
Date: 23rd May 2011

Page 1 of 14

Application of System Dynamics Modelling in support of
Microsoft’s Automation Strategy

Siôn Cave *, Mirek Gliniecki *, Skip Johnson ** and Géza Nemesszeghy **

*
SRCave@QinetiQ.com /
MJGliniecki@QinetiQ.com

QinetiQ Ltd
Cody Technology Park
Ively Road
Farnborough
Hampshire
GU14 OLX
United Kingdom

**
Microsoft Corp.
One Microsoft Way
Redmond
WA
98052
USA

Abstract

Development of software is a dynamic and complex problem. A number of
software development methodologies exist to enable software to be produced
effectively. Software development methodologies, such as Waterfall and Agile
consist of a set of activities that are carried out in the production of software.
Activities include Requirement Capture, Design, Development and Testing.
Elements of key software development tasks can be automated to improve quality
and free up resource capacity. For example, performing software tests can be a
laborious activity which if automated can be carried out quickly and repeatedly
without error. However, developing automation takes time and is more cost
effective for applications with a long shelf life.

This paper describes an innovative System Dynamics based strategy tool, called
the Automated Decision Support Tool (ADS Tool), developed by QinetiQ Ltd and
Microsoft. The purpose of the ADS Tool was to assess the optimum level of
automation to be used in the development of a software application.

The model is a key element of Microsoft IT (MSIT) Engineering’s three year
automation roadmap for increasing delivered scope and quality across MSIT
Engineering, and is being successfully used by MSIT engineers in Seattle, India
and China to develop automation strategies for a number of their internal IT
applications.

Key Words: System Dynamics, Software Development, Automation, Project
Management

Date: 23rd May 2011

Page 2 of 14

1 Introduction
This paper describes an innovative System Dynamics based strategy tool, called
the ADS Tool, developed by QinetiQ Ltd and Microsoft. The purpose of the ADS
Tool was to assess the optimum level of automation to be used in the development
of a software application.

The development of software is a dynamic and complex problem. A number of
software development methodologies exist to enable software to be produced
effectively. Software development methodologies, such as Waterfall and Agile,
consist of a set of activities that are carried out during the development of a
software product. Activities include Requirement Capture, Design, Development
and Testing. Elements of the key software development activities can be
automated to improve quality and free up resource capacity. For example,
performing software tests can be a laborious activity which if automated can be
carried out quickly and repeatedly without error. However, developing automation
takes time and is more cost effective for applications with a long shelf life. The
ADS Tool was developed to enable Microsoft to make strategic assessment on the
appropriate automation strategy for different applications.

System Dynamics (SD) is an analytical methodology that can be used to better
understand the dynamics and nonlinear interactions within a system. The approach
can be used to make robust strategic decisions based on understanding the
interactions within the system that drive performance. The System Dynamics
approach has been found to be an appropriate method for modelling complex
project management issues since it can readily represent [6]:

• The typical ‘work’ processes associated with project tasks

• The development and depletion of the resources required to carry out the
‘work’ processes (for example staff)

• Rework cycles

• Project control mechanisms

• Managerial mental models and decision making processes

• Ripple and knock on effects of policy changes

As such, a number of authors have published papers describing the use of System
Dynamics for representing software development processes [1], [2], [3], [4], [5], [7], [8], [9],

[10], [11], [12]. However, the System Dynamics models described in the literature do
not:

• Consider the dynamic resource allocation of a single project team across
software releases within and between applications

• Represent the simultaneous use of automated and non-automated
development

• Represent the inheritance of attributes, such as Test Cases, Defects and
Scope across multiple releases within an application

Date: 23rd May 2011

Page 3 of 14

• Represent the specific training requirements for automation techniques

Further, some of the processes carried out by Microsoft IT in the development of
software are unique to Microsoft.

This paper describes an innovative model developed by QinetiQ and Microsoft
called the ADS Tool that addresses these issues. Section 2 provides a more
detailed description of the specific strategic challenge faced by Microsoft that led
to the development of the ADS Tool. Section 3 describes the approach that
QinetiQ and Microsoft adopted when developing the model. Section 4 provides an
overview of the processes represented in the System Dynamics model contained
within the ADS Tool. Section 0 describes the architecture of the ADS Tool.
Section 6 explains how the model has been used by Microsoft to develop
automation strategies for particular applications and Section 7 discusses the
benefits the tool has realised for Microsoft and how it is planned to develop the
tool further.

2 Strategic Challenge
As described in Section 1, automation techniques can be used to speed up
software development and free up resource capacity but do require an initial
investment. Therefore there is a trade-off between automation and non-automated
development. Microsoft IT required a tool to enable the benefits of automation
across the different activities in the development of an application to be
ascertained in order to prioritize their introduction. Key questions that Microsoft
needed to be able to answer in order to create a robust automation strategy for an
application included what type, and to what extent, should automation be
implemented, and what returns could be expected and when would they be
realised. Further, the optimum level of automation would vary by technology,
application type, current level of automation and staff competency.

A tool was required by Microsoft IT that would take these issues into account
when supporting the creation of an automation strategy. This is especially
important as automation strategies have a potentially high initial cost to
implement as a result of training and infrastructure investment. Further, the
benefits of the strategy may not be realised until a number of releases down the
line.

The challenge is illustrated graphically in Figure 1:

Date: 23rd May 2011

Page 4 of 14

Current Level
Of Automation

Clear Strategic Direction
Increased Automation will free up capacity and improve delivered quality

Full
Automation

Unclear Goal & Detailed Path:
What are the right automation targets by area?
Where and when should we invest resources?
What is the optimal strategy to develop the required skills?
What returns can we expect and when? …

Figure 1: Strategic Challenge

QinetiQ worked with Microsoft to develop a System Dynamics based strategy
tool, called the ADS Tool that enables these issues to be quantified and potential
automation strategies explored within a ‘safe’ environment.

3 Development Process
QinetiQ and Microsoft developed the tool collaboratively between November
2009 and April 2010. Over the course of the development process a number of
workshops were held at Microsoft offices in Seattle. During the initial workshops
group model building exercises were conducted with the aim of:

• Developing generic Stock and Flow diagrams representing Microsoft’s software
development processes

• Determining how the different automations methods are implemented and their
impact on the generic software development processes

• Determining the key strategic levers and outputs required in order to
differentiate strategies

• Defining the data required in order to specify an application and the associated
release schedule

The workshops were attended by key stakeholders involved in the development of
internal software at Microsoft. These included highly experienced Testers,
Developers and Program Managers who were able, within the workshop
environment, to articulate not only the formal development processes but were
also able to describe how these processes were actually executed over the course
of a software development process.

Following the development of qualitative models defining the software
development processes quantitative model development was carried out. The
model was developed using the commercial off the shelf System Dynamics
simulation package Powersim. While quantitative model development was being
carried out by QinetiQ, Microsoft sourced data for a number of pilot projects from

Date: 23rd May 2011

Page 5 of 14

across MSIT. These pilot projects were used to validate model behaviour during
subsequent workshops.

In addition to the workshops held at Microsoft’s offices in Seattle, QinetiQ and
Microsoft held weekly ‘live meetings’ over the internet. This ensured that
development was progressing to schedule and that model behaviour was
representative. These ‘live meetings’ ensured that the geographic separation
between QinetiQ and Microsoft did not have an adverse impact on the model
development process.

Development was monitored by Microsoft’s Quality and Business Excellence
(QBE) department to ensure the final model was a standardised method for
representing software development projects.

The final model allows Microsoft to define applications based on their current
state and rapidly assess the impact of potential automation strategies. The tool has
been used for strategy development from April 2010.

4 Structure of the System Dynamics Model
This Section describes the key structures represented within the System Dynamics
model contained in the ADS Tool. The key System Dynamics structures
represent:

• Generic software development processes

• Staffing levels and skill

• Infrastructure requirements

• Automation methods

These key structures are described briefly below:

4.1 Generic Software Development Process

An application is composed of a series of software releases that build on
previously developed application functionality. Each software release requires the
development of code that meets a set of predefined requirements. Each
requirement in the release requires effort to carry out the following activities prior
to production:

• Requirements Capture – Identification and acceptance of the requirements
for a particular release.

• Design – Development of design documentation based on the defined
requirements.

• Development – Initial development of software code to meet the
requirements as defined in the design documentation.

• Testing – Testing of the developed code against a series of test cases which
have been developed based on the software requirements and design
documentation. A test case is a set of conditions or variables under which a
tester will determine whether the developed code functions correctly. If a

Date: 23rd May 2011

Page 6 of 14

defect is identified during testing then it is ‘triaged’ to assess whether rework
is required.

• Rework – During rework, the cause of the identified defect is rectified. The
rework could require correcting developed code, test cases and/or design
documentation. Once rework is carried out the code can be released for
further testing.

The extent to which the activities are carried out in parallel will be dependent
upon the particular software development methodology being followed. For
example, the Waterfall method would have very little parallel work, whereas
Agile development would have a much greater extent of parallel work. Further,
planned software releases within a single application may have overlapping tasks
between releases. This is illustrated in Figure 2 which shows the overlapping tasks
for three releases for a single application.

Application
Requirements Capture

Design
Development

Testing

Requirements Capture
Design

Development
Testing and Rework

Requirements Capture
Design

Development
Testing and Rework

Release
1

Release
2

Release
3

Rework

Rework

Rework

Figure 2: Generic Software Task Schedule

The generic software methodology described above was converted into a Stock
Flow diagram that captured the high level Requirements Capture, Design,
Development Testing and Rework activities.

Following the development of the high level stock flow diagram, the
Requirements Capture, Design, Development, Testing and Rework activities were
decomposed into their sub tasks. For example, the Design activity is composed of
the development of three particular types of documentation, the Technical
Specification, the Functional Specification and the Test Plan. Detailed Stock Flow
diagrams were developed that captured each of the sub Tasks.

Each application has a set of attributes that can be inherited between releases. For
example test cases developed for the first release of an application can be reused
for testing the same functionality in subsequent releases. Attributes that need to be
tracked between releases for an application include:

• Test Cases

• Requirements

• Automation levels

• Defects

Date: 23rd May 2011

Page 7 of 14

The ADS tool was required to represent up to 3 applications and up to 16 releases.
This was viewed as an optimal number of applications and releases to model, but
could be extended if required.

4.2 Staff

The activities described in Section 4.1 are carried out by Microsoft IT staff and/or
Vendors. Staff members are formed into project teams that are responsible for
different software releases. Different types of staff are required to carry out the
different sub tasks across the software development process. For example, Testers
are required to carry out sub tasks within the Design and Test tasks. Further, a
team may be responsible for different releases within applications across multiple
applications. As such, the development of software is a dynamic resource
allocation problem.

The different types of staff required for each of the sub tasks were defined during
the workshops. This resulted in the requirement for the model to represent 5 key
staff types required for the successful delivery of a software release, namely:

• Solution Delivery

• Project Manager

• Systems Analyst

• Developer

• Tester

The allocation priority of staff to a particular release and sub task was ascertained
through workshop discussion.

Finally, staff productivity and competency can vary by project team, and staff
may require training in the particular automation techniques described in Section
4.4.

The ADS tool was required to represent up to 3 project teams.

4.3 Infrastructure

In addition to the staff resources required for a particular application there are also
a number of infrastructure requirements that need to be available. For example the
environments used by the developers to develop code need to be created and
maintained throughout the development and rework phases.

4.4 Potential Automation

The purpose of project was to provide Microsoft with a tool that enabled the
assessment of alternative automation strategies for a particular application. As
such it was necessary to identify each of the potential types of automation and the
potential impact that they have on the software development process. These are
summarised in the Table below:

Date: 23rd May 2011

Page 8 of 14

Type of
Automation

Description Expected Benefits Required Investments

Environment Build
(Development
and/or Test)

An environment is the set-up of
software and hardware used during
development or testing. The software
environment must be regularly rebuilt.
This process can be carried out
programmatically.

• Reduced time spent by
Developers and Testers
building the Development
and Test Environments
respectively

• Reduced defect rates

• One time big
investment per
application

• Maintenance

Build & Deploy Build and Deploy is the process of
packaging up the application and
deploying the software to the Test
environment for Testing. The process
can be automated programmatically.

• Improved Developer
productivity through less
time spent doing Build and
Deploy activities

• More frequent
deployments to Test

• One time big
investment per
application

• Ongoing Maintenance

Unit Testing Unit testing is a method by which
developers test individual units of
source code as they are being
developed. Unit tests can be
automated so that they are carried out
rapidly and consistently.

• Reduced defect density
prior to release to Testing

• Less rework

• Developer training

• Culture change
investments

• Longer to develop code
as automation must be
written

Functional Testing Functional testing refers to activities
that verify a specific action or function
of the code and is carried out by the
Testers. The test can be automated so
that it is carried out rapidly and
consistently.

• Reduced time to carry out
a test cycle

• More frequent test runs

• Faster defect detection

• Staff training

• More time required to
develop an automated
test case than a manual
test cast

• Component library to
store automate Test
Cases

• Ongoing Maintenance

Table 1 – Types of automation considered in the ADS Tool

Each of the potential types of automation was considered in the context of their
impact on the generic software development stock flow diagram.

4.5 Defining a ‘Successful’ Strategy

The purpose of the System Dynamics model was to provide Microsoft with a tool
which enabled the rapid development and assessment of automation strategies. As
such it was necessary to define the metrics by which the strategy would be
considered successful. These were defined to be:

• Scope – The proportion of the desired software requirements that could be
delivered by the required production date

• Capacity – The man hours that have been freed up as a result of the
automation

• Quality – The number of undiscovered defects remaining in the release

4.6 High Level Functional Model

The System Dynamics model was broken down into functional areas that
represented different processes in the software development processes and the

Date: 23rd May 2011

Page 9 of 14

staff and automation functions. This high level representation is shown in Figure
3:

Application

Release Pipeline

User Involvement

Requirements Capture

Work
Design and Develop

Defects

Staff

Rework
Design and Develop

AUT

Automated
Environment

Build

Build / Deploy
Automation

Cost

Design Dev

DevDesign

Automated Functional
Testing Training

Automated Unit Test
Training

Test

Automated Testing

Manual Testing

Test Case
Component
Library

Test Case
Library

Build / Deploy Automation
Automated Environment

Build

Requirements Unit Tests
Defects

Inheritance

Maintenance

Non Project Productive
Work

Figure 3: High Level Functional Areas

Each of the model functional areas had fully developed Stock Flow diagrams, as
illustrated in Figure 4

User Involvement
This functional area has been included in
the model but has no impact on model
behaiviour as it was considered that this
functional area was not required to answer
the Automation strategic questions

User Quality

Users On Project

Rate Users Added Rate Users Lost

Time Users Spent On
Project

Rate User Time On
Project Lost

Rate User Time On
Project Increases

Project Start Date
User Turnover

Fraction Per Month

Average Time Users
Spent On Project

Project Age

Project Required
User Involvment

Impact of User
Involvement Quality

on Quality of
Requirements

Capture

Impact of User
Involvement Quality
on Requirements
Capture Rate

One Project

User Involvement
This functional area has been included in
the model but has no impact on model
behaiviour as it was considered that this
functional area was not required to answer
the Automation strategic questions

User Quality

Users On Project

Rate Users Added Rate Users Lost

Time Users Spent On
Project

Rate User Time On
Project Lost

Rate User Time On
Project Increases

Project Start Date
User Turnover

Fraction Per Month

Average Time Users
Spent On Project

Project Age

Project Required
User Involvment

Impact of User
Involvement Quality

on Quality of
Requirements

Capture

Impact of User
Involvement Quality
on Requirements
Capture Rate

One Project

Figure 4: High Level Functional Areas

5 Model Architecture
This Section describes the architecture of the ADS Tool. The model architecture is
illustrated in Figure 5 below:

Date: 23rd May 2011

Page 10 of 14

Strategy Decision
Detailed Action Plans

Strategy Decision
Detailed Action Plans

Implement & MonitorImplement & Monitor

Strategy Decision
Detailed Action Plans

Strategy Decision
Detailed Action Plans

Implement & MonitorImplement & Monitor

Figure 5: ADS Tool Architecture

The ADS tool was developed using Powersim and used an Excel spreadsheet to
store all the model input data that defined the current state. Automation strategies
were entered using a management interface developed within the Powersim
environment. The management interface allows the user to:

• Define the automation strategy to be tested

• View the results of the scenario in graphical and tabular format. The graphs
and tables were set up to show key outputs such as:

o Application attributes, such as the size of the Test Case library

o Release Gantt chart displaying when each software development
activity is completed for each release within the application

o Completed scope for the release (i.e. the number of the planned
requirements that were completed prior to the production date)

o Software defects (undiscovered, discovered and fixed)

o Staff effort applied to each sub task and staff type

o Staff utilisation and experience

o Cost

The outputs can be viewed at a release, application or multiple application level.

The management interface also allowed the user to view detailed model structure.
A sample views from the model interface is given in Figure 6:

Date: 23rd May 2011

Page 11 of 14

MSIT Engineering Automation Decision Support

Team

1

2

3

Release

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

App

1

2

3

Strategic Outputs

Cumulative Undiscovered Defects

Sep 01 Mar 01 Sep 01 Mar 01

2011

0

50

100

150

Cumulative Scope

Sep 01 Jan 01 May 01 Sep 01 Jan 01 May 01

2011

0

30

60

Cumulative Cost

Sep 01 Mar 01 Sep 01 Mar 01

2011

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

$

High Level Metrics Across All Releases

Desired Developed

Cumulative Tester and Developer Work

Sep 01 Jan 01 May 01 Sep 01 Jan 01 May 01

2011

0

5,000

10,000

Total Good and Bad WorkTotal Bad WorkGood and Bad Work Bad Work Spare Capacity

Start Tester Training In Automated Functional

Testing

1/1/2020

% of Project Code To Have Automated

Unit Tests

0 20 40 60 80 100

Desired % of Functional Test Cases to be

Automated for New & Modified Code

0 20 40 60 80 100

% of Project Test Environments To Be

Automated

0 20 40 60 80 100

% of Project Development Environments

To Be Automated

0 20 40 60 80 100

% of Developers to Receive Technical

Training in Automated Unit Testing

0 20 40 60 80 100

% of Testers to be Trained in Automated

Functional Testing

0 20 40 60 80 100

0 %

0 % 0 %

0 %

5 %

33 %

Start Developer Training in Raising Awareness of

Automated Unit Testing

Start Developer Build and Deploy Training

1/1/2020

Start Developing Automated Test Case

Component Library

1/1/2020

1/1/2020

Start Developer Technical Training in Automated

Unit Testing

1/1/2020

Build and Deploy Automation

Develop Build and Deploy Automation

Build and Deploy Automation Exists For App

Strategic InputsStrategic InputsStrategic Inputs

Desired % of Unmodified Legacy

Functional Test Cases to be Automated

0 20 40 60 80 100

0 %

Model

Chart
Index

All strategies
Automated
Unit Testing

Automated
Functional
Testing

Build and
Deploy

Environments Summary
Required
Rework

Defects
Introduced

Defect
Resolution

Time

Time to
Identify
Defect

Unknown
Defects

SummaryOverview

Illustrative DataIllustrative Data

Automation Strategy Levers Key Strategic Outputs
Figure 6: Sample Model Screen Shots

Finally, the results of each run were exported to an Excel Spreadsheet to enable
detailed post-processing of the result to be carried out

6 How the Model Is Used To Support Strategy Development
A streamlined and consistent methodology has been developed for the assessment
of potential automation strategies for a particular application release. The
methodology has been developed to ensure that the maximum benefit can be
realised with the minimum of stakeholder effort. The methodology is facilitated
by an ADS Tool Specialist. The ADS Tool Specialists are members of the MSIT
Engineering community who have a passion for automation and helping teams
invest in automation in an optimized way. There are currently twenty ADS Tool
Specialists based in Seattle, India and China supporting the 1500 Microsoft IT
Engineers.

The strategy development methodology is illustrated in Figure 5:

Automation Strategy Assessment Process

Post-Release
Review

Strategy
Implementation

Strategy
Selection

Strategy
Development

Calibration
Data Capture

and
Documentation

Figure 7: Strategy Assessment Approach

The methodology is composed of the following stages:

1. Data Capture and Documentation – A short meeting of the Project
Manager, Developer Lead and Test Lead with the Microsoft ADS Tool
Specialist to capture the data required by the tool to represent the current
state of the application.

2. Calibration – Offline refining of the initial model inputs by the ADS Tool
Specialist in order to validate model behaviour against historic data. The

Date: 23rd May 2011

Page 12 of 14

calibration may require a short meeting or email exchange between the ADS
specialist and the project team to clarify and/or validate the calibration.

3. Strategy Development – An initial assessment of the potential automation
strategies carried out by the ADS Tool Specialist.

4. Strategy Selection - The results of the different strategies are presented to
the project team and reviewed to determine the best strategy based on the
teams goals. This is carried out over the course of a short meeting.

5. Strategy Implementation - The project team plans and executes the
selected strategy. The ADS Tool Specialist and the team work together to
determine what data will be collected during the first release cycle to help
validate the tools results.

6. Post-Release Review - The team will meet with the ADS Tool Specialist to
review the data collected during the release and validate the actual with
predicted results.

The process is repeated for each future release.

The process has so far been used to select the optimum automation strategy for
three projects.

7 Conclusions
This project has resulted in the development of a customized tool that meets
Microsoft’s requirements for strategy assessment. The tool was developed in
collaboration with Microsoft IT experts, thus ensuring the validity of the logical
representation of the system process and data. The generic nature of the model,
with regards to representing any software development methodology (e.g.
waterfall, agile etc) provides Microsoft IT with a safe environment to test
potential automation strategies prior to large investment.

Qualitative and quantitative System Dynamics techniques were applied over the
course of the development of the ADS Tool:

• Qualitatively to ensure an agreed, stakeholder owned understanding of the
processes involved in developing software at Microsoft

• Quantitatively to allow Microsoft to explore potential automation
strategies for any potential application in terms of capacity, defects, cost
and delivered scope.

The generic nature of the tool also allows Microsoft IT to explore strategic
questions beyond the initial scope of the model, as illustrated in Figure 8:

Date: 23rd May 2011

Page 13 of 14

AutomationAutomationAutomationAutomation

What are the optimal
annual targets?

How much and when
to invest in training?

Can we speed up
process using

vendors?

When can I get how
much benefits?

What component to
focus on 1st, 2nd etc.?

What is the optimum
final automation

target?

Which variables are
the key drivers to

track?

What changes will
cause team to reset

targets?%
 A

ut
om

at
io

n

15%

60%

•Model used for monitoring progress, validate assumptions and revise targets
•Different questions will can be investigated and answered
•Using the model for multiple projects will inform the strategy for the whole MSIT Project
Portfolio
•Model structure reusable for other strategic questions

Figure 8: Model Supporting Strategy in a Changing Landscape

The model is a key element of Microsoft IT Engineering’s Three year automation
roadmap for increasing delivered scope and quality across MSIT Engineering, and
is being successfully used by Microsoft engineers in Seattle, India and China to
develop automation strategies for a number of their applications.

8 References

[1] Abdel-Hamid and Madnick, S. E (1989). Lessons Learnt from Modeling the
Dynamics of Software Development, Management of Computing, Vol 32 No
12

[2] Andersson, C and Karlsson, L (2001), A System Dynamics Simulation Study of
a Software Development Process, Lundt Institute of Technology

[3] Calavaro, G. F; Basili, V. R and Iazeolla, G. (1995) Simulation Modeling of
Software Development Processes, European Simulation Symposium, 7th, 26-
28 Oct. 1995, Nuremberg, Germany

[4] Khosrovian, K; Pfahl, D and Garousi, V (2008). Calibrating a Customisable
System Dynamics Model of Generic Software Development Processes, Simula
Reseach Laboratory, Technical Report, Simula 2008-02

[5] Lehman, M and Wernick (1998), System Dynamics Models of the Software
Evolution Process, Proc. Int. Wrkshp. on the. Principles of Software Evolution,
ICSE '98

[6] Lyneis, J. M. and Ford, D. N. (2007), System Dynamics Applied to Project
Management: A Survey, Assessment and Directions for Future Research.
System Dynamics Review Vol 23, No 2/3

[7] Makio J and Betz S (), A System Dynamics Perspective of Offshore Software
Outsourcing – uncovering Correlations between Critical Success Factors

Date: 23rd May 2011

Page 14 of 14

[8] McLucas, A (2008), How to Deliver Multi-Phase Software Development
Projects: System Dynamics Simulation of Alternative Project Strategies, The
2008 International Conference of the System Dynamics Society

[9] Saurabh, K (2010), Software Development and Testing: A System Dynamics
Simulation and Modeling Approach. Recent Advances in Software
Engineering, Parallel and Distributed Systems

[10] SSemaluulu, P and Williams, D (2007), Complexity and Risk in IS Projects: A
System Dynamics Approach, In Special Topics in Computing and ICT
Research: Strengthening the role of ICT in Development, Kizza J.M, Muhirwe
J, Aisbett J., Getao K., Mbarika V., Patel D, and Rodrigues A.J., Eds. Fountain
Publishers, Vol 3 pp 243-250.

[11] Tawileh, A; McIntosh, S; Work, B and Ivins, W (2007), The Dynamics of
Software Testing, Proceedings of the 25th System Dynamics Conference, July
29 - August 2, 2007, MIT, Boston, USA.

[12] Van Oorshot, K. E, Sengupta, K and Wassenove (2009) Dynamics of Agile
Software Development, Proceedings of the 27th International Conference of
the System Dynamics Society, July 26-30, 2009, Albuquerque, New Mexico,
USA.

-

