
 
Improving Health Care Management Through the Use of 

Dynamic Simulation Modeling and Health Information Systems   
 

Daniel Goldsmith, Michael Siegel 
MIT Sloan School of Management 

NE25-773, 5 Cambridge Center, Cambridge, MA 02142 
617-258-7459 

goldsmith@mit.edu; msiegel@mit.edu 
Abstract 
To better understand the performance of hospital operations in response to IT-enabled 
improvement, we report the results of a system dynamics model designed to improve core 
medical processes. Utilizing system dynamics modeling and emerging Health Information 
Systems (HIS) data, we demonstrate how current behavior within the hospital leads to a 
‘stove-pipe’ effect, in which each functional group employs policies that are rational at the 
group level, but that lead to inefficiencies at the hospital level. We recommend management 
improvements in both materials and staff utilization to address the stove-pipe effect, estimate 
the resultant cost-saving, and report the results of a new experiment conducted in the hospital 
to validate our approach. We believe that the major gains in health information systems use 
will accompany new information gathering capabilities, as these capabilities result in 
collections of data that can be used to greatly improve patient safety, hospital operations, and 
medical decision support. 
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Introduction 
 
This paper discusses the strategies required to develop system dynamics capabilities in 
hospital environments and to use simulation analysis to help hospital organizations address 
important operational problems. The system dynamics perspective has the ability to create 
improvements in strategic management, both in overcoming single-issue challenges and in 
spurring continuous process improvement (Sterman, 2000). Prior system dynamics work has 
often addressed systematic health care challenges from a disease perspective, such as oral 
health (Hirsch et al., 1975); cardiovascular disease (Hirsch and Myers,1975 & Luginbuhl et 
al., 1981); diabetes (Homer et al., 2004 & Jones et al., 2006); obesity (Homer et al., 2006); 
smoking (Tengs et al., 2001); and chronic illnesses more generally (Hirsch and Immediato, 
1999 and Homer et al., 2007) This work, however, contributes to a growing body of 
literature that focuses on how structures and decisions embedded within hospital 
organizations subvert efforts to change and improve the performance of health care delivery, 
such as ward management (Akiyama et al, 2009); patient flow (Wolstenholme, 1999); and 
safe design capacity (Wolstenholme et al, 2007).  
 
Of particular importance are the dynamics relating to the emergence of new Health 
Information Systems (HIS) that have the potential to revolutionize hospital practice and 



management, improve patient safety, and create vast new rich new datasets. Many excellent 
HIS systems, however, go unused or under-utilized because HIS implementation is met with 
resistance by staff and managers. For example, Dr. Steven Cantrill, a practicing emergency 
medical doctor, describes the challenge as thus: “health-care providers (especially 
physicians) have little tolerance for systems that serve as impediments to getting their work 
done, often regardless of what positives might accrue from using such a system.” (Cantrill, 
2010)  Further, if HIS are implemented, unanticipated behavioral decisions resulting from 
HIS implementation can create counterintuitive outcomes that actually subvert overall 
hospital efficiency. Implementations resulting in unintended negative “side-effects” include 
computerized prescriber order entry (Zhan et al, 2006), electronic health records (Sidorov, 
2006), bar code technology (Poon, 2006), and overall HIT systems (Ash et al, 2003, Wears & 
Berg, 2005, and Kohn 2000). Finally, once developed, there are often significant barriers to 
utilize HIS data-sets to help hospitals implement changes and manage operations (Goodman 
et al 2011).  
 
While the need for new HIS in hospital environments has been well documented, system 
managers, as well as medical practitioners, have both recorded their disappointment with 
many HIS implementations (see Mathews & Pronovost, 2011 for recent commentary on this 
subject).  Part of the reason for suboptimal performance is that many approaches to HIS fail 
to take full advantage of the new opportunities provided by data collections systems as a tool 
to: a) understand, measure, and track hospital operations, b) identify and implement high-
leverage improvements, and c) provide opportunities for hospital staff to train and learn more 
effectively. The challenges of demonstrating returns from information technology 
investments, however, confronts not only health care, but virtually all major industries, and 
have been noted by both practitioners and academics. Our research suggests avenues to 
utilize the rich data set provided by HIS to improve hospital efficiency, patient safety, and 
the receptiveness of staff to IT enabled-improvements in an ongoing basis. 
 
In the following section, we describe our work using system dynamics modeling in 
healthcare settings (combining various elements of our research for the first time), position 
our work in this area, and present a case study of a Japanese hospital system. We introduce 
the operations at the ward-level as they relate to injections processes and represent these 
operations in model structure. We describe the pharmacy operations and document a “silo” 
effect. We then relate the dynamics of different operations and utilize modeling to present 
analysis and recommendations for the improved management of hospital operations. Finally, 
we present new data that documents that the holistic view of operations and the specific 
model-based recommendation led to measurable improvement at the hospital. 
 
System Dynamics Research in Health Care 
 
The system dynamics methodology, which focuses on dynamic problems arising in complex 
systems, has frequently been applied to health care. The appeal of utilizing the methodology 
in health care stems from is focus on interdependence, information feedback, and the 
generation of actionable model-based insights.  The system dynamics literature has broadly 
been classified into two groups: those that deal with specific diseases and those that deal with 
broader policy and management concerns. Literature focusing on diseases includes: Oral 



Health (Hirsch et al., 1975); Cardiovascular Disease (Hirsch and Myers,1975 & Luginbuhl et 
al., 1981); Diabetes (Homer et al., 2004 & Jones et al., 2006); Obesity (Homer et al., 2006); 
smoking (Tengs et al., 2001); and chronic illnesses more generally (Hirsch and Immediato, 
1999 and Homer et al., 2007). Literature focusing on management includes:  EHIR Adoption 
(Erdil & Emerson, 2008); Ward Management (Akiyama et al, 2008, 2009); Telecare (Bayer 
et al, 2007); Patient flow (Wolstenholme, 1999); Safe Design Capacity (Wolstenholme et al, 
2007); and Waiting Lists (Van Ackere and Smith 1999). 
 
We have positioned our work in line with the management focused modeling, and have 
extended existing work but examining the combination of health information systems along 
with hospital level medical processes. We also believe our research has implications for the 
treatment of disease, in particular helping organizations effectively treat chronic diseases by 
lowering costs and improving staff utilization.  
 
Case Setting 
 
This research draws from the analysis of an HIS, POAS (Point of Act System), in place at 
several major Japanese hospitals.  As described by Akiyama (2001, 2007), the underlying 
concept of POAS is to enable records of “who did what to whom, where, when, using what, 
and for what reason. In short, real-time input becomes possible at the point of action.” Under 
the POAS system, logs of medical actions and inventories are created throughout the course 
of operations, recorded using bar-code scanning technology and nurses equipped with PDAS 
(personal digital assistants). The system operates continuously at the hospital, handling 100 
transactions per second, or more than 360,000 transactions per hour, and has been in 
continuous operation for more than four years. For example, the system collects information 
on every interaction between order, drug, nurse, and patient. Utilizing this data, we can 
revisit the challenges associated with HIS and understand system wide behavior. 
 
As described by Akiyama, Siegel, and Goldsmith (2007), soon after implementation, POAS 
facilitated improvement in multiple areas of hospital operations. In addition to POAS-
enabled cost savings, the system also led to improvements in patient safety. Prior to the 
implementation of POAS, there existed nearly a 40 percent chance that there would be a 
misadministration of an injection prescription, due to the absence of an automated method of 
checking injections and the lack of real-time communication. After POAS, this percentage 
was cut dramatically; an alarm would sound prior to the injection if any problems existed 
(such as a correct patient being presented with an incorrect medication), and the staff would 
be able to fix the mistake prior to injection. In the years following the initial implementation 
of POAS, patient-safety benefits continued to be realized, and by all measures, improvement 
remained robust.  
 
However, concern was raised about the sustainability of the system’s financial performance. 
System managers were concerned about how to obtain further improvements in the hospital’s 
financial performance.  Of particular concern were the areas of overlap between functional 
groups within the hospital. For example, for a patient to receive an injection, doctors, 
pharmacists, and nurses must effectively share information and materials. The ability for 
system managers to help manage these interactions was thought to be a key determinant to 



overall system efficiency, as measured in staff and materials utilization. Further, POAS 
improvements had created a rich set of operational data that was being underutilized in 
hospital improvement. We combined analysis of POAS data sets with site visits to POAS 
hospitals, systems dynamics modeling, and expert input to derive important process changes 
across the hospital system.  
 
The Silo Effect in Hospital Ward Management 
 
The basic injection process provides a useful way of thinking about the challenges associated 
with hospital ward management.  The injection process at POAS hospitals, also described in 
Akiyama, Siegel, and Goldsmith (2007), refers to the different paths an injection order can 
take, culminating with either in a successful injection or in a changed or cancelled order.  
 
The key actors in the injection process are doctors, pharmacists, and nurses, and Figure 1 
presents a ward view of operations. This figure is a conceptual simplification of actual 
hospital operations, but highlights each actor’s key procedures. The normal path of injection 
goes from left to right: a doctor issues a prescription order, the pharmacist package the set of 
drugs required (referred to as an Rp) and checks the order for correctness then the  nursing 
staff mixes the Rp components together and injects it into the patient. The solid arrows below 
each actor’s name signal the observables for each actor: for example, pharmacists rarely have 
any information about the downstream processes of the nursing staff. Their viewpoint is 
restricted to their core operations, preparing and checking orders. In other words, the current 
injection process creates a “silo effect,” by which each key actor operates within a functional 
silo. While hospital managers may view the entire process, doctors, nurses, and pharmacists 
are all bounded in visibility by the specific breadth of their function.   
 
Also of note in Figure 1 are the flows of information and materials, as represented by the 
dashed arrows. Information and materials can flow downstream—as in the normal injection 
process described above—but it can also flow upstream, as in the case of changed orders. In 
upstream operations, a nurse will check to see if the order has been changed prior to injection. 
If the order change is processed prior to the mixing phase, the Rp components can be 
returned to stock by the pharmacists and are generally reusable for future patient orders. It is 
important to note that if the Rp has already been mixed prior to the change order, the change 
must result in the disposal of the Rp. 
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Figure 1. Differing Views of Hospital Operations 



 
The difference between orders that can be reused and those that must be thrown out has been 
shown to cause significant variations in the amount the hospital spends on drug inventory, as 
well as the efficiency with which the staff processes an order. In both instances change orders 
result in inefficiencies in the system. The “Manager’s View” sees the effects across the silos 
and can better understand these “global” inefficiencies.  
 
In this research, we highlight the central role of pharmacists in efficient management of the 
injection process, and examine the ability for pharmacists to mange operations given their 
limited visibility of overall operations. We show that pharmacists have developed self-
defeating policies as a result of the stove-pipe effects that maximize downstream flows while 
ignoring the consequences of upstream flows. We then calculate the costs of these policies, 
and recommend a series of policy interventions to ameliorate the negative impacts. 
 
Pharmacy Operations and Model Implications 
 
In this section we present the modeling formulations of ward operations that have emerged 
from our research. The theory reported here draws on extant literature in process 
improvement, system dynamics modeling, as well as our study of one hospital setting 
(Forrester, 1958; Repenning & Sterman, 2002). In particular, we unpack pharmacy 
operations as a balancing process, by which pharmacists must balance competing demands 
for their time. Ultimately, we see that pharmacists pursue strategies that they erroneously 
believe reduce their work burden and lead to waste in medication. While the consequences of 
pharmacist’s actions are difficult to see from their perspective, given their limited visibility 
of other operations, and lead to significant downstream inefficiency and may even impact 
patient safety.   
 
Despite these negative consequences, we demonstrate that the current strategies pharmacists 
employ to manage their workload are intendedly rational. The problem is that they are 
developed from a flawed mental model of hospital operations. Instead of faulting pharmacists 
for the negative outcomes we observed, we show how structural limitations in hospital 
operations create an environment in which well intentioned polices at the group level (i.e. 
pharmacists) can subvert overall operational efficiency. To arrive at this insight, we present a 
series of causal diagrams to capture hospital dynamics, construct a simulation model to 
quantify system behavior over time, and simulate the model, presenting the results from the 
perspective of multiple hospital actors.  
 
The core pharmacy operations are represented in the balancing loop B1 in Figure 2. The rate 
of new orders from doctors increases the work that the pharmacists must complete. 
Depending on the delay in pharmacy, the orders will be processed at a given rate: the shorter 
the delay, all else equal, the rate of operations will increase. The result of pharmacy 
operations, preparing and checking drugs, here referred to as filling orders, closes a loop by 
diminishing the amount of work left to do. The “work accomplishment” structure in B1 
captures the embedded rationality of pharmacists: their goal is to reduce the amount of work 
left to accomplishment. 
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Figure 2. Intended Rational of Pharmacy Operations 

 
Figure 3 presents a constraint on the rate of hospital operations: the capacity of pharmacy, a 
concept that combines staff and equipment into an overall metric of how fast, at its maximum, 
the pharmacy would be able to process orders. First, the capacity of the pharmacy is 
represented as a fundamental constraint on operations, shown in loop B2. The capacity of the 
pharmacy sets a feasible rate of operations, given an amount of work to do, representing the 
upper limit of pharmacy operations. The capacity of the pharmacy also has a role in 
determining the normal pharmacy delay: the time in which, on average, it takes the pharmacy 
to fill an order. While not the only influence of pharmacy delay (which include such other 
factors as work habits and expectations), the capacity of the pharmacy influences the 
pharmacy delay (another way to think of the pharmacy delay is the average time an order will 
spend within the purview of the pharmacy.)  
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Figure 3. Capacity Constraints 
 
To examine these basic pharmacy dynamics in the context of a sample hospital, we first 
consider data from POAS on the changes in work burden on pharmacists over time. For 
several reasons, including structural changes in the Japanese healthcare environment, both 
the number of patients and the number of orders rose over a period of several years. (Figure 
4)  Orders, however, rose faster than patients, and the increase created a rise in the orders per 



patient. During the same time the overall staff in the pharmacy was constant. Therefore, 
pharmacists were faced with increasing work burdens. 
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Figure 4. Changes Order per Patient Over Time 

 
As a result of the changes in the new order rate over time, the pressure on pharmacists 
increases. We have captured the concept of work pressure, which can be thought of a ratio of 
implied rate of operations divided by the feasible rate of operations. That is, the closer a 
pharmacist gets to the maximum feasible rate he or she can work, the more pressure they feel. 
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Figure 5. Work Pressure 

 
We represent the rise in orders shown in Figure 6 below with an arrow, and have circled 
several possible options available to managers and pharmacists to mange the increased work 
burden. The three options are to: a) increase the capacity of the pharmacy, by, for example, 
hiring more staff; b) lengthen the normal pharmacy delay, likely requiring patients to wait 
longer for orders to be complete; and c) increase the implied rate of operations by finding 
some way to work faster with the same capacity. 
 



 
Figure 6. Options to Manage Increases in Work Pressure 

 
While all the options conceptually reduce work pressure, both hiring more staff and requiring 
a longer wait for orders are likely difficult to accomplish and may be, in fact, infeasible. 
Increasing the work rate, therefore, is the most appealing option. Further, it is under control 
of the pharmacists themselves, and allows them to regulate work pressure without the 
intervention of other actors. While managers must become involved to hire more staff, and 
nurses and patients will be affected by longer delays, pharmacists, by developing a way to 
work faster, can balance the work burden with little perceived costs. One way to accomplish 
this is to complete orders in batches, an operation represented by loop B3. (Figure 7) 
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Figure 7. Batching 

 
Batch processing combines orders into batches that are processed in delivered in large groups 
and allow pharmacists to increase the rate at which orders are processed. While new orders 
represent the majority of the work pharmacists must accomplish, order changes also creates 
work for pharmacists to accomplish. The demands from order changes, however, creates 
competing demands, represent by loops B4 and R1. Working to fill order changes reduces the 



pile of order change, but reduces the rate at which new orders can be processed.  From 
interviews with pharmacists conducted at a sample hospital, the pharmacists were clear that 
they considered new orders the most important to fill, and the backlog of new orders to be the 
most salient indicator of how effective they were in managing their work load. Pharmacists 
would likely pursue policies to favor loop R1 over loop B4. (Figure 8) 
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Figure 8. Balancing Work Pressures 

 
Also, batching operations in loop B3 have a virtuous property of reducing work from redos, 
as shown in loop B5 of Figure 9.  Batching reduces the average time the order stays in the 
pharmacy by speeding up the rate at which they fill orders.  As orders spend less time in the 
pharmacy, fewer changes are, on average, made while the order is at the pharmacy, reducing 
the amount of work pharmacists must do from order changes in the pharmacy. Batching, 
therefore, appears to be not only an effective strategy to manage new orders, it also reduces 
the amount of work from redos. A pharmacist commented on this, effect saying “We would 
like to get redos in the pharmacy down to zero.” (Figure 9) 
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Figure 9. Reducing Changes at Pharmacy 

 
Based on the dynamics demonstrated in the causal diagrams above, we constructed a 
simulation model to show the flow of material and information throughout the injection 
process. We first simulated the model from the pharmacist’s perspective for a one-week 
period, and present the results in time series graphs in Figure 10. We see the positive benefits 
on batching from the pharmacy perspective. The base case (no batching) is shown in solid 
lines, and the batching case is shown in dashed lines. As a result of batching, work to do goes 
down, as the completion rate goes up, and the numbers of redos that occur in the pharmacy 
also fall.  
 

 
Figure 10. Simulation of Batching in Pharmacy 

 
Conceptually the mental model that leads to the batching strategy is limited. The results 
presented in Figure 10 are skewed by this partial view of possible outcomes, rather than a 
whole-systems perspective. Figure 11 explicitly includes feedback from the nurses, which is 
not represented in the pharmacist’s conceptual model of operations. Loops R2a and R2b 
show the key feedback from redos at the nursing station; in both loops the redos that the 
pharmacists believe they are avoiding by batching reappear.  Pushing orders faster out of the 
pharmacy does reduce redos orders while they are in the pharmacy, but only by delaying the 
same redos until the nurses are working on them. Loop R2a shows this feedback, with the 
key delay for these orders to return to the pharmacy explicitly recognized by the double line 
across the causal link. In other words, the redos from the nurses are the very same redos the 
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pharmacy would have processed if the order had stayed in the pharmacy longer (even though 
pharmacists don’t see this.)  
 
Loop R2b shows how this feedback is observed from the pharmacy perspective. The redos 
from the pharmacy are not treated as redo orders; instead, when they appear from the nurses, 
they seem to be new orders. Pharmacists, because of how the orders are processed, lose the 
traceability of ordering that would let them match up the subsequent order change with the 
new order. The perceptual differences between loops R2a and R2b, which correspond to 
different mental models of pharmacy operations, are crucial to understanding pharmacy 
behavior. 
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Figure 11. Batching Reduces Changes at Pharmacy 

 
The Role of Pharmacy Operations on Downstream Processes  
 
We now include nurses into our causal framework and observe the downstream 
consequences of batching. To do so, we return to the possible outcomes of an injection order; 
it can be a) successfully injected, b) changed before mixing while at the pharmacy, c) 
changed before mixing while at the nurse station, or d) changed after mixing at the bedside. 
There are important differences between outcomes: most importantly, once the order is 
mixed, it must be wasted, as it can’t be used for other patients. Additionally, an order 
returned from the nurse station has accumulated more time being processed than one changed 
at the pharmacy.  These differences are demonstrated in Figure 12, a stock and flow structure 
that captures the four different outcomes (shown as outflows from each stock.) The first 



series of constructs relate to the flow of orders and material.  The flows, denoted by straight 
arrows with values, are the rate at which orders for injections are successfully moved 
(referred to as Rps, a bundled collection of injection materials) between stations in the 
hospital. Figure 12 also shows three of the system’s stocks, denoted by a rectangle, which are 
computed as the integration of the stock’s inflows less its outflows. The stocks are the 
accumulation of orders and waiting to be processed at three stages, the pharmacy, the nurse 
station, and the patient’s bedside. 
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Figure 12. Batching Reduces Changes at Pharmacy 

 
In Figure 13 below, the consequence of batching are captured with arrows indicating the 
implied changes in the variables; beginning with the pharmacy processing rate, as the rate 
increases, injections in the pharmacy decrease, as do returns from the pharmacy. At the same 
time, Rps at the nurse station rise (given a constant mixing rate). The dashed rectangle shows 
the limits of the pharmacy’s perspective.  
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Figure 13. Batching Reduces Changes at Pharmacy 
 
Next, we capture the perspective of the nurses in Figure 14, and again show the implied 
behavior with arrows. It has been demonstrated in previous research that nurses are likely to 
respond to rising orders at the nurse station also with a batching strategy. 
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Figure 14. Batching Reduces Changes at Pharmacy 

 
As intended under POAS, each Rp is scheduled in advance to be mixed at a specific time, 
which corresponds to the staggered schedule of each injection. However, nurses often mix 
Rps in large batches throughout the day, which clusters the nurse’s workload and increases 
the blocks of available downtime. This balances the increase in the pharmacy processing rate, 
and accelerates the rate at which Rps are moved from the nurse station to the bedside (i.e., in 
the mixed form).  This however, leads more change orders to occur while the orders are 
mixed, and these orders must be thrown out.  
 
Simulating our model from the nurses perspective, we see a very different outcome as a 
result of pharmacy batching, as shown in Figure 15. The base case is the solid red line, and 
the batching case is shown in solid blue line. Instead of the improvements we witnessed from 
the pharmacy perspective, pharmacy batching has lead to an increase in the nurse work rate, 
an increase in the number of orders wasted, and lead to an overall increase in the time that 
staff must spend on order changes. 
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Figure 15. Simulation results from the nurse’s perspective 
 
We support our simulations by using POAS data, and examine the behavior our simulation 
suggests for a one-week period over a period of years. The amount of orders that are either 
wasted or returned increases after initial gains were made in from 2002 to 2003. The 
percentage of orders wasted rose from 1.2 percent in October 2003, to 1.4 percent in October 
2006. Additionally, the number of orders returned from nurses increased from 8.9 percent to 
10.4 percent over the same period.  (Figure 16) 
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Figure 16. Injection Outcomes 

 
POAS data also verifies the relationship demonstrated in the simulation results shown above. 
By relating the mixing gap, the time between when an order is mixed and when it is injected, 
to the percentage of orders wasted, we see a positive relationship between increase in the 
mixing gap and increases in the percentage of orders that are wasted. (Figure 17) 
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Figure 17. Mixing Gap and Percentage Waste 

 
In addition, POAS data shows a negative mixing gap for a small segment of orders. That is, 
the orders are shown to be mixed after they have already been injected—a practical 
impossibility. This data suggests evidence for an additional phenomenon in nurse behavior 
that may result from pharmacy batching: early injection. Because nurses: a) have the orders 
earlier, and b) are mixing them earlier, there is evidence to suggest that nurses are injected 
them prior to the scheduled injection time. Some of these orders are then changed, meaning 
patients received the wrong injection.  Examining POAS data we see that orders are injected 
early nearly 3.3 percent of the time. While the consequences of early injection require further 
investigation, the evidence suggests it is at least possible that pharmacy processes are having 
unintended downstream consequences on patient safety. Further, because of the stove-pipe 
effect, pharmacists, without policy intervention, would fail to realize the magnitude of 
consequences of their actions. 
 
 
Analysis and Recommendations 



 
As a first step to address the dynamics inhibiting the ongoing financial success, we simulated 
the effects of removing specific costly medicines from the batch mixing dynamic. We were 
aided by the use of POAS-enable data, which allowed us to find high-leverage (i.e. cost) drug 
candidates by analyzing the stream of operational output. We chose five medicines—Novact 
M, Funguard, Kenketsu Venoglobulin-IH, Rituximab, and Gran Injection—that we 
determined accounted for nearly 25 percent of the overall waste.  
 
Shown in Figure 18 is a limited sample of the data used in analyzing the cost benefit from not 
batching a set of drugs. This sample data comes directly from the POAS system and is 
available over a four-year period. The sample below includes: macro coding information, 
including an order ID, a unique number for each discrete hospital action and a patient-
specific code; information for hospital billing, such as the medical department code, the ward 
code, the medicine code, and the medicine cost; and data on the timing of the patient’s 
treatment, including the scheduled injection time, the time of delivery of the injection, and 
the actual injection time.  
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 18. Sample POAS-enabled Data Set 
 
 
We used the coded data as an input to the system dynamics simulation model.  Simulating 
the effects of subjecting these five medicines to different mixing procedures, which would 
ensure an improved mixing schedule, lead us to estimate potential savings of approximately 
70 million yen, or 600 thousand US dollars, on an annual basis (Figure 19). In addition, with 
the new approach to batching we saw an improvement of nurse utilization. The total time 
spent on injection operations decreased by approximately 7 percent (Figure 20). 

Order ID
Patient 
Code

Medical Dep't 
Code

Hospital 
Ward 
Code

Scheduled 
Inject Date

Delivery of 
Goods Date

Injection 
Execution 

Date
Medicine 

Code Cost

3000008348984 02330525 S12 04 20-Apr-04 19-Apr-04 YT0272 3240

3000008349004 03411520 N09 08 01-Apr-04 31-Mar-04 01-Apr-04 YT0240 85

3000008349004 03411520 N09 08 01-Apr-04 31-Mar-04 01-Apr-04 YT0116 7632

3000008349004 03411520 N09 08 01-Apr-04 31-Mar-04 01-Apr-04 YT0139 394

3000008349004 03411520 N09 08 01-Apr-04 31-Mar-04 01-Apr-04 Y01265 116

3000008349004 03411520 N09 08 01-Apr-04 31-Mar-04 01-Apr-04 YT0349 17900
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Figure 19: Cost Savings Due to Delayed Mixing of Five Drugs 
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Figure 20: Weekly Savings in Nurse Time Due to Delayed Mixing 

 
Thus our analysis used system dynamics modeling techniques combined with hospital system 
data to identify a considerable savings in both materials and staff utilization.  
 
Implementation 
Based upon these results, we presented our findings to the nursing staff at the Japanese 
hospital in May 2007. During this meeting, we discussed the model structure, our results, and 
ways in which the nursing staff might be able to implement the results. We initially intended 
to run trials that initiated with the pharmacy marking the top five wasted drugs, instructing 
the nurses to delay mixing of those orders until bedside delivery to the patient. However, 
based upon our meetings, the nurses decided to address the problem on their own, and began 
to reduce the mixing time (the time between mixing and injection), which in turn, drove 
reductions in the wasted drug rate. Mixing time (the left axis, measured in minutes) declined 
from 130 minutes to 115 minutes, and wasting rate (the right axis, measured in percentage) 
fell from 1.5 to 0.75. (Figure 21) 
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Figure 21: Weekly Savings in Nurse Time Due to Delayed Mixing 
 

The use of SDM combined with systems data provided and an excellent medium to 
communicate with front line workers. In the future, we see the ability to run SDM-enabled 
experiments and analyze the results with real-time data capture systems as a crucial tool to 
improve health care operations. 

Conclusion and Discussion 

 
The goal of research in this area is to develop management improvements by means of 
systems modeling and analysis combined with the use of newly available operational data 
sources, such as POAS. We expect that this style of research will help sustain and advance 
system-wide improvements in operational efficiency in a hospital setting. Ongoing 
investigations will focus on designing robust experiments and simulations to increase 
understanding of the causes and effects for sustained improvement. While implementation 
challenges to this process improvement exist, we have proposed a high-leverage yet non-
disruptive improvement to quickly demonstrate financial benefits. Continued studies, 
including additional staff interviews, will focus on better understanding the culture involved 
in ward management to develop a workable solution for more comprehensive improvements 
in ward management, such as new dynamic nurse scheduling technologies. 
 
Utilizing system dynamics modeling and emerging HIS data, we have demonstrated how 
current behavior within the hospital leads to a ‘stove-pipe’ effect, in which each functional 
group employs policies that are intendedly rational at the group level, but that also lead to 
inefficiency across operations at the hospital level. Our data suggests that critical 
determinants of success in efficient hospital operations include the perceptions stakeholders 
have about the effects of the actions on upstream and downstream processes.  Faulty 
attributions about the drivers of efficiency can trap operations in deteriorating modes of 
performance, and subvert the momentum gained from IT-enabled processes. We recommend 
management improvements in both materials and staff utilization to address the stove-pipe 
effect, and estimate the resultant cost-saving. As part of this analysis we also demonstrate 
opportunities to merge real-time operational data with feedback modeling to provide 
dynamic tools for hospital administration, risk management, and education and training. We 
believe that the major gains in health information systems use will accompany new 
information gathering capabilities, as these capabilities result in collections of data that can 
be used to greatly improve patient safety, hospital operations, and medical decision support. 



 
In the future, we envision a system that merges newly available operational data sources (i.e., 
real-time POAS data), electronic medical records, and operational data into feedback models 
that create dynamic ward management tools. We propose a system that would provide 
information to hospital about efficiency metrics, and would provide managers a means to 
change policies, such as which drugs to exempt from mixing, at any point during on-going 
hospital operations. This platform would be open for improvements, promoting the 
development of additional tools that improve operations and manage patient risk. More 
specifically, we envision the following steps for systems improvement in hospital 
environments: 1) identifying potential improvements and important areas of concern; 2) 
building formal simulation models for analysis and policy formulation; 3) testing design 
changes both in models and at non-disruptive points in hospital systems 4) engaging hospital 
management and actors in developing strategies for the design and implementation of 
procedural changes; 5) analyzing the effectiveness of new policies; and 6) incorporating 
lessons learned into hospital.   
 
The data produced by the POAS system combined with computational social science 
methodologies, particularly system dynamics modeling, is an exciting step forward in 
understanding the dynamics of managerial improvement in hospitals. With the reported 
initial results and continued research, we predict that this work will have a significant impact 
on reducing hospital costs, improving patient safety, and accommodating improvements in 
hospital staff operations.  
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