was important that
the overall risk of reactivation is preserved. On the basis of this representation, we
re-normalized the reactivation rate for each year since infection by maintaining the 50-
year risk identical to that in the aggregate model. The revised reactivation rates since
infection for our model are shown in Figure 7. Figure 7 only shows reactivation rates
for the first 10 years since infection; as noted above, the reactivation rate beyond 10
years since infection is equal to that of 5 years after infection. Besides the decreasing
reactivation rate since infection, we further added two attributes to each individual:
their current age and the time since he or she developed TB after infection. This
require adding a few variables and functions in the Person class. The age of each
individual is initialized randomly with a uniform distribution extending between 0 and
75 years of age.

This experiment seeks to give us some insights into the importance of capturing the
heterogeneity of individuals’ history within a model. Since the structure of the original
baseline model was extended, the results of this model are not fully comparable with
that of baseline model. But the experiments will provide us with some valuable and
detailed information regarding TB transmission, as well as insights into the trade-offs
between the two modeling types.

Experiments with Network Structures

In an aggregate SD model, individuals within a compartment are assumed to be per-
fectly mixed with each other. This means that everyone in the same compartment
experiences an identical chance to progress on to another state (such as Active TB)
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and an identical chance to meet another. However, such a representation offers limited
consideration of the impact of persistent connections between those in the populations,
such as those that are common as a result of family structure, workplaces, and limited
geographic mobility. In this section, we created a network representing the whole popu-
lation. Transmission of the disease is triggered by specific person-to-person interactions
among the individuals rather than via a calculation based on the mean rate of exposure
of a susceptible individual to infectious individuals. Every individual is living in an
environment which is defined by certain types of networks. Network topology refers to
the layout of the connected nodes.

In order to make the network structured model and aggregate model comparable, σ8
was set to be 0 in both the individual-based and aggregate model. σ8 represents degree
of assortive mixing between the smokers and non-smokers. σ8 = 0 means smokers
and non-smokers intermingle without distinction as to smoking status. By contrast,
σ8 = 1 means that individuals mix in a perfectly assortive fashion – in other words,
smokers have no contact with non-smokers and non-smokers also have no chance to meet
smokers. Furthermore, in order to maintain a stable network structure, recruitment
and death are disabled within this experiment. Although stopping the recruitment
and death might lead to an incorrect estimates of the dynamics of TB diffusion in the
real-world population, comparing the two models in the absence of such processes will
still provide us with some understanding regarding how network structure influences
TB transmission.

In order to create a networked individual-based model comparable with the aggre-
gate model, we needed to establish a common risk of infection. The aggregate model
maintains a traditional representation of transmission of infection, which is governed by
two key parameters – β and c. Because these two parameters are only used in the ag-
gregate model when multiplied by each other, rather than considering each in isolation,
it is most convenient to consider the product of the two, βc. This product represents
the number of people that an infective person will infect per unit time (here, per year)
when surrounded by otherwise susceptible people. In the baseline model, βc for non-
smokers is 7.788 persons per year, and that for smokers (σ6βc) is 15.57 persons per
year. In this experimental design, we assume that the average contacts per susceptible
for smokers are the same as that for non-smokers. Based on previous work, we assume
here β roughly equals to 0.45. Then we assume that for non-smokers, βn = β = 0.45
and for smokers βs = σ6β = 0.9. From the value of β, and for βc, we can then calculate
that the average contacts per susceptible (c) for non-smokers or smokers are around 17
persons. Under each type of network structure, the value of β and c are set as noted
above.

Following the establishment of the experimental design, we integrated network struc-
ture by extending and revising the individual-based baseline model. The surrounding
network of individuals will be separately set to be random, scale-free and small world.
We held the same average connections (17 persons) per agents in the random and small
world networks, but we didn’t hold the same for scale-free network. The following
subsections provides background on each of these types of networks. In the simulated
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network, only TB cases can transmit the disease by sending messages.

Random Network

Random networks were first presented by Erdös and P. Rényi. If N nodes are connected
with n edges in a random network, these edges are selected with uniform probability
among N(N − 1)/2 possible edges (Ran, 2002). In a random network, each individual
is connected randomly with a given average number of connections, regardless of any
consideration of spatial position or other individual attributes.

In most analytically tractable random networks, the edges and links of each individ-
ual are fixed, which indicates that pathways of disease transmission are almost stable
(Keeling and Eames, 2005). Lack of clustered groups and homogeneity of individual-
level network characteristics make random network models analogous to a random-
mixing aggregate model. Understanding gained from simulations and analysis of ran-
dom networks can enhance our understanding of the impact of network topologies on
disease spread and may aid in further developing more complex social network struc-
tures integrating heterogeneous features of individuals.

Scale-free Network

Scale-free networks exhibit a degree distribution following a power law. In reality, many
empirically observed networks appears to be approximately scale-free; examples include
citation networks, protein networks and social networks (Sca, 2011). Scale-free networks
are far from homogeneous, as some individuals have a lot of connections, while most
individuals are associated with relatively few connections. Compared with random
networks, scale-free networks exhibit wider ranges of heterogeneous connections. In
order to capture some complex features of disease spread, it is necessary to incorporate
such super-spreaders with larger number of links into the network (Keeling and Eames,
2005).

Since scale-free network can display heterogeneity in terms of the number of contacts,
individuals with many connections not only possess high risk of becoming infected (due
to many pathways and links with people), but can also transmit the infection rapidly
once they are infected. Such effects can, for example, allow an infection to remain
endemic in subgroups of a broader population, even when the population average rates
of contact would be insufficient to maintain that network. Capturing this phenomenon
is of great interest to both modelers and epidemiologists, as effective disease control
policy and prevention programs can be enabled when the dynamics of infection in the
network and behaviors of these concentrated high risk individuals are well understood.

Small World Network

A small world network is type of network topology within which each individual is
connected with a given number of nearby individuals, but there are some larger-range
connections. Some observed social networks are found to be small world networks.
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In another words, small world networks integrate both locality of connections among
individuals (which add the fact that two connected individuals are likely to share addi-
tional connections) and some long-range links through which transmission events can
be performed (Keeling and Eames, 2005). Such highly clustered connections can exhibit
the spread of infection locally, while the long-range pathways can depict the transmis-
sion phenomenon that epidemic spread is rapid and unlikely to be constrained within
small regions of the population (Watts, 1998).

Results

In this section, the results of experiments will be demonstrated and analyzed.

Individual-based Baseline Model

Since this individual-based model is a stochastic one, I simulate the AB baseline model
for 100 runs to verify that it yields results comparable to those associated with the
aggregate model. It turns out that the behaviors of these 2 models are almost the
same, and the differences between these two models are small and can be explained
by stochastic factors, seen in Table 3. The bigger discrepancy of Tn and Ts are due to
stochastic factors because of small size of population in these two categories. Jacquez
and Simon have proved that small populations are highly affected by stochasticity
(Jacquez, 1993). However, the difference will practically disappear when the population
in these stocks is above 100. The relative discrepancy for Un, Us, Ln and Ls stocks/states
is quite small, and is due to stochastic effects.

Stock/State SDM
Results

ABM Mean
Results

ABM Std.
Deviation

Minimum Maximum

Un 8415 8443.04 213.1 7955 8925
Ln 6536 6504.52 182.4 5998 6904
Tn 23.54 23.83 5.3 11 44
Us 2664 2693.48 132.8 2334 3062
Ls 5981 5943.39 132.9 5612 6308
Ts 49.35 49.25 7.4 32 78
Total Pop. 23668.9 23657.51 148.5 23301 24043

Table 3: Comparison of baseline models results at 50th year

This comparison reflects the fact that the aggregate SD model is a continuous de-
terministic model which gives a single outcome, while the individual-based based model
is constructed from quantized individuals and yields a distribution of outcomes. The
need to perform an “ensemble” including multiple simulations (“realizations”) in order
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to gain a sense of the range of model behavior further worsens the heavy computational
cost of individual-based models.

Evaluation of Heterogeneity through BCG Vaccination

Now we analyze the difference between individual-based models and aggregate models
under the scenario of BCG Vaccination and waning immunity.

Figure 8: Prevalence of TB Infection and Active TB Given BCG Administration

Figure 8 shows the scenario results coming from both of these two models. The
black lines represent the results coming from the aggregate SD model, while the red
lines represent the simulation results coming from individual-based models. As noted in
the methods section, each individual-based simulation was simulated for 10 realizations.
Because of stochastic factors, the results of each simulation in the individual-based
model are different from one another.

For non-smokers, we can observe that representing a continuously waning protection
from BCG can produce a higher prevalence of latent TB infection compared to that
resulting from use of a dichotomous protected/not protected distinction. For example,
in the 50th years, the prevalence of latent TB infection in the individual-based model is
almost three times higher than that in aggregate SD model. Similarly, the prevalence
of active TB is also higher in the individual-based model when it is compared with that
against an aggregate model. The situation for smokers displays a similar pattern to
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that obtaining among non-smokers. It is worth emphasizing that these differences in
rates emerge in spite of the fact that the decay rates in the individual-level model (on
the one hand) and aggregate model (on the other) are identical.

In conclusion, the patterns of TB transmission resulting from the assumption of
dichotomous waning BCG protection and continuously waning BCG protection over
time are quite different. This gives some insights into the difference between these two
models. It is possible to capture the heterogeneity of individuals in aggregate models by
developing several compartments, each representing a different level of decayed immu-
nity. However, such a representation is awkward and cumbersome, particularly when
there are several other dimensions of heterogeneity present. By contrast, individual-
based models can easily capture the heterogeneous attributes of each individual. From
this point of view, individual-based models can represent the different attributes or
status of individuals more gracefully than aggregate models.

The experiment on BCG protection shows that two theories of BCG protection
duration produce distinct results, and many studies suggested that vaccines (including
BCG) confer a decreasing protection over time. Given the divergence in results, it
would appear that the representation of dichotomous susceptibility in the aggregate
model represents too extreme a simplification of individual-level dynamics to adequately
support investigation of intervention trade-offs.

Evaluation of Non-Memoryless Reactivation

Next, we consider the difference between individual-based models and aggregate models
associated with the degree of memory associated with the reactivation process. While
many runs of this scenario have been conducted, only one of them is presented here as
an example to exhibit the findings.

Figure 9: Proportion of non-smokers developing TB within a certain window of time
following infection
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Figure 10: Proportion of smokers developing TB within a certain window of time
following infection

In this experiment, the aggregate model assumes a memoryless progression from
latent TB infection to Active TB. By contrast, individuals in the agent-based model
exhibit a decreasing reactivation rate with rising time since infection. The analysis of
time from latent infection to active TB and age structure is important, as it might give
some insights into the prevention of TB. Age, often considered as a confounder, can be
examined in the individual-based model; among other benefits, such an examination
can aid us in finding high risk age groups of individuals who are more susceptible to
TB infection. The accessibility of this information within the model could also permit
evaluation of policies which explicitly consider the estimated time since an individual’s
exposure when providing prophylactic treatment.

Figure 11: Age structure of non-smoker TB cases and smoker TB cases
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Interval From
Latent to TB

Cumulative
Percentage
in AB Model
(%)

Cumulative Per-
centage in 1972 for
Non-Indian (%)

Cumulative
Percentage
in 1972 for
Indian (%)

<0.5 year 20.6 31.8 36.4
0.5-1 year 40.0 42.1 50
1-2 years 56.29 52.6 63.6
2-3 years 61.87 78.9 68.2
3-4 year 65.81 84.2 72.2
4-5 year 67.91 89.5 86.4
5-6 year 69.73 - 90.9
6-7 year 71.66 - 95.5
7-8 year 73.55 - 1
8-9 year 74.94 - 1
>9 year 1 1 1

Table 4: Comparison between historical information and estimated results of AB model

Figure 9 and Figure 10 show the time from latent infection to initiation of active
TB for both smokers and non-smokers. In these two graphs, it is found that people
are more likely develop TB in the first two years after infection. The proportion of TB
cases developing TB within the two years following infection is 61% for non-smokers
and 55% for smokers.

It is notable that in an aggregate model, it is currently difficult to derive this im-
portant individual-level history information in the context of time-varying risks (e.g.
associated with reinfection, or due to changes due in delivery of prophylaxis). Moreover,
we also have estimated historical data about the interval from latent infection to TB
in Saskatchewan. Using the individual-based model provides us the opportunity to use
this historical information to calibrate our model and gain confidence that it captures
the essentials of TB transmission in Saskatchewan. Table 4 depicts a comparison of
agent-based modeling results with historical information from Saskatchewan Anti-TB
League Report (Ant, 1972).

In Table 4, although the results of agent-based model are not perfectly consistent
with the historic data, parts of results from agent-based model display some consistency.
For example, the Interval from 0.5 to 1 year and 1 to 2 year for estimated results in agent-
based model are roughly consistent with that for non-Indian in 1972. Furthermore, age
is also captured in the agent-based model for this experiment.

Figure 11 shows the age structure of TB cases for both smokers and non-smokers.
As exhibited in Figure 11, we can find that non-smokers with age between 55 to 59
account for highest percentage over all the non-smoker TB cases; while smokers within
age range (40-44) and (70-74) possess higher percentage over all the smoker TB cases.
However, in contrast to the situation for a larger model we have described in the
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literature (Osgood et al., 2011), we note that our current model does not capture the
higher risk of infection and primary progression for the youngest age categories, so the
data shown exhibits significant discrepancies from the historically observed distribution
of cases by age.

Through the implementation of age in this experiment is initialized with data on
the population age distribution, it yields some useful information about age structure
in TB cases, and this experiment also underscores the possibility of integrating the real
age structure of the population in Saskatchewan when we conduct the simulation of TB
transmission, and calibration to Saskatchewan data on age-specific case rates.

Evaluation of Network Structure on TB Transmission

Within this section, we examine the impact on infection burden of assuming three
alternative types of network structure, namely random, scale-free and small world. In
order to make them comparable, the average contacts in each network structure are
preserved. Here we compare the prevalence of the infection in the individual-based
model and the aggregate model.

Figure 12: Fractional prevalence of infection of non-smokers under alternative network
topology

In Figure 12, we readily find that, among the non-smokers, the random network
yields similar results in the aggregate SD model. By contrast, for the scale-free and
small world networks, the prevalence of infection is lower than that in the aggregate
model. The prevalence of infection in a small world network is even lower than that
in the scale-free network. In Figure 13, a random network produces a lower prevalence
of latent TB infection among smokers than that emerging from the aggregate model.
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Figure 13: Fractional prevalence of infection of smokers under alternative network
topology

The prevalence of TB infection among smokers in scale-free and small world network
topologies is much lower than that in random network. The scale-free network produces
the lowest prevalence of TB infection among latent TB and active TB for smokers.

From these network experiments, small world network structure and scale free net-
work exhibit the lower level of infection prevalence, while random topology gives highest
prevalence of TB infection and Active TB for both smokers and non-smokers. In con-
clusion, even when maintaining a fixed mean rate of connections, making different as-
sumptions concerning the network types yields a noticeable impact on TB transmission,
which should not be overlooked. However the representation in the aggregate model
assumes that individuals in the same compartment are perfectly mixed with each other.
Based on the results with different types of network, we can conclude that the aggregate
model runs the risk of overestimating the burden of infection in the population. From
this point of view, the details of elements left implicit in aggregate models (such as
network structure) can have a major impact upon model results, and can make a naive
parameterized (and uncalibrated) aggregate model diverge in pronounced ways from
actual behavior. It is known that social networks are sometimes well approximated by
specific network types, such as scale-free or small world. The explicit representation
of different network types in an individual-based model can help us produce a more
realistic model of the real pattern of network of individuals in TB transmission.
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Discussion

After running large volumes of experimental scenarios, network topology and individual
heterogeneity are demonstrated to have a significant impact on the dynamics. Based
on the conducted comparison between the aggregate and individual-level approaches,
which one is better? In reality, we often meet trade-offs between these two model-
ing approaches. Based on our own experience in modeling the TB transmission in
an individual-based level and comparing the difference between these two models, we
conclude with a few comments on the trade-offs obtaining between these two methods.

Working at the granularity of individuals, individual-based models can more readily
capture diverse attributes of individuals and more flexibly represent more complex
processes. In the experiments for BCG and reactivation, individual-based models can
easily record and simulate the impact of decreasing BCG protection duration, decreasing
reactivation rate over time, the interval between latent and active TB, and age structure.

From the ease of model extension and creation, individual-based models can be ex-
tended easier to capture additional components of heterogeneity. When we implement
the age structure of each individual, we only need add one more variable associated
with a person to represent this status. By contrast, in an aggregate model, you need to
modify stocks and flow definitions across the model. Especially when a modeler seeks to
implement more attributes, even static attributes (such as gender), the number of com-
partments in the stocks required rises geometrically; particularly when the attributes
(such as age or time since infection) are dynamic, this can lead to very complex, inter-
mixed formulas for flows. From this angle, individual-based models are easier to create
and more flexible to extend. In addition, the representation of waning of immunity (or
other transitions with a similar fashion) can be quite awkward in an aggregate model,
since a group of compartments exhibiting different level of declined immunity need to
be created. This can be particularly cumbersome when the population represented in
the aggregate model already has many attributes (such as age group, ethnicity and
gender). For example, suppose we want to implement such wanning of immunity with
10 decayed level in an aggregate model with many attributes, 10 compartments under
each element of each attribute need to be created, which can end up yielding a huge
number of stocks.

Moreover, such a representation exhibits poor separation of concerns (Dijkstra,
1982): the logic needed to achieve progression along this dimension of heterogene-
ity frequently becomes tangled with the logic associated with progression along other
dynamic dimensions of heterogeneity (e.g. age). By contrast, representation of such
waning phenomenon in an agent-based model is much easier, it can be accomplished via
implementing one more function in the person class instead of adding a large number
of compartments.

From the point of view of computational resource demand and speed, individual-
based models are typically less effective – and frequently far less effective – than ag-
gregate models. Individual-based models can be time-consuming; for example it takes
around 6 hours to run 10 simulations on around 40,000 individuals in our experiment.
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But the simulation time for aggregate models are quite short, and can almost be ignored.
The simulated population size has a significant impact on the computational trade-offs.
When we double the simulated population, the time cost for aggregate models doesn’t
grow at all; however, the time and memory consumption of the individual-based mod-
els grows at least linearly with the population (and potentially non-linearly, depending
on memory hierarchy effects, network density, and other considerations). If we want
to simulate a larger population, the performance of individual-based models is a big
concern. In addition, individual-based models, compared with deterministic aggregate
models, require more time to verify its correctness due to its stochasticity and the poor
expressiveness of general purpose programming languages exhibit when compared to
the domain-specific languages commonly used by System Dynamics packages. Since we
have limited resources and time, this can further limit our ability in conducting more
sensitivity analysis, interactive model exploration, and additional experiments. Of par-
ticular note here is heterogeneity associated with individual history. Looking across
pathogens, such history information (such as the duration of time since a contact of
a case was exposed, or the history of Active TB in a person) can be of considerable
interest when designing interventions. Moreover, such information provides an impor-
tant source of model-generated data to compare with empirical data during calibration
and model validation. While rich history information is readily collected within an
individual-based model, it is typically infeasible to maintain more than a modicum of
historical information in an aggregate model. This limitation constraints a modeler’s
options for calibration, as well as the types of interventions that can be investigated.

Networks have an important role in shaping our understanding of infectious disease.
The focus on individual-level interactions within a network, rather than the popula-
tion level dynamics, attempts to address the vitally important processes of the actual
infection and disease diffusion. Through the implementation of networks, individual-
based models can more accurately simulate and exhibit the association of transmission
of infection and the presence of long-term relationships between individuals, and their
position within the network. By contrast, aggregate models typically operate under
the idealized mixing assumption which might overlook important patterns of TB dif-
fusion. Scenarios with three types of network topologies suggest that small differences
in the structure of the network can lead to significant changes in epidemic behaviors
which can eventually alter the aggregate spread of infection. In addition, taking net-
work topologies into account allows us to more accurately capture and model several
important preventions, including contact tracing, screening program or vaccine; and
more sophisticated control policies and different strategies can be tested or simulated
in a virtual environment with use of network modeling tools. We particularly note
the potential for individual-based models to evaluate policies and protocols which take
into account features of the case-contact network collected by contact tracing. How-
ever, the need to represent networks – as opposed to mixing matrices – does typically
demand that creators of individual-based models offer hypotheses about a range of de-
tails that can be conveniently omitted from an aggregate model. A mixing matrix in
an aggregate model can readily be created from partial network data, without a need
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to reason about the driving factors (in the form of movement patterns or an encom-
passing network) underlying that contact data. By contrast, reasoning about infection
spread across a network on which partial data is available requires that an individual
model posit hypotheses regarding the structure of the remaining network. Similarly, in
an individual-based model in which contacts are driven by movement patterns, it may
be necessary to broaden the model to consider the structure of – and even the driving
factors governing – those movement patterns. Such considerations typically need not
be considered when building an aggregate model.

The three types of networks discussed here are static – the links between the individ-
uals don’t change over time; as a result, the intuitive human relationships elements of
breaking and forming new connections are not currently represented. The dynamics of
networks are believed to be important in understanding the spread of some pathogens
(Morris and Kretzschmar, 1995). Designing networks allowing for changes of connec-
tions over time is an ongoing challenge. However some pioneering work in tracking the
movement and behavior of individuals in real time using mobile device and GPS to col-
lect contact information between individuals allows approximating more comprehensive
network structure and more accurate simulation of the spread of pathogens across a
population (Keeling and Eames, 2005; Morris and Kretzschmar, 1995; Hashemian et al.,
2010).
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