Date: 23rd May 2011

Application of System Dynamics Modelling in supportof
Microsoft's Automation Strategy

Sion Cave', Mirek Gliniecki *, Skip Johnson ** and Géza Nemesszeghy

* *%*

SRCave@QinetiQ.com / Microsoft Corp.

MJGliniecki@QinetiQ.com One Microsoft Way
Redmond

QinetiQ Ltd WA

Cody Technology Park 98052

Ively Road USA

Farnborough

Hampshire

GU14 OLX

United Kingdom

Abstract

Development of software is a dynamic and compleblpm. A number of
software development methodologies exist to ensbltvare to be produced
effectively. Software development methodologiesh 18 Waterfall and Agile
consist of a set of activities that are carried autthe production of software.
Activities include Requirement Capture, Design, éeyment and Testing.
Elements of key software development tasks camtoenated to improve quality
and free up resource capacity. For example, perfiognsoftware tests can be a
laborious activity which if automated can be cadrieut quickly and repeatedly
without error. However, developing automation takese and is more cost
effective for applications with a long shelf life.

This paper describes an innovative System Dynabaessd strategy tool, called
the Automated Decision Support Tool (ADS Tool)eltged by QinetiQ Ltd and
Microsoft. The purpose of the ADS Tool was to asske optimum level of
automation to be used in the development of a acétapplication.

The model is a key element of Microsoft IT (MSIhpiEeering’s three year
automation roadmap for increasing delivered scome guality across MSIT
Engineering, and is being successfully used by M®dineers in Seattle, India
and China to develop automation strategies for anber of their internal IT
applications.

Key Words: System Dynamics, Software Development, AutomatiBrgject
Management

Page 1 of 14

Date: 23rd May 2011

1 Introduction

This paper describes an innovative System Dynabmsed strategy tool, called
the ADS Tool, developed by QinetiQ Ltd and Micrdsdihe purpose of the ADS

Tool was to assess the optimum level of automatdre used in the development
of a software application.

The development of software is a dynamic and coxpleblem. A number of
software development methodologies exist to enabléware to be produced
effectively. Software development methodologieghsas Waterfall and Agile,
consist of a set of activities that are carried duting the development of a
software product. Activities include Requiremenip@ae, Design, Development
and Testing. Elements of the key software developmectivities can be
automated to improve quality and free up resourapacity. For example,
performing software tests can be a laborious dgtwhich if automated can be
carried out quickly and repeatedly without erroow¢ver, developing automation
takes time and is more cost effective for applaragi with a long shelf life. The
ADS Tool was developed to enable Microsoft to msikategic assessment on the
appropriate automation strategy for different aggdlons.

System Dynamics (SD) is an analytical methodoldgt tan be used to better
understand the dynamics and nonlinear interactitisn a system. The approach
can be used to make robust strategic decisionsdbaseunderstanding the
interactions within the system that drive perforcenThe System Dynamics
approach has been found to be an appropriate mdtroohodelling complex
project management issues since it can readilyesept®:

« The typical ‘work’ processes associated with projasks

* The development and depletion of the resourcesrestjto carry out the
‘work’ processes (for example staff)

* Rework cycles

* Project control mechanisms

* Managerial mental models and decision making pseEes
* Ripple and knock on effects of policy changes

As such, a number of authors have published patmsribing the use of System
Dynamics for representing software developmentgsses' 1 B 141 B3I [7]. {81, [9
[0 [12 However, the System Dynamics models describetidriterature do
not:

e Consider the dynamic resource allocation of a siqgbject team across
software releases within and between applications

* Represent the simultaneous use of automated andautomated
development

* Represent the inheritance of attributes, such a$ Cases, Defects and
Scope across multiple releases within an applioatio

Page 2 of 14

Date: 23rd May 2011

* Represent the specific training requirements foomation techniques

Further, some of the processes carried out by MaftdT in the development of
software are unique to Microsoft.

This paper describes an innovative model develdpe®inetiQ and Microsoft
called the ADS Tool that addresses these issuadioB8e2 provides a more
detailed description of the specific strategic l@re faced by Microsoft that led
to the development of the ADS Tool. Section 3 dbser the approach that
QinetiQ and Microsoft adopted when developing tlealel. Section 4 provides an
overview of the processes represented in the SyBigmamics model contained
within the ADS Tool. Section 0 describes the aetttiire of the ADS Tool.
Section 6 explains how the model has been used kyodbft to develop
automation strategies for particular applicatiom&l éSection 7 discusses the
benefits the tool has realised for Microsoft anavhbis planned to develop the
tool further.

2 Strategic Challenge

As described in Section 1, automation techniques loa used to speed up
software development and free up resource capécitydo require an initial

investment. Therefore there is a trade-off betwaagiomation and non-automated
development. Microsoft IT required a tool to enatile benefits of automation
across the different activities in the development an application to be

ascertained in order to prioritize their introdoati Key questions that Microsoft
needed to be able to answer in order to creatbwust@utomation strategy for an
application included what type, and to what extestipuld automation be

implemented, and what returns could be expected vaimein would they be

realised. Further, the optimum level of automatwould vary by technology,

application type, current level of automation ateffssompetency.

A tool was required by Microsoft IT that would takigese issues into account
when supporting the creation of an automation egrat This is especially
important as automation strategies have a potgntiaigh initial cost to
implement as a result of training and infrastruetimvestment. Further, the
benefits of the strategy may not be realised untlumber of releases down the
line.

The challenge is illustrated graphically in Figare

Page 3 of 14

Date: 23rd May 2011

Clear Strateqgic Direction

Increased Automation will free up capacity and improve delivered quality

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
vvvvvvvvvv

Current Level Full
Of Automation Automation

Unclear Goal & Detailed Path:

What are the right automation targets by area?

Where and when should we invest resources?

What is the optimal strategy to develop the required skills?
What returns can we expect and when? ...

Figure 1: Strategic Challenge

QinetiQ worked with Microsoft to develop a Systergnamics based strategy
tool, called the ADS Tool that enables these issodse quantified and potential
automation strategies explored within a ‘safe’ emwinent.

3 Development Process

QinetiQ and Microsoft developed the tool collabmely between November

2009 and April 2010. Over the course of the devalemt process a number of
workshops were held at Microsoft offices in Seafilaring the initial workshops

group model building exercises were conducted thi¢haim of:

» Developing generic Stock and Flow diagrams reptesgmicrosoft’s software
development processes

» Determining how the different automations methods implemented and their
impact on the generic software development prosesse

» Determining the key strategic levers and outputguired in order to
differentiate strategies

* Defining the data required in order to specify apleation and the associated
release schedule

The workshops were attended by key stakeholderdvied in the development of
internal software at Microsoft. These included Iyglexperienced Testers,
Developers and Program Managers who were able,invithe workshop
environment, to articulate not only the formal depenent processes but were
also able to describe how these processes werallgatxecuted over the course
of a software development process.

Following the development of qualitative models idiely the software
development processes quantitative model developmes carried out. The
model was developed using the commercial off thelfsBystem Dynamics
simulation package Powersim. While quantitative etatevelopment was being
carried out by QinetiQ, Microsoft sourced datadarumber of pilot projects from

Page 4 of 14

Date: 23rd May 2011

4.1

across MSIT. These pilot projects were used tadaéd model behaviour during
subsequent workshops.

In addition to the workshops held at Microsoft'siaéds in Seattle, QinetiQ and
Microsoft held weekly ‘live meetings’ over the imtet. This ensured that
development was progressing to schedule and thateimbehaviour was
representative. These ‘live meetings’ ensured that geographic separation
between QinetiQ and Microsoft did not have an aslwyampact on the model
development process.

Development was monitored by Microsoft's QualitydaBusiness Excellence
(QBE) department to ensure the final model was amdstrdised method for
representing software development projects.

The final model allows Microsoft to define applicats based on their current
state and rapidly assess the impact of potentiahaation strategies. The tool has
been used for strategy development from April 2010.

Structure of the System Dynamics Model

This Section describes the key structures repredemithin the System Dynamics
model contained in the ADS Tool. The key System d&wits structures
represent:

» Generic software development processes
» Staffing levels and skill
* Infrastructure requirements
* Automation methods
These key structures are described briefly below:

Generic Software Development Process

An application is composed of a series of softweskeases that build on
previously developed application functionality. BEasoftware release requires the
development of code that meets a set of predefirmglirements. Each
requirement in the release requires effort to cautythe following activities prior
to production:

* Requirements Capture —ldentification and acceptance of the requirements
for a particular release.

* Design — Development of design documentation based on tHaedke
requirements.

* Development - Initial development of software code to meet the
requirements as defined in the design documentation

» Testing —Testing of the developed code against a seriessbithses which
have been developed based on the software requitenmand design
documentation. A test case is a set of conditiongadables under which a
tester will determine whether the developed codetians correctly. If a

Page 5 of 14

Date: 23rd May 2011

defect is identified during testing then it isaged’ to assess whether rework
is required.

* Rework — During rework, the cause of the identified defectactified. The
rework could require correcting developed codet teses and/or design
documentation. Once rework is carried out the code be released for
further testing.

The extent to which the activities are carried muparallel will be dependent
upon the particular software development methodolbging followed. For
example, the Waterfall method would have veryditgarallel work, whereas
Agile development would have a much greater extérgarallel work. Further,
planned software releases within a single appboathay have overlapping tasks
between releases. This is illustrated in Figurenitiwshows the overlapping tasks
for three releases for a single application.

(Application R

[Requirements Capture]
[Design I
Re'iase j‘ Development \
I Testing I
Rework |

[Requirements Capture\
[Design

Release

[Requirements Capture]

I
Development \
Testing and Rework |
Rework
Design]

Development]

Testingand Rework |
Rework

_ /

Figure 2: Generic Software Task Schedule

Release

.(A) .V\J

The generic software methodology described above aeaverted into a Stock
Flow diagram that captured the high level RequireseCapture, Design,
Development Testing and Rework activities.

Following the development of the high level stoclowf diagram, the
Requirements Capture, Design, Development, TestmgRework activities were
decomposed into their sub tasks. For example, tegD activity is composed of
the development of three particular types of docuateon, the Technical
Specification, the Functional Specification and Tlest Plan. Detailed Stock Flow
diagrams were developed that captured each olth& asks.

Each application has a set of attributes that eamlberited between releases. For
example test cases developed for the first reles@ application can be reused
for testing the same functionality in subsequelgages. Attributes that need to be
tracked between releases for an application include

e Test Cases
* Requirements
 Automation levels

 Defects

Page 6 of 14

Date: 23rd May 2011

4.2

4.3

4.4

The ADS tool was required to represent up to 3iegfbns and up to 16 releases.
This was viewed as an optimal number of applicatiand releases to model, but
could be extended if required.

Staff

The activities described in Section 4.1 are caroetdby Microsoft IT staff and/or
Vendors. Staff members are formed into project tednat are responsible for
different software releases. Different types offstae required to carry out the
different sub tasks across the software developmp@tess. For example, Testers
are required to carry out sub tasks within the @esind Test tasks. Further, a
team may be responsible for different releasesinvapplications across multiple
applications. As such, the development of softwarea dynamic resource
allocation problem.

The different types of staff required for eachlwé sub tasks were defined during
the workshops. This resulted in the requirementtiermodel to represent 5 key
staff types required for the successful delivera gbftware release, namely:

e Solution Delivery
* Project Manager
* Systems Analyst
« Developer

* Tester

The allocation priority of staff to a particuladease and sub task was ascertained
through workshop discussion.

Finally, staff productivity and competency can vdny project team, and staff
may require training in the particular automatienhniques described in Section
4.4,

The ADS tool was required to represent up to 3qmtdieams.

Infrastructure

In addition to the staff resources required foagtipular application there are also
a number of infrastructure requirements that nedaktavailable. For example the
environments used by the developers to develop cedel to be created and
maintained throughout the development and rewodses.

Potential Automation

The purpose of project was to provide Microsofthwé tool that enabled the

assessment of alternative automation strategies fparticular application. As

such it was necessary to identify each of the piatetypes of automation and the
potential impact that they have on the softwareetitggment process. These are
summarised in the Table below:

Page 7 of 14

Date: 23rd May 2011

Type of | Description Expected Benefits Required Investments
Automation

Environment Build | An environment is the set-up df-e Reduced time spent by e One time big
(Development software and hardware used during Developers and Testers investment per
and/or Test) development or testing. The softwafe building the Development application

environment must be regularly rebuilt.
This process can be carried ot

programmatically.

and Test Environments
respectively

Reduced defect rates

. Maintenance

Build & Deploy Build and Deploy is the process of » Improved Developer e Onetime big
packaging up the application ard productivity through less investment per
deploying the software to the Tegt time spent doing Build and application
environment for Testing. The procegs Deploy activities « Ongoing Maintenance
can be automated programmatically.| . More frequent

deployments to Test
Unit Testing Unit testing is a method by which o Reduced defect density | Developer training

developers test individual units df

they are bei
tests

source code as
developed. Unit

can He

10

automated so that they are carried gut

rapidly and consistently.

prior to release to Testing
Less rework

e Culture change
investments

. Longer to develop code
as automation must be
written

Functional Testing

Functional testing refers to activitie

];e.
SO
L]

that verify a specific action or functio
of the code and is carried out by t

Testers. The test can be automated

that it is carried out rapidly an
consistently.

[
.

=

Reduced time to carry out
a testcycle

More frequent test runs
Faster defect detection

» Staff training

. More time required to
develop an automated
test case than a manual
test cast

e« Component library to
store automate Test
Cases

* Ongoing Maintenance

Table 1 — Types of automation considered in the ADS Tool

Each of the potential types of automation was amred in the context of their
impact on the generic software development stamk fliagram.

4.5

Defining a ‘Successful’ Strategy

The purpose of the System Dynamics model was teiggdMicrosoft with a tool

which enabled the rapid development and assessshantomation strategies. As
such it was necessary to define the metrics by lwitie strategy would be
considered successful. These were defined to be:

Scope— The proportion of the desired software requireménat could be
delivered by the required production date

Capacity — The man hours that have been freed up as a rekuhe

automation

Quality — The number of undiscovered defects remaininperrélease

4.6 High Level Functional Model

The System Dynamics model was broken down into tfonal areas that
represented different processes in the softwareldpment processes and the

Page 8 of 14

Date: 23rd May 2011

staff and automation functions. This high levelresgntation is shown in Figure
3:

t t t

i

Figure 3: High Level Functional Areas

Each of the model functional areas had fully depetbStock Flow diagrams, as
illustrated in Figure 4

“fUser Involvement

Project Required Project Start Date
User Involvment Ject start User Turnover
AL Fraction Per Month

Project Age

Figure 4: High Level Functional Areas

5 Model Architecture

This Section describes the architecture of the ADS&l. The model architecture is
illustrated in Figure 5 below:

Page 9 of 14

Date: 23rd May 2011

Strategy Decision
Detailed Action Plans
4
<: Implement & Monitor
4

Figure 5: ADS Tool Architecture

The ADS tool was developed using Powersim and aseBxcel spreadsheet to
store all the model input data that defined theemirstate. Automation strategies
were entered using a management interface develapitih the Powersim
environment. The management interface allows tke tos

» Define the automation strategy to be tested

* View the results of the scenario in graphical aadsutar format. The graphs
and tables were set up to show key outputs such as:

o Application attributes, such as the size of thet Gasse library

0 Release Gantt chart displaying when each softwanesldpment
activity is completed for each release within thelecation

o Completed scope for the release (i.e. the numbethefplanned
requirements that were completed prior to the pcodn date)

Software defects (undiscovered, discovered andl¥ixe
Staff effort applied to each sub task and stafétyp

O O O

Staff utilisation and experience
o Cost
The outputs can be viewed at a release, applicationultiple application level.

The management interface also allowed the useieto detailed model structure.
A sample views from the model interface is givefrigure 6:

Page 10 of 14

Date: 23rd May 2011

lllustrative Data

MSIT Engineering Automation Decision Support

 0a3a3a3a030anzzE

Automation Strategy Levers Key Strategic Outputs

Figure 6: Sample Model Screen Shots

Finally, the results of each run were exportedrnidEacel Spreadsheet to enable
detailed post-processing of the result to be chiwig

6 How the Model Is Used To Support Strategy Developnmé

A streamlined and consistent methodology has beealdped for the assessment
of potential automation strategies for a particubgplication release. The
methodology has been developed to ensure that trénmam benefit can be
realised with the minimum of stakeholder effort.eTimethodology is facilitated
by an ADS Tool Specialist. The ADS Tool Specialsts members of the MSIT
Engineering community who have a passion for autmmaand helping teams
invest in automation in an optimized way. There @rgently twenty ADS Tool
Specialists based in Seattle, India and China stipgothe 1500 Microsoft IT
Engineers.

The strategy development methodology is illustrateligure 5:

Automation Strategy Assessment Process \

Data Capture

and Calibration Strategy Strategy Strategy Post-Release

Development Selection Implementation Review

Documentation

Figure 7: Strategy Assessment Approach
The methodology is composed of the following stages

1. Data Capture and Documentation— A short meeting of the Project
Manager, Developer Lead and Test Lead with the ddwit ADS Tool
Specialist to capture the data required by the toalepresent the current
state of the application.

2. Calibration — Offline refining of the initial model inputs e ADS Tool
Specialist in order to validate model behaviourirgfahistoric data. The

Page 11 of 14

Date: 23rd May 2011

calibration may require a short meeting or emathexge between the ADS
specialist and the project team to clarify and@ridate the calibration.

3. Strategy Development— An initial assessment of the potential autonmatio
strategies carried out by the ADS Tool Specialist.

4. Strategy Selection- The results of the different strategies are gme=l to
the project team and reviewed to determine the &teategy based on the
teams goals. This is carried out over the coursestort meeting.

5. Strategy Implementation - The project team plans and executes the
selected strategy. The ADS Tool Specialist andt¢laen work together to
determine what data will be collected during thstfrelease cycle to help
validate the tools results.

6. Post-Release Review The team will meet with the ADS Tool Speciatist
review the data collected during the release arulata the actual with
predicted results.

The process is repeated for each future release.

The process has so far been used to select th@wptautomation strategy for
three projects.

7 Conclusions

This project has resulted in the development ofustamized tool that meets
Microsoft's requirements for strategy assessmehe Tool was developed in
collaboration with Microsoft IT experts, thus engsgrthe validity of the logical
representation of the system process and datag&heric nature of the model,
with regards to representing any software developnmethodology (e.g.
waterfall, agile etc) provides Microsoft IT with safe environment to test
potential automation strategies prior to large stnent.

Qualitative and quantitative System Dynamics teghes were applied over the
course of the development of the ADS Tool:

* Qualitatively to ensure an agreed, stakeholder owned understpotlthe
processes involved in developing software at Migftos

* Quantitatively to allow Microsoft to explore potential automation
strategies for any potential application in termhic@pacity, defects, cost
and delivered scope.

The generic nature of the tool also allows Microsidf to explore strategic
guestions beyond the initial scope of the modeill@strated in Figure 8:

Page 12 of 14

Date: 23rd May 2011

How much and when What are the optimal When can | get how V\:Elec:eva;lrai\?éerz taore
to invest in training? annual targets? much benefits? t)r/ack’>

What is the optimum

What component to final .
focus on 1st, 2nd etc.? 60% inal automation
) target?
Can we speed up What changes will
i &8 cause team to reset
process using
vendors? targets?

% Automation

' Automation
*Model used for monitoring progress, validate assumptions and revise targets)
*Different questions will can be investigated and answered
*Using the model for multiple projects will inform the strategy for the whole MSIT Project
Portfolio
*Model structure reusable for other strategic questions)

Figure 8: Model Supporting Strategy in a Changing Landscape

The model is a key element of Microsoft IT Enginiegis Three year automation
roadmap for increasing delivered scope and quatitpss MSIT Engineering, and
is being successfully used by Microsoft enginearSeattle, India and China to
develop automation strategies for a number of tglications.

References

[1] Abdel-Hamid and Madnick, S. E (1989). Lessons Lefrom Modeling the
Dynamics of Software Development, Management of @Quting, Vol 32 No
12

[2] Andersson, C and Karlsson, L (2001), A System DyinarSimulation Study of
a Software Development Process, Lundt Institut€emhnology

[3] Calavaro, G. F; Basili, V. R and lazeolla, G. (1pS&nulation Modeling of
Software Development Processes, European Simul&§ioposium, 7th, 26-
28 Oct. 1995, Nuremberg, Germany

[4] Khosrovian, K; Pfahl, D and Garousi, V (2008). Gediting a Customisable
System Dynamics Model of Generic Software Develaunocesses, Simula
Reseach Laboratory, Technical Report, Simula 20D8-0

[5] Lehman, M and Wernick (1998), System Dynamics Medélthe Software
Evolution Process, Proc. Int. Wrkshp. on the. Rpies of Software Evolution,

ICSE '98

[6] Lyneis, J. M. and Ford, D. N. (2007), System Dyreswpplied to Project
Management: A Survey, Assessment and DirectionEtiture Research.
System Dynamics Review Vol 23, No 2/3

[7] Makio J and Betz S (), A System Dynamics PerspeaifOffshore Software
Outsourcing — uncovering Correlations between €&itSuccess Factors

Page 13 of 14

Date: 23rd May 2011

[8] McLucas, A (2008), How to Deliver Multi-Phase Sodine Development
Projects: System Dynamics Simulation of Alternatireject Strategies, The
2008 International Conference of the System Dynar8iciety

[9] Saurabh, K (2010), Software Development and Tesfingystem Dynamics
Simulation and Modeling Approach. Recent AdvanoceSaftware
Engineering, Parallel and Distributed Systems

[10] SSemaluulu, P and Williams, D (2007), Complexitd &isk in IS Projects: A
System Dynamics Approach, In Special Topics in Cating and ICT
Research: Strengthening the role of ICT in DevelepinKizza J.M, Muhirwe
J, Aisbett J., Getao K., Mbarika V., Patel D, aratiRgues A.J., Eds. Fountain
Publishers, Vol 3 pp 243-250.

[11] Tawileh, A; Mcintosh, S; Work, B and Ivins, W (200The Dynamics of
Software Testing, Proceedings of the 25th Systemabycs Conference, July
29 - August 2, 2007, MIT, Boston, USA.

[12] Van Oorshot, K. E, Sengupta, K and Wassenove (2D§Bamics of Agile
Software Development, Proceedings of the 27th hatissnal Conference of
the System Dynamics Society, July 26-30, 2009, glarque, New Mexico,
USA.

Page 14 of 14

