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A PRACTICAL APPROACH TO SENSITIVITY TESTING 
OF SYSTEM DYNAMICS MODELS 

I. INTRODUCTION 

Sensitivity testing, according to the glossary of terms in a 

Congressional manual on simulation. modeling, is defined as the "running of a 

simulation model by successively changing the states of the system ... and 
comparing the model outputs to determine the effects of these changes" 
(Congress 1975, p. 129). Sensitivity testing is generally viewed as an 

important part of the modeling process because it helps researchers narrow 

down those areas where more data gathering would be most useful. In our 
introductory remarks, we argue that detailed sensitivity testing is 
particularly important in system dynamics modeling efforts, and we list 

several obstacles that make detailed sensitivity testing difficult. We 
introduce a set of testing procedures developed at the Los Alamos National 

Laboratory and verified by the Control Data Corporation that can help system 
dynamicists perform detailed sensitivity testing on a routine basis. 

In the body of the paper, we present an illustrative application of the 

testing procedures, and we list six specific uses of the procedures. We 
describe the availability of the testing package, and we conclude with a set 

of practical guidelines for investigators wishing to make use of this unique 

set of procedures. 

A. Importance of Sensitivity Testing 

Sensitivity testing is an important part of all modeling projects, but 

it is especially valuable in system dynamics projects because system 
dynamicists tend to: 

1. close feedback loops in their models; 

2. rely on less precise information in estimating parameters; 

3. expect model behavior to be insensitive to changes in most 
par ame~ers ; 

4. and are reasonably successful in achieving model implementation. 
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PREFACE 

In July 1983, system dynamicists will meet at the 1983 International 

System Dynamics Conference to discuss model validation. The conference focus 

on model validity is appropriate since the question most frequently asked 

about models of social systems is "Has the. validity of the model been 

proved?" Our view is that scientific proof of model validity is impossible. 

No model has been or ever will be thoroughly validated since models are 

designed as simplifications of the simulated system. Rather than aspiring for 

a proof of validity, one should look for simple, pragmatic steps to bolster 

confidence in the model. 

We expect that the majority of the participants in the 1983 conference 

will agree that sensitivity testing is one of several pragmatic steps that 

can be taken to improve one's confidence in a model. With the hope that 

sensitivity testing will be performed in a more thorough and more detailed 

fashion in the future, we present "A Practical Approach to Sensitivity Testing 

of Sys tern Dynamics Models." 

ABSTRACT 

Sensitivity testing is an important part of all modeling projects, but 

it is especially valuable in system dynamics projects. This paper presents a 

practical approach toward sensitivity testing that will allow system dynamics 

analysts to perform thorough and detailed testing on a routine basis. We 

illustrate the approach by calculating tolerance intervals on a system 

dynamics model projection of oil and natural gas consumption by the US 

electric utility industry. Forty-five model input parameters are considered 

uncertain, and twenty simulations runs are used to gain the statistical 

information needed to calculate confidence bounds. The paper discusses six 

applications of the sensitivity testing procedures, and concludes with 

suggestions for practical application. Ten alternative approaches to 

sensitivity analysis are reviewed in the Appendix. 



Driven by the expectation that closure of key feedback loops will lead 

to better understanding of system behavior, system dynamicists are likely to 

include many highly uncertain parameters in their models. It is often the 

case that many of the causal relationships in a loop are easily quantified, 

but a final relationship needed to close the loop is quite difficult to repre­

sent. The natural tendency of most analysts is to omit the difficult relation­

ship, but a system dynamicist is likely to include the difficult relationship 

even if he must rely on expert judgment or personal intuition to close the 

loop. System dynamicists proceed with this style of modeling fully aware that 

the inclusion of such uncertain parameters opens the model to criticism, espe­

cially from analysts more accustomed to open system models which only include 

the more easily estimated parameters.* System dynamicists risk such criticism 

because they expect model behavior to be insensitive to the vast majority of 

the parameter values, and they wish to concentrate their efforts on the search 

for the few sensitive points where small changes in parameter values may cause 

large changes in the pattern of model behavior. It is our opinion that the 

analyst who is willing to include highly uncertain parameters in a model should 

be prepared to perform detailed sensitivity testing to confirm or reject his 

expectation that there are only a few sensitive points in the model. 

The fourth reason for the special importance of detailed sensitivity 

testing in system dynamics projects is the past success that system dynamicists 

have achieved in model implementation. With successful implementation, 

however, one often finds multiple layers of structural additions motivated by 

the client's interest in new problems. With each hew layer of structure, the 

analyst's ability to understand the essential workings of the model is 

diminished. Over time, a model may grow to such proportions that it resembles 

an artichoke with so many leaves that only the most persistent analyst can get 

*These aspects of system dynamics projects are aptly described by Greenberger 
as follows: 

The users of system dynamics do not shy away from applying their 
models to complex social problems. They strive to compensate for 
the limited supply of reliable data by drawing on the opinions of 
experts and on their own intuitions. They seek to identify 
causal structures and set parameter values, not by traditional 
data analyses and correlation studies, but by what some consider 
"armchair speculation" and economist Lawrence Klein apprehensively 
refers to as "stylizing the facts." 

(Greenberger 1976, p. 126) 
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to the heart of the model.* We feel that the sensitivity procedures described 

in this paper are particularly applicable to system dynamicists wishing to 

distinguish between the leaves and the heart of an "artichoke model." 

B. Difficulties in Sensitivity Testing 

Our views on the importance of sensitivity testing are not unique. We 

doubt that there is a single participant at this conference who does not view 

sensitivity testing as a crucial step in the modeling process. One must 

wonder, therefore, why detailed sensitivity testing is not reported on a 

routine basis as part of the customary model documentation and summary 

reports. We suspect that the following attributes of simulation models have 

made detailed sensitivity testing difficult: 

1. There are a large number of model parameters that require testing. 

2. There are a large number of output variables that might be monitored 
as a measure of sensitivity. 

3. The output generated is dynamic and consists of patterns that vary 
with time. 

4. Many models are constructed without a clear statement of purpose. 
The decision to be made as a result of the information gained from 
the model is not specified. 

Our purpose in this paper is to present a set of statistical procedures that 

can help the system dynamicist overcome the first of the four obstacles. For 

suggestions on dealing with the remaining three obstacles, we refer conference 

participants to "A New Measure of Sensitivity for Social System Simulation 

Mode 1 s" de vel oped by Ford and Gardiner ( 1979). We refer participants to 

Appendix A for a brief description of related research on sensitivity methods 

for system dynamics models. Participants are referred to the paper by 

Tank-Nielsen {1980) for a discussion of the overall role of sensitivity 

testing in the model construction process. 

*The "artichoke effect" is a term coined by Walter Carlson to help describe 
the complexity of computer systems: 

We have a proclivity to add features, add functions, and add 
interfaces--layer upon layer--onto existing systems. Each 
succeeding layer has less and less useful or tasty substance on 
it, until the outside layers merely add weight, complexity, and a 
prickly hindrance to reaching the core of the problem. 

(Greenberger 1976, p. 73) 
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c. Background on the Sensitivity Testing Procedure, 

The procedures described here were originally developed by Michael McKay 

of the Statistics Group of the Los Alamos National Laboratory. McKay was asked 
to develop a sampling procedure that would allow Los Alamos scientists to learn 
the most important inputs to complex computer models of nuclear reactor 

performance during a simulated loss of cool ant accident. The computer code 
solved three dimensional partial differential equations to find the 

temperature and pressure changes in the simulated core of a commercial nuclear 
reactor. The code required substantial computational time for one simulation 
experiment. In research performed for the Nuclear Regulatory Commission, 
McKay used the sampling procedure known as Latin Hypercube Sampling (LHS) 
which would allow the Los Alamos scientists to gain the most information on 

key inputs within a budget constraint on the number of computer runs. To 
apply the LHS procedure for selecting proper values of the model inputs, the 

user-specified range of plausibility on each input is divided into N equal 

probability intervals, where N is the number of computer runs allowed with the 
model. A value is selected from each interval according to the user specified 

conditional distribution, and the values for each input are assigned at random 

to the N model runs. The sampling procedures and properties of the estimators 

obtained from LHS are described in previous publications (McKay, Conover, and 

Whiteman 1976; McKay, Conover and Beckman 1979). 
Later in research performed for the Energy Information Administration, 

Los Alamos scientists applied the LHS procedures to COAL2, a medium-sized model 

of the US energy system.* The COAL2 case study' indicated that McKay's 
procedures could be easily applied once the ranges of plausibility of each 

model input were specified. The procedures were later applied to a complex 

simulation model of oil resource exploration on government lands in Alaska by 

Abbey and Bivins (1982). 

*COAL2 is a system dynamics model of the US energy system developed by 
Dr. Roger Naill (1976, 1977) as part of a Dartmouth College research project 
on the US coal industry. A revised version of the COAL2 model was used to 
test the effects of President Carter's National Energy Plan at the request of 
the House Subcommittee on Energy and Power (Naill and Backus 1977). Extensions 
and improvements in COAL2 led to the FOSSIL2 model now used at the Department 
of Energy in preparing the department's annual forecasts (EEA 1980, NEP II 
1979). In the Los Alamos sensitivity test, 72 COAL2 input parameters were 
considered as uncertain. Results of the Los Alamos test are described in two 
technical reports from the laboratory (Ford, Moore, and McKay 1979; 
McKay 1978). 
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By 1981, Los Alamos researchers had applied the LHS testing procedures 

to six different models which employed a variety of techniques including 

linear programming, numerical analysis of partial differential equations, 

a 1 gebrai c equations, and system dynamics. The procedures function in the same 

way regardless of the particular modeling approach because the model is 

treated as a "black box" whose properties are to be tested statistically. 
Although McKay's procedures are applicable to any kind of model, the package 

of computer programs were limited to application on the Los Alamos computer 
system in 1981. 

In 1982, analysts from Los Alamos and the Control Data Corporation set 

out to verify McKay's procedures. Our purpose was to enhance confidence in 
the LHS testing package by demonstrating that results of past tests could be 

reproduced on an independent computer system.* A second objective was to make 

the package of programs avail able to a wider group of modelers than those with 

access to just the Los Alamos computer system. The Los Alamos/Control Data 

Corporation project success fully implemented the LHS testing procedures for 

specific application to system dynamics models (Amlin 1982), and detailed 

sensitivity testing can now be performed on a routine basis by any system 

dynamicist with access to the Dartmouth College computer or the Control Data 
Corporation's CYBERNET system. In the remainder of this paper, we demonstrate 

through illustrative examples the type of information to be gained when 

applying the sensitivity testing procedures to system dynamics models. 

II. TOLERANCE INTERVALS ON US OIL AND GAS CONSUMPTION BY ELECTRIC UTILITIES 

A. The Illustrative Example 

Our demonstration makes use of a system dynamics model designed to 

simulate the operations of a hypothetical, investor-owned electric utility 

company subject to rate -of -return regulation as practiced by state public 

service commissions. The model was developed to serve as the new electric 

*Transferring a model to an independent computer system and reproducing 
previously published results is a good test. This process, sometimes called 
"model verification" (House and Mcleod 1976), is equally useful in bolstering 
confidence in a package of programs such as the LHS sensitivity testing 
package. 
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utility sector of the FOSS IL2 modeling system at the Department of Energy. 

FOSSIL2 is a system dynamics model of the nation's supply and demand for 

energy used in policy analysis at the Department of Energy (NEP II 1979; 

EEA 1980). The new electric utility sector was constructed by adapting a 

model of an individual utility company to perform the nationwide calculations 

needed in FOSSIL2. Full technical details of the model of a single electric 

utility company are given in a technical report from SRI International 

( Yabroff and Ford 1980). 

Figure l shows the new electric utility sector's projection of the oil 

and gas used by the nation's electric utility companies. The model is 

initialized in 1950 and simulates thirty years of historical behavior before 

moving to the projections for the 1980s. Figure l provides a comparison of 

model and industry behavior during this 30-year period. Cases A, B, and C 

shown in Fig. l differ in the reserve margins projected by the model for 

the 1980s. Case A represents a vigorous building program in which utility 

companies maintain the high reserve margins of the late 1970s. In Case B, 

reserve margins decline from the high levels, but not all the way to the 20% 

level of the late 1960s. In Case C, construction programs are severely 
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Fig. l. Three projections of nationwide oil- and 
gas-fired steam generation. 
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limited, and reserve margins decline to the 20% level by the end of the 

decade. Depending on which of these cases is viewed as most representative of 

the nation's oil and gas burning utilities, nationwide oil and gas usage could 

be cut approximately in half by the end of the decade, or it could be no lower 

than it is today. 

The three projections shown in Fig. l are somewhat typical of the 

informal sensitivity testing that is performed with system dynamics (and 

other) models. The analysts uses his or her own judgment to find the most 

important inputs and presents .several simulations to demonstrate the 

importance of a particular parameter or policy. In this paper, we demonstrate 

what can be done to move beyond these informal procedures. We assume that one 

is interested in obtaining a tolerance interval on the oil and gas projections 

like those shown in Fig. l.* This may be done through iterative application 

of the sensitivity testing procedures. 

B. Iterative Application of LHS Sensitivity Testing 

The application of LHS procedures yields some information on the range of 

possible values of a given output variable, but one cannot interpret the range 

probabilistically unless the many inputs to the model are independent. Given 

the complexity of energy systems, one must expect that there will be hundreds 

of interdependencies among the numerous inputs to any moderate-sized energy 

model. The key question, therefore, is whether the many interdependencies 

among model inputs are important impediments to obtaining a probabi listie 

interpretation of the range of values on a given output variable. Figure 2 

gives an overview of the procedures we recommend for answering this question. 

The analysis begins with the application of the LHS procedure to obtain 

an initial estimate of the confidence bounds on model output and a list of the 

most important parameters of the model. The model user then determines 

whether the most important parameters are truly independent. If they are, we 

assume that one may ignore whatever interdependencies may exist between less 

important input parameters and proceed to interpret the confidence bounds in 

probabilistic terms. If they are not, the model user alters the model to 

*As Mass and Senge (1980} explain, at least three criteria are possible in a 
model testing process: (1) changes in the predicted numerical values of the 
model, (2) changes in the behavior mode of the model, and (3} changes in the 
policy recommendations drawn from the model. The illustrative calculations 
presented in this paper adopt the first criterion. 
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Fig. 2. Overview of the iterative application of Latin Hypercube Sampling 
to obtain interpretable tolerance intervals on model output. 

remove the correlation among the top inputs. With the alterations, one 

obtains a new model, a new set of inputs, and the sensitivity testing must 

begin again with a new application of the LHS procedures. The iterations in 

Fig. 2 are repeated until confidence bounds are obtained for a model whose key 

input parameters are judged to be uncorrelated with one another. 

C. Results from the First Iteration 

We begin with a list of 45 parameters and their associated ranges of 

plausibility listed in App. B. The appendix gives the name of each input, the 

nominal values, their definitions, and our estimate of their ranges of 

p l aus i b i 1 i ty. The first five parameters characterize the growth and shape of 

the demand for electricity, and the next two influence the way in which the 

price of electricity is regulated by state commissions. Parameters 8-12 

influence the outcome for the utility company choice of the amount and kind of 

power plants to build in the future. Parameters 13-40 give the specific 

attributes for each of the generating technologies used in the model. The 

final set of parameters characterizes the transmission, distribution, and 

hydroelectric components of the electric utility model. 

With the parameter ranges as a starting point, a set of twenty 

simulation experiments were designed using the LHS rules to ensure full 
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coverage of the 45-dimensional input space. The final result of the sampling 

analysis is a set of instructions for twenty* computer simulations with 

different parameter values for each of the 45 parameters considered 

uncertain. The information obtained from these twenty simulations is 

summarized in Fig. 3A. 

Figure 3A reports the summary statistics for the first iteration 

analysis of the .Q.il and Gas ~sed in g_lectricity .§_eneration (OUEG). Figure 3 

shows the mean, maximum, and minimum results from the twenty simulation 

experiments. The variability among the different simulations is apparent from 

comparing the minimum and maximum values and also from the behavior of the 

standard deviation over time. The "nominal" values shown in Fig. 3A result 

when the model is run with all parameters taking on the "nominal values" 

reported in App. B. These summary statistics show that the nominal and mean 

results are quite close and that the maximum value is almost twice as large as 

the mean in the year 1990. Notice that the Fig. 3A information begins in the 

year 1980--the first year of the model projections into the future. Thus, the 

ranges of plausibility on input parameters (Appendix B) must be expressed in 

terms of an uncertain estimate of parameters in future years. (We do not 

necessarily agree with Carsten Tank-Nielsen (1980, p. 195) that a parameter 

change that "destroys the history fit of the model should not be viewed as a 

reasonable change.") 

Figure 3B shows the tolerance intervals obtained from the first 

iteration analysis of OUEG. These limits encompass the range of values that 

could be expected in either 75% or 90% of the simulation runs of the model. 

The 90% tolerance interval in 1990, for example, ranges from a low of around 

150 billions kWh/yr to a high of around 950 billion kWh/yr. The interval is 

largest around 1987 and decreases in size thereafter. 

*To learn how many simulations are required, one may simply repeat the 
sensitivity analysis with a larger number of runs. If the new analysis yields 
the same set of tolerance intervals and the same set of partial correlation 
coefficients, one need not worry about the sample size. In a more detailed 
description of the tolerance interval calculations, Ford and McKay (1982) show 
that sensitivity analyses with 100 runs yields the same general results as the 
analyses with 20 runs shown here. 
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Figure 3C gives the partial correlation coefficients* between the value 

of OUEG in a given year and the values assigned to the more important input 

parameters. Strong positive or negative correlation indicates that the 

particular input parameter is especially infl uenci al during that time period. 

Figure 3C shows that the Indicated Demand Growth Rate Constant (IDCRC) is posi­

tively correlated with OUEG in the 1980s and negatively in the 1990s. Higher 

growth rates in electricity demand lead to higher oil and gas usage during the 

1980s because the model is 1 imited to the number of new coal and nuclear power 

plants that will come on-line. By_the 1990s, however, faster growth in elec­

tricity demand leads to less dependence on oil and gas power plants because 

faster growth prompts the model to invest more heavily in new coal or nuclear 

p 1 ants. Once these p 1 ants come on 1 i ne in the 1990s, the older oil and gas 

burning plants are phased out of service. Figure 3C shows that the inflation 

rate (INFLR) is also highly correlated with OUEG, but in a pattern the 

opposite of the demand growth rate constant. A third input which the exhibits 

strong influence on OUEG is the desired reserve margin constant. The effect 

of changes in this input were revealed previously in Fig. 1. Higher reserve 

margin targets correspond to an overbuilding program designed to bring larger 

numbers of coal and nuclear power plants on-line to displace oil and gas. 

Thus, a larger DRMC 1 eads to less OUEG in the 1990s once the extra coal and 

nuclear plants are operating. The lower portion of Fig. 3C shows three 

additional inputs found to have strong influence on OUEG during the 1980s: 

the availability factor for coal plants (NCAFC), for nuclear plants (LWAFC), 

and the coal plant operating lifetime (NCCL). Each of these inputs is 

negatively correlated with OUEG during the 1980s but shows little influence 

*Conference participants should not confuse the partial correlation coef­
ficients shown in Fig. 3C with the coefficients obtained in standard statisti­
cal tests. As explained by Mass and Senge (1980), the partial correlation 
coefficient is normally used to provide the modeler with a "measure of the 
incremental contribution of a single right-hand side ("explanatory") variable 
in accounting for variation in a dependent variable." Mass and Senge criticise 
the use of the partial correlation coefficient in such "single equation tests" 
as unreliable because "single-equation statistical tests focus on hypothesized 
relationships in isolation from the context of feedback relationships in which 
they are embedded." They advocate "full model behavior tests" as a more reli­
able indicator of the importance of a particular input parameter. The partial 
correlation coefficients shown in Fig. 3B provide a statistical summary of the 
apparent influence of a particular input in numerous "full model behavior 
tests." 
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after 1990 because of the model's internally generated capacity expansion 

plants that adjust construction to account for different lifetimes and 

availabilities . 

The Fig. 3 results make good sense. No spurious tendencies have 

revealed themselves in this collection of runs. One can only interpret the 

tolerance intervals in Fig. 3B in probabilistic terms, however, if the most 

important inputs to the model are uncorrelated. This is not the case. Two 

collinearities exist between the top six inputs identified in Fig. 3C. First, 

the desired reserve margin cannot be specified independently from the 

availability factors for the nuclear power plants and the coal-fired power 

plants. Should the availability factors decline, for example, the utility 

company would compensate by increasing the desired reserve margin target used 

in capacity expansion planning. The second colli nearity involves the 

availability factors for the coal and nuclear power plants which should be 

positively correlated as both types of plants have certain components in 

common. Following the approach diagrammed in Fig. 2, the next step is to 

remove these correlations through alterations in the electric utility 

simulation model. 

To remove the collinearity between DRMC and the two availability factors, 

we changed the model to calculate the desired reserve margin as the sum of a 

Minimum Reserve Margin from Availability Factor (MRMAF) and a Reserve Margin 

Over Building Increment (RMOBI). The portion of the desired reserve margin 

which is dependent on the availability factors of the new coal and nuclear 

plants is calculated internally. The overbuilding increment is a new 

parameter which is varied to reflect the inclination of utility companies to 

overbuild to displace oil and gas. This new parameter, RMOBI, is not 

correlated with the availability factor for the new coal and nuclear power 

plants. To remove the collinearity between the two availability factors, we 

have introduced three new parameters--a steam power plant availability factor, 

an incremental difference between coal plant availability and the steam plant 

availability, and an incremental difference between nuclear plant availabiltiy 

and the steam plant availability. These three parameters are now inputs to 

the electric utility model, and while the actual availability factor for a 

new coal or nuclear power plant is calculated internally. 

-13-



D. Results from the Second Iteration 

We begin the second iteration with a somewhat different list of input 

parameters than is shown in App. B. The DRMC input is replaced by RMOBI, for 

example. Also, the two availability factors, LWAFC and NCAFC, no longer 

appear as inputs to the model. Instead, we have three input parameters needed 

for the model's calculation of the availability factors for new coal and 

nuclear power plants. All told, these changes result in a list of 46 input 

parameters, the majority of which are the same as those listed in App. B. LHS 

was used to design a set of twenty simulation experiments with the model that 

would cover the 46-dimensional input space. The results from the new set of 

twenty simulations are shown in Fig. 4. 

Figure 4A reports the summary statistiGS for the second iteration analy­

sis of OUEG. A comparison of Figs. 3A and 4A shows that the maximum value of 

OUEG around 1987 is lower in the second iteration. Also, the standard devia­

tion of OUEG over the twenty simulations is generally smaller in the second 

iteration. Thus, one would expect the tolerance intervals to be somewhat nar­

rower in the second iteration analysis. Figure 4B shows that the tolerance 

intervals do become narrower with the altered model. The 90% coverage in 1987, 

for example, runs from around 300 to 950 billion kWh/yr in the second iteration 

(versus 250 to ll50 billion kWh/yr in the first iteration). The reduction in 

the size of the tolerance interval from one iteration to the next may be at­

tributed to the removal of the coll inearities between the most important inputs 

to the model. With the collinearities removed, the twenty simulation 

experiments are less likely to be defined with extreme sets of inputs that 

would lead to unusually high dependence on oil and gas for electric power 

generation. The twenty simulations in the second iteration will not encounter 

a situation where the desired reserve margin is set very low even though, for 

example, the model is specifying poor availability factors for new coal and 

nuc 1 ear power p 1 ants. 

Figure 4C gives the partial correlation coefficients between the value 

of OUEG in a given year and the values assigned to the more important input 

parameters. Several of the inputs that were selected in the first iteration 

analysis appear again in the second iteration (IDGRC, INFLR, NCCL, for 

example). Figure 4C also shows that the new parameters (RMOBI, NCAFD, LWAFD) 

created in the alteration of the electric utility model now appear in the list 

of more important inputs. An important result from Fig. 4C is that the six 
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variables selected as having most influence on OUEG are not correlated with 

one another in an important manner. Thus, we are free at this point to 

interpret the tolerance intervals in Fig. 4B in probabilistic terms. 

E. A Measure of Parameter Uncertainty 

The range of variation in the model projections of OUEG is represented 

by the tolerance intervals in Fig. 4B. The mean value of the forecasts is 

bordered by two sets of curves representing 75% and 90% coverages. Thus, one 

can readily see the uncertainty in OUEG forecasts due to parameter uncertainty. 

An examination of the graphs in the year 1990, for example, shows the mean 

value to be about 480 billion kWh/yr. We expect 75% of the OUEG forecasts to 

lie between 240 and 690 billion kWh/yr and 90% of the forecasts to lie between 

150 and 780 billion kWh/yr. These intervals are calculated at the 95% confi­

dence level. Thus, the probability that they are not sufficiently large is 5%. 

We reemphasize that the tolerance intervals in Fig. 4B represent only 

the parameter uncertainty in the model forecast. That is, they represent the 

uncertainty in OUEG forecasts given that one accepts the structure* of the 

electric utility model as an accurate representation of the nation's electric 

utility industry. 

III. USES OF SENSITIVITY TESTING RESULTS 

The iterative application of these sensitivity testing procedures to 

obtain tolerance intervals is one of six useful applications that should 

*The distinction between parameter uncertainty and structural uncertainty is 
not clear cut, especially when certain key parameters have "structural impl ica­
tions" (Tank-Nielsen 1980) such as the possible removal or inclusion of feed­
back loops. To our knowledge, the only systematic attempt to gauge the impor­
tance of structural uncertainty in energy models is the series of "forum" 
exercises sponsored by the Electric Power Research Institute. In the forum 
format, several models of the same system are operated with a commonly speci­
fied question and set of parameters. Differences in model performance are 
interpreted by the forum participants to gain an understanding of the effect 
of different model designs. In the Utility Modeling Forum's "Case Study 
Comparison of Utility Corporate Models," for example, a dozen corporate models 
were compared in terms of their analysis of the effects of company investment 
in customer conservation. Differences in the model calculations were attrib­
uted to differences in model structure because all models were exercised with 
a common set of parameter values such as the cost and savings from conservation 
i nv es tment s ( Sh aw l 981 ) . 
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bolster confidence in a model. Depending on the model purpose, the 

investigator may be interested in any or all of the six applications which we 

discuss below. 

A. Model Shakedown 

The process of running a model twenty times, or fifty times, or one hun­

dred times with input parameters set at positions far removed from the typical 

"base case" conditions is a stiff test for any model to pass. Model builders 

are used to anticipating and eliminating bugs* that appear when the model is 

operated with the vast majority of the inputs set at their nomial value. 

Subjecting a model to the sensitivity testing procedures described here can 

reveal bugs that would otherwise go undetected in informal sensitivity testing. 

B. New Behavior Modes 

By simply displaying the results of numerous runs, one can sometimes 

discover a new mode of behavior. In the sensitivity test of the COAL2 model, 

for example, we discovered that the average price of electricity could decline 

in the future. This unexpected pattern was revealed in the display of results 

shown in Fig. 5. Here, the average price of energy from the first 45 of 

100 runs of the COAL2 model are plotted over time. To pin down the reasons 

for the decline in price, we examined the input values for those parameters 

whose partial correlation coefficients stood out in the COAL2 test. We were 

interested in whether the particular simulations with a decline in price had 

any one input feature in common. It turned out that ·the common e 1 ements were 

a low capital cost for synthetic fuels facilities and a high propensity for 

oil companies to invest in synthetic fuels. Under these less likely (but 

plausible) conditions, the model exhibited a decline in average price due to 

the substantial production of low cost synthetic fuels. 

C. Important Inputs 

A third application of the sensitivity procedures is to isolate the 

inputs that have the most influence on a partie ul ar output variable--the 

motivating application for McKay's original research on sensitivity analyses. 

As illustrated in Figs. 3C and 4C, indications of the relative importance of 

*"Bugs" may include division by zero, uncontrolled oscilations, the "DT 
problem" or a variable becoming negative when only positive values make sense. 
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different inputs are found by using a procedure similar to step-up regress ion 

with rank transformed data. We use the partial rank correlation coefficient 

(PRCC) with critical values from the ordinary correlation coefficient from 

normal theory to select potentially important inputs at each time point of the 

dynamic simulation. The sets of selected inputs in neighboring time points 

are compared, and inputs are added or deleted at a specific time point 

depending on their occurrence in the sets of neighboring time points. In this 

way, the analysis depicts those inputs that exhibit a strong influence on a 

particular output variable that persists over several time periods. Time 

plots of the PRCCs allow the analyst to select the most influencial inputs 

during different parts of the s imul at ion and to determine the polarity of 

influence. From Fig. 4C, for example, one learns that the indicated demand 

growth rate constant IDGRC and the inflation rate INFLR appear to have the 

most influence O!J the oil and gas use by utilities in the mid 1990s. To put 

the size of the partial correlation coefficients shown in Fig. 4C into 



perspective, one can obtain cross plots for a particular year. In Fig. 6, for 

example, the value of OUEG in year 1994 is displayed relative to the input 

value selected for four of the inputs selected in Fig. 4C. The cross plots 

show examples of strong negative correlation (IDGRC), strong positive ·correla­

tion (INFLRC), and examples of relatively little correlation (RMOBI and NCAFD). 

D. Tolerance Intervals on Forecasts 

A fourth application is the one illustrated in this paper--to present 

tolerance intervals on the parameter uncertainty in model projections. To 
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those participants who feel that system dynamics models are more appropriately 

used for pol icy analysis (rather than forecasting), we would note that the 

distinction between policy analysis and forecasting becomes extremely clouded 

when models are used in the day-to-day planning of large agencies or 

corporations. For more details on the iterative procedures needed to obtain 

tolerance intervals on model projections, conference participants are referred 

to the paper by Ford and McKay (1982). 

E. Tolerance Intervals on Policy.Tests 

Policy relevant simulation results are usually obtained by comparing two 

model project ions. One project ion is obtai ned with "base case" or "business 

as usual" conditions while the second is generated with a different value for 

a set of parameters that describe the policy of interest. In reports and 

papers with which we are familiar, such policy results are often presented 

with the reassuring statement that the policy results are "robust" (they do 

not vary with changes in the many uncertain parameters). To verify the 

"robustness" of important policy results, one may repeat the sensitivity test­

ing procedures described here with the provision that the model "output" of 

interest is simply the difference between the two relevant simulation runs • 

F. Hitting Preselected Targets 

A final application of the sensitivity testing procedures to be mentioned 

here is the examination of time plots of numerous runs to see if a particular 

output will hit a preselected target or follow a certain trajectory. The 

target may be the result of model project ions obtai ned from a different 

department where more detailed calculations are available. Targets are 

sometimes imposed on the short-term portion of long-term models when agencies 

or companies maintain entirely separate models to address different issues. 

In some cases, hitting a preselected target is an absurd exercise that 

should not be attempted. In other cases, it is merely a time consuming aspect 

of performing policy relevant analysis in such a way as to gain impact on the 

agency's or company's deliberations. In those cases where one wishes to learn 

what set of parameter assumptions could be employed to hit a preselected 

target, the display of numerous runs (like those shown in Fig. 5) can be quite 

helpful. Results of numerous simulations from a previous sensitivity test are 

simply displayed for visual examination, and the collection of runs that could 

hit the desired target are known by inspection. This particular application 
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of the sensitivity testing procedures is especially valuable when the 

preselected target is impossible to hit with simple parameter changes. 

IV. SUGGESTIONS FOR PRACTICAL APPLICATION 

We feel that the combined research efforts of the Los Alamos National 

Laboratory and the Control Data Corporation have led to a practical approach 

to sensitivity testing that all system dynamicists would usefully apply in 

their major modeling projects. For those who wish to gain the advantages of 

detailed sensitivity testing, we offer three suggestions for practical 

application: 

l. Input Ranges: 

Expect that the task of specifying the ranges of plausibility on 
model inputs will be a difficult initial obstacle, especially for 
large models that may have outgrown their original documentation. 

2. Model Shakedown: 

Be prepared to observe spurious behavior when the model is run many 
times with Latin Hypercube Sample design on the input parameters. 
Accept the needed changes in the model as a problem with the model 
structure and not a problem with the sensitivity testing procedures. 

3. Sensitivity of the Sensitivity Testing Results: 

Be prepared to test the results of the sensitivity analysis to 
changes in the starting assumptions (like those shown in App. B) if 
you are unsure about the description of input parameter uncertain­
ties. You may be unsure, for example, of whether a uniform or a 
normal di stri but ion best characterizes the uncertainty in a given 
input. Rather than devoting scarse resources to a detailed examina­
tion of such a question, one can simply repeat the sen.sitivity ana~y­
sis to see if the tolerance intervals or the part1al correlat10n 
coefficients are affected with a change in the probability 
distribution.* 

Another question that is easily answered ~Y repeated 
applications of the sensitivity testing procedures 1s how many 
simulation runs are required to cover the input space. Rather .than 
wrestle with this question analytically, we suggest that one s1mply 
repeat the analysis with a larger sample size to see if there are 
any important changes in the findings. 

*In a previous paper, Ford and McKay (l9B2) show th.at all the unif~rm ?istr:i­
butions noted in App. B could be changed to an equlValent normal d1stnbut1on 
without changing the tolerance intervals or partial correlation coefficients 
shown here. 
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Investigators willing to follow these practical suggestions should be 

able to perform the type of analysis shown here without incurring significant 

computer costs. The computer related costs of the Fig. 3 calculations with 

20 runs of the electric utility model cost about $50, for .example. Half of 

the cost is due to the single compilation and twenty runs of the model. The 

remaining cost components include telephone linkage to the Dartmouth Time 

Sharing System ($6), connect time ($4), compilation of the HYPERSENS code 

($2), Latin Hypercube sample design for 20 runs with 45 uncertain input ($7), 

and statistical. analysis and display of the output from the 20 runs ($6). 

We note in conclusion that the procedures described here are particularly 

valuable for system dynamics modeling projects because of their inclusion of 

many highly uncertain parameters needed to close feedback loops. The 

procedures are totally statistical in nature, however, and they do not rely on 

any apriori knowledge of the structure of the model. Conference participants 

interested in other sensitivity methods specifically tailored to system 

dynamics models are referred to the summary description in App. A. 
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APPENDIX A 

SUMMARY OF RELATED RESEARCH 

The statistical procedures described here are but one of several methods 

to assist in the sensitivity testing of system dynamics models. This appendix 

provides a brief review of ten alternative approaches. We begin with five 

approaches developed in the United States and listed in Table A-1. 

Table A-1 begins with the statistical approach described in the body of 

this paper. Because of the use of Latin Hypercube Sampling procedures, 

Control Data Corporation analysts have chosen to refer to their computer code 

as HYPERSENS (Amlin 1982). 

The second method listed in Table A-1 .was developed by Joseph Talavage 

(1980, 1981) to allow calculation of the eigenvalues of a system dynamics 

model. Talavage refers to this approach as MODSENS (for MODal SENSitivity) 

because of the emphasis on the dominating modes of behavior that are more 

easily discovered through application of his computer code. The approach is 

"to judiciously select a small set of points in the state space at which the 

system can be linearized, and then to use efficient procedures of analysis at 

those points to gain insights into system behavior" (Talavage 1982, p. 2). 

Once a "base case run" is available, Talavage suggests that "one small set of 

state space points useful for analysis can be obtained from the values of the 

system state at, say, five-year intervals along the nominal trajectory." Once 

a linear system of equations is obtained, MODSENS performs the matrix 

manipulations needed to obtain the eigenvalues for the model. In a case study 

application to the electric utility model discussed in the body of this paper, 

for example, Talavage finds 64 eigenvalues associated with the system state in 

1980--the initial year of the simulation. Talavage argues that these 

eigenvalues lend insight into the likely behavior modes of the model. 

Talavage noted, for example, that only 2 of the 64 eigenvalues had positive 

real parts indicating that "there is little opportunity for growth in the 

electric utility model." Talavage also noted that "there are several 

possibilities present for system instability (represented by oscillatory 

modes) ... but that, in most cases, the time constant of the real part of these 

complex modes is so small that they would have little or no effect on 

longer-term behavior." 
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TABLE A-1. Five Projects on System Dynamics Sensitivity Testing in the United States 

Name or Acronl!!J Research Grou2 Case Studies References 

1. HYPERSENS Los Alamos National Laboratory Electric Utility This Paper 
Control Data Corporation Planning Model 

2. MOOSENS Purdue University Electric Utility (Talavage 1980, 
Planning Model 1981) 

3. Zero Stability University of Minnesota 8th order, linearized (Starr and 
Sensitivity production-inventory Pouplard 1981) 

mode 1 and a 12th order 
nonlinear urban model 

4. Probabilistic The Futures Group Electric Utility (Stover 1978) 
System Dynamics Planning Model 

5. GPSIE/FIMLOF Massachusetts lnst itute of 9th order, nonlinear (Peterson 1980) 
Technology market growth mode 1 

Talavage identifies a separate "mode" of behavior with each of the 64 

eigenvalues and then seeks to determine which of the modes dominate the 

overall model behavior. To distinguish between important and unimportant 

modes, Talavage calculates a "mode-magnitude" based on the contribution of an 

individual mode to the value of a particular state (level) variable of 

interest. In the case study, Talavage concentrated on the ten most important 

modes influencing two or three level variables of interest. To determine 

which of the input parameters have most influence on model behavior, Talavage 

repeated the cal cul at ion of eigenvalues, mode magnitudes, and dominant modes 

with 1% perturbations in the inputs. 

The case study application of MODSENS to the electric utility planning 

model (which was also the subject of the statistical analysis reported in the 

body of this paper) allowed researchers from Los Alamos, Control Data Corpora­

tion, and Purdue University to compare the findings from two quite different 

approaches to sensitivity testing. We were particularly interested in learning 

whether input parameters judged most important from the statistical approach 

would also prove to be most influencial in altering the mode magnitudes cal­

culated from MODSENS. Unfortunately, we were not able to draw strong conclu­

sions from the comparison because MODSENS results were only available for 

1980--the first year of the simulation. 

The third method in Table A-1 by Starr and Pouplard (1981) is similar to 

Talavage's approach in that the eigenvalues of a linearized system dynamics 

model are the focus of the sensitivity study. In the third approach, however, 

the investigator is interested in the input parameters that have NO influence 

on the eigenvalues. Starr and Pouplard refer to this property as "Zero 
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Stability Sensitivity" and demonstrate that the unimportant parameters can be 

located by inspection using graphical methods involving "first order cuts" in 

the diagraphs of the linearized model. Starr and Pouplard illustrate with two 

examples how the analytically based graphical procedure can help one locate 

unimportant input parameters without performing any model simulations. 

The first illustration involves an 8th order linearized version of a 

production-inventory model. The search for parameters with no influence on 

the eigenvalues begins by putting the equations into reduced form and drawing 

the di a graph representation of the equations. Starr and Poup 1 ard define "type 

one cuts" which separate the diagraph into appropriate subsections. Arcs in 

the di a graph that are intersected by "type one cuts" indicate coefficients in 

the reduced form equations that can be arbitrarily altered without affecting 

the eigenvalues. In the second illustration, Starr and Pouplard examine a 

12th order nonlinear model of urban interactions between affuent and poor 

population groups. The investigators compared the conclusions drawn from 

their graphical inspection procedures with so-called "elasticity coefficients" 

obtained by simply testing the non-linear model through one-at-a-time changes 

in 14 of the input parameters. After comparing the results of these two 

tests, the authors concluded that "the inspection procedure not only yielded 

conclusions which corresponded to those found through su·ccessive simulations, 

but it also identified the source of the growth mode and traced its effects 

through the system" (Starr and Pouplard 1981, p. 380). 

Probabilistic System Dynamics, the fourth method listed in Table A-1, 

allows the analyst to investigate the effect of uncertainty in parameter esti­

mates and the uncertain timing of discrete events. The method has been used 

in several studies by The Futures Group of Glastonbury, Connecticut. In the 

illustrative application discussed here, the so-called ELECTRIC3 model (a 

predecessor to the electric utility planning model used in the body of this 

paper) was examined to determine the variability in model output due to both 

parameter uncertainty and event uncertainty (Stover 1978). The Futures Group 

used cross impact matrices to represent the conditional probabilities of each 

of 21 key events thought to be important in affecting the electric utility 

industry. These included a nuclear moratorium, discontinuation of the breeder 

program, and a moratorium on strip mining in some western states. The proba­

bility of each of the 21 events was dependent on the performance of vari ab 1 es 

in the system dynamics model (such as the amount of installed nuclear capacity) 

and on whether one of the other 20 events had occurred. The cross impact 
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matrix was linked to the deterministic ELECTRIC3 model in such a way that the 

electric utility model would react properly to the occurrence of an event. 

Should a nuclear moratorium be called, for example, the electric utility model 

would prohibit any new construction of nuclear power plants. To ascertain the 

effect of uncertainty in parameters and events on model output, the expanded 

model was run 40 times in Monte Carlo fashion. The Futures Group was 

interested in the variability of certain model projections over time. One 

interesting, but unexplained, result of this test application was that the 

deterministic projections of the original system dynamics model lay completely 

outside the interquartile range of the probabilistic runs. 

The GPSIE/FIMLOF approach listed in the final row of Table A-1 refers to 

the Q_eneral f_urpose ~ystem Identifier and I.valuator computer program described 

by Peterson (1974) to implement the ~ull-I.nformation !:1_aximum .!:_ikelihood via 

Qptimal ~iltering method of parameter estmation. In a test application to a 

ninth order nonlinear system dynamics model of market growth, Peterson (1980) 

illustrates the improvement in parameter estimates obtained from GPSIE relative 

to those obtained from standard econometric tools such as ordinary least 

squares (OLS) and generalized least squares (GLS). P,eterson choose this par­

ticular model to facilitate comparison with Senge's (1974) parameter estimates 

obtained from OLS and GLS using "synthetic data" generated by the market growth 

model itself. Peterson argues that the GPSIE/FIMLOF approach can not only be 

used to obtain better parameter estimates, but it can provide confidence bounds 

on the model project ions. In this app 1 i cation, the GPSIE/FIMLOF approach pro­

vides for system dynamics models what Fair's (1980) approach provides for eco­

nometric models. Both approaches generate confidence bounds and both require 

calculations with the "raw data" used in parameter estimation. Thus, these 

two methods differ from the confidence bounds calculations shown in the body 

of this paper in which the user specified ranges of plausibility of each input 

are the starting point. 

Table A-2 lists a second group of five studies which have been conducted 

outside the United States.* In the first study by Schreiber (1981), the search 

*System dynamics research projects are sometimes characterized as belonging to 
the "classical school" based on Forrester's original concepts or the "European 
school" where the original ideas are extended to incorporate such diverse ele­
ments as catastrophe theory and thermodynamics (Wolstenholme and Holmes 1982). 
Our grouping of the two sets of projects in Tables A-1 and A-2 is merely for 
convenience and does not imply that the ten projects fall naturally into a 
"classical school" or a "European school" of thought on sensitivity testing. 
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TABLE A-2. Five Projects on System Dynamics Sensitivity Testing Outside the United States 

Name or Acronym Research Group Case Studies References 

1. nonlinear, n-dimensional Technical University of Berlin WORLD2 (Schreiber 1981) 
optimization through the 
evolution strategy 

2. structural stability University of Sevilla low order models of (Aracil l981A,B) 

3. local parameter sensi-
tivity through perturba-
tation methods 

4. decomposition and 
1 inearization 

s. sensitivity functions 

University of Bradford 

University of Eindhoven 

University of Pretoria 

urban systems 

7th order inventory- (Sharp updated, 
production model and Sharp 1976) 
a 11 pseudo-mode 111 ten 
times larger 

WORLD3 (Thissen 1978) 

WORLD3 (Vermeulen and 
De Jongh 1977) 

for important inputs is translated into a nonlinear optimization problem. 

From Schreiber's point of view, "sensitivity is above all a question of 

defining a metric function" which indicates when a change in an input 

parameter has produced an important change in the model behavior. Schreiber 

views sensitivity testing as an optimization problem in which various 

techniques for nonlinear, n-dimensional optimization are applicable. In his 

test application to the WORLD2 model, Schreiber used an evolution search 

strategy. The idea was to apply Darwin's theory of biological evolution as a 

powerful search algorithm based on the hypothesis that a carefully copied 

principle of mutation and selection is a basic element of a fast and stable 

search algorithm. Schreiber argues that the optimization problem can be 

solved to maximize the change in model output if one' is looking for the most 

important inputs. 

Alternatively, the procedures can be reversed if one is interested in 

the control of model output. If, for example, one is looking for the set of 

parameter values which cause the model output to closely follow a certain 

trajectory, one can specify the objective function as the difference between 

the model output and the trajectory. Running the optimization algorithm to 

minimize the objective function leads to insights as to which inputs provide 

the most control. In his test application to the WORLD2 model, for example, 

Schreiber found the parameter changes needed to ensure that world population 

would closely follow a trajectory with a smooth approach to a stable 

equilibrium (as opposed to the overshoot and collapse mode characteristic of 

many of the WORLD2 runs). 
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In the second approach listed in Table A-2, Javier Aracil of the 

University of Sevilla is interested in the equilibrium surfaces of a system 

dynamics model (Aracil 1981A,B). Aracil uses a method supplied by the theory 

of qualitative analysis of differential equations and the mathematical tools 

from bifurcation theory and catastrophe theory. Aracil argues that the 

application of these theories to study the structural stability of system 

dynamics models warrants further work--a point which he demonstrates through 

illustrative examples. In the first illustration with a simple model of 

business formations, Aracil finds an extreme divergence of behaviour due to 

small variations in the initial conditions. In the second illustration with a 

second order model of population and business interactions in an urban area, 

Aracil finds the equilibrium surface and analyses the type of stability at the 

equilibrium points. In a more recent application to a third order model of 

population/business/housing interactions, Aracil (1981) obtains results from 

equilibrium curves which are the same as those developed by the original 

investigators. Aracil emphasizes, however, that "the equilibrium curves have 

the limitation of showing only what happens in equilibrium disregarding the 

transient evolution." 

The third row of Table A-2 refers to John Sharp'·s (undated, 1976) work 

at the University of Bradford. Sharp distinguishes between "local sensitivity 

theory" and "global sensitivity theory" and suggest that "the estimates of the 

local sensitivity coefficients can be used with a hill-climbing program to 

drive the system as far as possible from its initial position while the 

parameters and the initial values remain within the bounds prescribed" (Sharp 

1976, p. 8). Sharp used perturbation methods to find the sensitivity of a 

simple production-inventory model with seven levels and 16 uncertain 

parameters. Sharp compared the results from the perturbation method with 

those obtai ned from Monte Carlo methods and cone 1 uded that the perturbation 

method gave generally accurate indications of "system robustness." 

The general approach of decomposition and linearization suggested by 

Thissen (1978) has been applied by investigators from the University of 

Eindhoven in their analysis of the WffiLD3 model. Although many of the tests 

of the WORLD3 model were specific to that particular model evaluation, some 

techniques were identified as being of generic value. First among these is 

decomposition. Here, the Eindhoven group has a mind breaking the model down 

into functional sectors, each one of which is examined separately. In their 
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discussion of the WORLD3 model, for example, separate analyses of the 

population sector, the agricultural sector, and the capital accumulation 

sector are presented. A second technique that may be useful in sensitivity 

studies is linearization. This technique requires the investigator to replace 

the nonlinear model with a simpler model whose interrelationships are 

linearized in the neighborhood where the model is most likely to operate. A 

third procedure is to introduce major shocks in certain portions of the model 

and monitor the model's response. The purpose of this shock testing (called 

"falsification of state variables" by the Eindhoven group) is to uncover the 

general dynamic principles by which model behavior is governed (Thissen 1978, 

p. 189). 

The final approach listed in Table A-2 is to calculate sensitivity 

functions based on the expected rate of change of the output variable with 

respect to each of the many input parameters. An example of this approach is 

the analysis of the sensitivity of the WORLD3 model by two mathematicians from 

the University of Pretoria (Vermeulen and De Jongh 1977). The sensitivity 

functions calculated in their approach are somewhat similar to the partial 

correlation coefficients described in the body of this paper. Both of these 

indicators provide a measure of the expected rate of change due to a 

particular input. The sensitivity functions, however, indicate sensitivity to 

a particular input when all other inputs are at their base case values. The 

partial correlation coefficients provide a measure of sensitivity when all 

other inputs are allowed to vary throughout their. range of plausibility. 

Although the sensitivity functions provide only a limited feeling for the 

sensitivity, their calculation does not require the investigator to design a 

sample and to generate numerous simulations with the model. 
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APPENDIX B 

UNCERTAINTY IN MODEL INPUT PARAMETERS 

The 45 input parameters that are considered uncertain in the 

illustrative example are listed below. Nominal values are used to generate 

the "nominal" results in Fig. 3A. The range of uncertainty on each input is 

described as either a normal (N) or a uniform (U) distribution. 
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