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Abstract--In this paper, I present constructs that enable simplified translation of CLD's 
(Causal Loop Diagrams) into SFD's (Stock and Flow Diagrams).   As conventionally 
rendered, there are too many connection "possibilities" presented to immature, model 
builders who are just getting started.  In this paper I will show that it is possible to limit 
some of these possibilities without any loss of robustness in the models that are 
developed.  For model-builders who are unseasoned, the advantages are simplicity and 
prevention from creating a construct that is nonsensical.  By implication, the automated 
translation of "fully developed" CLD's into SFD's is also possible.  Algorithms 
implementing such automated translation are presented in the paper.  
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I.  Introduction 

In this paper, I shall describe rules, heuristics for translation of causal loop 
diagrams (CLD's) into stock and flow diagrams (SFD's).   From these rules, one can 
conclude what is needed in order to have robust CLD's that are machine translatable into 
SFD's.  Why should system dynamicists be interested in the translation of SFD's to 
CLD's?  Because this is a crucial process step en route to a working simulation model of 
a problem.  We start with verbal descriptions and people’s understanding of the problem 
or process.  From there CLD’s are constructed.  The CLD’s are translated into S
eventually into a running simulation within a computer modeling tool like Stellatm or 
Vensimtm. 

Assume for the moment that each CLD is an assemblage consisting of a set Q of 
quantities and a set C of connectors amongst the quantities.  Initially, the quantities and 
the connectors are not identified as to type.  Doing so will effectively transition the CLD 
into an SFD.  Thus, in this paper, the sets Q and C shall be decomposed into their 
respective subsets.  Specifically, Q is decomposed into its stock, X, output Y, input U, 
auxiliary V, parameter P, and rate R subsets, while C shall be decomposed into its flow F 
and information I subsets.  The translation of a CLD into a SFD can be thought of as a 
partition upon the sets Q and C into their respective subsets.   
 
 
 

II.  NOTATION 
 

 Let the causal diagram (CLD) or signed digraph D by which a system S is to be 
represented consist of the following assemblage:  
 
    D = {Q,C},      (1) 
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Fig.1.  Causal diagram model D.  
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(all blank positions are zeros) 
 
       dimensions       1     2     3     4     5     6     7      8     9    10    11   12   13    4    15    16    
17     

 
 1    AA     1                  -1                  1                                   
 
 2    AA/DD            1   
 
 3    I/DD     1 
 
 4    dimless             1           1 
 
 5    CC/AA                 1  
 
 6    AA/DD        -1 
 
7     AA/(BB.DD)                                       1        
 
 8    AA/ZZ                   1 
 
 9    BB                      1 
 
10   CC             1                                    -1     1 
 
11   CC\DD                                 1 
 
12   DD       -1 
 
13   CC/DD                                                               -1 
 
14   CC/(AA.DD)                         1 
 
15   ZZ                                     -1 
 
16  CC/AA         -1 
 
17  CC               1     -1 
 
 

Fig 2.  Square ternary matrix (STM) corresponding to causal diagram 
model D shown in Fig. 1.  

 
where Q is the set of quantities used to represent the system and C is the set of signed 
connectors that exist between the quantities.  The causal diagram is the graphic 
representation of D. The set Q shall be referred to as a finite space because the quantities 
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it represents are constants and variables which are always finite in number.  Let q be the 
vector of quantities contained in the set Q.  A component of q shall be denoted by qi.  A 
system that can be represented by n quantities will possess a q vector of length n, whose 
associated quantity space Q is of dimension n.  When the  vector q(t) is an element of Q, 
this is denoted by q ∈ Q.  
 
 Let cij represent the signed connector directed from qi toward qj.  The connector 
shall, upon occasion, also be denoted by (qi, qj); thus, cij = (qi, qj).  The set C consists of 
all connectors cij as depicted in the causal diagram, is defined by a causal relation R on Q 
x Q, and can be sorted in the memory of any computer in the form of a square ternary 
matrix.  A causal diagram D and its associated square ternary matrix (STM) are shown in 
Figs. 1 and 2, respectively.  Corresponding to each D is a unique STM, and conversely.  
Each contains exactly the same and as much information about the components and 
interconnections within a system.  If the ijth elements of the STM is denoted by mij, then 
cij is said to “exist” when mij = ± 1, and cij is nonexistent otherwise.   
 

TABLE I 
SYMBOLIC BLOCKS USED IN Stock and Flow DIAGRAM 

 
  

        NAME    SUBSET MEMBER   SYMBOLIC 
BLOCK 
 
Stock (level) variable    x ε X         xi 
 
Output variable    y ε Y        yi 
 
Input variable     u ε U        ui 
  
Auxiliary variable    v ε V          vi  
 
Parameter (constant)    p ε P                       pi 
    
Rate variable     r ε R       ri               
 
Flow connector    cij ε F    i       j  
 
Information connector             cij ε I    i       j  
 

Once Q and C have been decided upon, the causal loop diagram can be 
delineated, and the next step is to determine the stock-and-flow diagram from the causal 
diagram.  This step can be thought of as a problem involving a partition upon the sets Q 
and C into their respective subsets.  In the sequel, the following quantity categories are 
distinguished – stocks (levels), outputs, inputs, auxiliaries, parameters, and rates; in 
addition, two connector categories are distinguished –flow connectors and information 
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connectors.  These categories are listed in Table I, where their set and symbolic 
representations are also indicated.  Thus, x is the vector of stock variables whose 
associated space is X, and similarly for the other quantity categories.  The space X can 
also be thought of as the set of quantities qi that are stocks (its use shall be clear from 
context).  To designate a particular quantity qi as a stock, the notation qi ∈ X, meaning qi 
is an element of the set X, is used.  If a quantity qi is known to be a member of either of 
two quantity types, let us say the set of parameters P or inputs U, this is denoted by qi ∈ 
PU.  

 
Each of the subsets, X, Y, U, V, P, and R is mutually exclusive, and Q is the 

union of these sets.  The objective is to use information provided in the STM to partition 
the element set Q into each of these subsets ΠQ = {X; Y; U; V; P; R}, and to partition the 
set of connectors C into its two subsets Πc = {F;I}, where F and I are the set of flow 
connectors and the set of information connectors, respectively.   
 
 The capability to represent symbolically the connectors and quantities adjacent to 
or associated with a quantity qj is needed in order to rigorously express concepts to 
follow.  Let Ac(qj) represent the set of signed connector directed toward qj, and let Ec(q j) 
represent the set of signed connectors directed away from qj.  Similarly, let Aq(qj) 
represent the set of quantities which have connectors directed toward qj and therefore are 
adjacent to qj, and let Eq(qj) represent the set of quantities which have connectors directed 
away from qj and therefore are adjacent from qj. The set Aq(qj) may be determined by 
picking those qi which have ± 1 entries in the STM along the column associated with qj.  
The set Eq(qj) are simply those qi which have ± 1 entries in the STM along the row 
associated with qj.  The sets Ac(qj), Eq(qj) shall be referred to as the antecedent or affector 
subsets of qj, whereas the sets Ec(qj), Eq(qj) shall be referred to as the subsequent or 
effector subsets of qj.   
 
 In the ensuing discussion, set operators are used to denote the union, intersection, 
and subset of sets, using the symbols ∪, ∩, and ⊆, respectively, whereas logical operators 
are used to denote the AND and OR operations between propositions, using the symbols 
∧ and ∨, respectively.  The notation Ac(qj) ⊆ I, for example, denotes the proposition, 
considered to be true, that Ac(qj) is a subset of the set I.  When its occurrence is 
simultaneous with the proposition Ec(qj) ⊆  I, the compound proposition is denoted Ac(qj) 
⊆ I ∧ Ec(qj) ⊆  I.  Using the suggested notation, the assumptions can be stated in the next 
section.   
 

III. ASSUMPTIONS 
 
 Evidently, the approach herein discussed assumes that an appropriate causal 
diagram or signed digraph and its associated STM have been arrived at.  Such a signed 
digraph is specified by causal relations defined on Q x Q in which the concept of “causal 

n from Klir [23].  It is assumed that an inherent behavior or set of 
behaviors is prescribed by the interaction hypotheses contained in the signed digraph; the 
purpose of the process herein described is to extract that behavior or set of behaviors. 
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 A causal diagram of the proper form is crucial to the success of this approach.  
Preliminary signed digraphs developed with policymaker assistance must be revised into 
the form appropriate for this method.  The influence relation(s) required to facilitate 
specification of casual loop diagrams must be causal, deterministic, and time-invariant 
[23].  In addition, each connector in the relation(s) must be directed and signed.  And, the 
causal relation by definition disallows any formulations that do not result in a clear 
separation of independent from dependent quantities at each node in the digraph [23].  In 
particular, the following formulations are disallowed: 
 
1)  self-loops involving a single quantity,  
2)  loops involving exclusively information paths or auxiliary variables,  
3)  more than one connector joining any two quantities (qi,qj), and 
4)  connectors which have more than one originating quantity qi or more than one 

destination quantity qj. 
 
In general, these formulations are not permitted by causal relations; thus the specific 
causal relation(s) being considered here does not depart from these conventions.   
 
 Having considered the characteristics of the relations, their properties are 
discussed next.  First, they do not necessarily possess any of the properties of symmetry, 
reflexivity, completeness, or transitivity [17].  Nevertheless, the set of connectors C that 
are in the causal relation(s) is assumed to be partitionable into two subsets:  F and I.  This 
assumption follows the Forrester contention that two distinct types of interactions exist 
between the elements in a set of quantities Q.  In [22] it is shown that the two types of 
causality acknowledged by the Kane method [20], [21] are analogous to the flow and 
information connectors in the Forrester methodology.  Specifically, Kane-style 
interactions of the form &q i = αijqj are shown to be analogous with the flow connector, 

whereas interactions of the form &q i  = βij &q j  are analogous to the information connector.  

(Here &q i  represents the time rate of change of qi – the derivative of qi with respect to 
time).  In effect, both Forrester and Kane are hypothesizing that deterministic causality is 
comprised of just these two types and all connectors must belong to one of these two 
classes.  Such precedent is maintained in this methodology (stated in axiom A1).  
 
 Other aspects of the relation(s) are worth noting.  Flows (the transporting of 
substance) must be explicitly displayed as causal linkages which they ordinarily would 
be, provided rate quantities are explicitly included in Q.  In addition, there should not 
appear any linkages that, properly interpreted, represent information paths directed from 
rates or to levels.  Under such conditions all connectors directed toward a particular 
quantity are of the same type, either F or I, and similarly for connectors directed away 
from a particular quantity when considered in the context of the causal diagram or signed 
digraph.  For example, all connectors directed both toward and away from an auxiliary 
are information connectors because of the nature of auxiliaries.  In a similar vein, all 
connectors directed toward a stock are flow connectors; all connectors directed away 
from a parameter or an input and all connectors directed toward outputs are information 
connectors.  
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 It is very infrequent that a mixture of inward-directed or outward-directed 
connectors is observed when the structure of the model is delineated by means of a causal 
diagram.  These mixtures will be momentarily neglected in favor of the elegant simplicity 
that results from such benign neglect.  This we state as supposition S1, the consistency 
supposition.   
 
 S1.  Consistency:  For any qij,  
 
[Ac(qj) ∩ I = {∅ ∨ Ac(qj)}] ∧ [{Ac(qj) ∩ F = {Ac(qj) ∨ ∅}].   
 
Also,  
 
[Ec(qj) ∩ I = {∅ ∨ Ec(qj)}] ∧ [{Ec(qj) ∩ F = {Ec(qj) ∨ ∅}]. 
 
 In words, the supposition asserts that the members of the connector subset Ac(qj) 
are all of the same connector category, either I or F, that the members of the connector 
subset Ec(qj) are likewise all the same connector category, either I or F, and that this is 
true for all qj.  The reader can empirically verify that the models described in [5]-[7] are 
compatible with this supposition once integrating functions in information channels [3, 
ch. 8] and information paths leading from rates to outputs (via auxiliaries) are removed 
and the stock-and-flow diagrams of these models are redrawn in their corresponding 
causal diagram formats.   
 
 The insertion of integrating functions in information channels can be easily 
performed after the stock-and-flow diagram model has been delineated if they are 
desired.  The same is true for information paths leading from rates to outputs.  However, 
it is always possible to use the same information used by a rate to reconstruct a rate at  an 
output, thereby eliminating any requirement for an information path leading from a rate 
to an output.  
 
 Next the restrictions imposed upon choice of quantities in Q must be considered.  
To choose the quantities in Q properly, it is suggested that the significant subsystems that 
interact strongly with the problem of interest be itemized first [24].  Then the important 
quantities within each subsystem should be explicitly detailed, being careful to include 
quantities that would represent rates.  Next, the important quantities used to transmit 
either information or substance between subsystems should be included in the list of 
quantities Q.  Finally; care must be exercised in including separate variables for outputs.  
 
 Definitions, which are consonant with the consistency supposition, can now be 
related for each of the quantity and connector types and also for the structural element 
known as the feedback loop.  
 

IV. DEFINITIONS 
 
 The first definition provides a method for determining parameters pi and inputs ui 
from the remaining quantity categories through inspection of the STM.  Parameters and 
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inputs are considered constant at lest for the duration of a single model run, and they are 
information inputs to rates (and occasionally outputs), either directly or by way of 
auxiliaries.  Parameters are distinguished from inputs by virtue of an identified manager’s 
capability to manipulate or change the latter.   
 
 D1.  Parameters and Inputs:  Any quantity qj whose associated Ac(qj) = ∅, the 
null set, is a parameter or an input; that is, Ac(qj) = ∅ ⇒ qj ∈ PU.  
 
 This definition simply asserts that whenever a quantity is affected by nothing, it is 
an input or a parameter.  Inspection of the STM shown in Fig. 2 reveals that q9, q15, q16, 
and q17 are parameters or inputs because there are no entries in the columns associated 
with these quantities.  
 
 The next definition provides a technique for determining the outputs yi just by 
inspection of the STM.  Outputs are those quantities that are monitored or measured by 
the manager of the system.  
 
 D2.  Outputs:  Any quantity qj whose associated Ec(qj) = ∅, the null set, is an 
output; that is Ec(qj) = ∅ ⇒ qj ∈ Y.   
 
 In words, this definition states that a quantity that affects nothing is an output.  
Inspection of the STM in Fig. 2 reveals that there is no quantity qi that has an associated 
row consisting entirely of blanks, and consequently there are no outputs for the example.  
Note that when levels or auxiliaries are measured, there must be an information path 
leading from them to the associated output variables.  
 
 It is expected that there will be no quantities qj for which Ac(qj) = ∅ ∧ Ec(qj) = ∅.  
Such a quantity is unrelated to the system, may be removed from the set Q, and is said to 
be disjoint.  Likewise, it is impossible to partition the set Q into subsets Q1,Q2, which are 
completely disjoint; that is, R(Q1,Q2,) ∪ R(Q2,Q1) = ∅.  If this were true, then it would 
be possible to study the sets Q1 and Q2 in complete isolation from each other.  This notion 
is later stated as axiom A5.   
 
 Note that when Ac(qj) is empty, so is Aq(qj); likewise, when Ec(qj) is null, Eq(qj) is 
also.  Thus the definitions provided above for parameters, inputs, and outputs could just 
as appropriately be defined in terms of Aq, Eq, as they were defined in terms of Ac,Ec.  
Moreover, the number of elements in the sets Ac, Aq and Ec, Eq is always the same.  We 
refer to the number of elements in any set as the cardinality of the set and denoted it by | ⋅ 
|.  Thus | Ac | =  | Aq | and  
| Ec | =  | Eq |.   
 
 In system dynamics [3], stocks can be recognized as accumulations or integrations 
of rates of flow.  They integrate the results of action in a system.  The following 
definition for stocks is intended to permit recognition of the same on the basis of the kind 
of connectors directed toward and directed away from the stock.  
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 D3.  Stocks:  Any quantity qj whose Ac(qj) ⊆ F and whose Ec(qj) ⊆ I is a stock; 
this we write  as follows:  
 

Ac(qj) ⊆ F∧ Ec(qj) ⊆ I ⇒ qj ∈  X. 
 

 In words this definition asserts that any quantity whose affector subset Ac is a 
subset of the set of flow connectors and whose effector subset Ec is a subset of the set of 
information connectors is a stock.  It is apparent that the classification of stocks (or for 
that matter rates and auxiliaries) is contingent upon the previous classification of 
associated connectors.  Suppose that all interactions along row 1 in Fig. 2 were identified 
as information links, whereas all interactions indicated in column 1 were known to be 
flows.  Then q1 would be classified as a stock.  This definition is consistent with the 
notion that information generally proceeds from stocks to rates, whereas control the flows 
into and out of stocks (later stated as an axiom).  The next definition is for rates.  
 
 D4.  Rates. Any quantity qj whose Ac(qj) ⊆ I and whose Ec(qj) ⊆ F is a rate; thus 
 

Ac(qj) ⊆ I ∧ Ec(qj) ⊆ F ⇒ qj ∈ R. 
 
 Likewise, this definition is consonant with the notion suggested above the asserts 
merely that any quantity whose inward-directed connectors Ac are information 
connectors and whose outward-directed connectors Ec are flow connectors is a rate.  
Referring to Fig. 2, if c61, were an identified flow, whereas c76, and c96 were known to be 
information links, then q6 must by D4 be a rate.  
 
 Auxiliaries are those quantities placed within information paths that modify or 
transform the information as it is passed from stocks to rates.  The following definition is 
given for auxiliaries.   
 
 D5.  Auxiliaries:. Any quantity qj whose Ac(qj) ⊆ I and whose Ec(qj) ⊆ I is an 
auxiliary; thus 
 

Ac(qj) ⊆ I ∧ Ec(qj) ⊆ I ⇒ qj ∈ V. 
 
 As an example, consider q4 in Fig. 2.  Its affector subset Ac(q4) consists of 
connectors {c54, c16,4}, whereas its effector subset Ec(q4) consists of connectors{c43, 
c4,14}, as can be discerned by inspecting the column and row associated with q4.  If the set 
{c54, c16,4, c43, c4,14} ⊆ I, then by D5, q4 must be an auxiliary.  This definition is consonant 
with the concept of an auxiliary as resident only within information channels.   
 
 Note that each quantity category above is defined in terms of the kinds of 
connectors directed either toward or away from the quantity.  In a similar way, the 
definitions of the connector types below are given in terms of the kinds of quantities 
bounding them on either side.  
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 Flow connectors generally indicate that substance is being moved from place to 
place within a system, such substance being controlled by rates.  On the other hand, 
information connectors do not cause a transfer of substance within a system but just give 
information about the magnitude of the content.  The following definitions are given for 
flow and information connectors.  
 
 D6.  Flow Connectors:  Any connector cij = (qi,qj) whose qi is a rate or whose qj is 
a stock is a flow connector; mathematically, this is written. 
 
    qi ∈ R ∨ qj ∈ X ⇒ cij ∈ F.  
 
 D7.  Information Connectors:  Any connector cij =  (qi,qj) whose qi is not a rate 
and whose qj is not a stock is an information connector; thus 
 
    qi ∈ XPUV ∧ qj ∈ VRY ⇒ cij ∈ I,  
 
where  
 
           XPUV = X ∪ P ∪ U ∪ V  VRY = V ∪ R ∪ Y. 
 
 All definitions provided thus far are set-theoretic equivalents of similar definitions 
provided in [3].  To facilitate discussion in later sections, let us now define the concept of 
an endogenous quantity.  

D8.  Endogenous Quantities:  Any quantity qj whose Ac(qj) ≠∅ and whose Ec(qj) 
≠ ∅ is an endogenous quantity. 
 
 Apparently, it would be possible to partition Q into endogenous quantities Qe and 
nonendogenous (not necessarily exogenous) quantities Qn; that is, ΠQ = {Qe; Qn}.  
Moreover, Qe consists exclusively of rates, stocks, and auxiliaries, whereas Qn consists 
exclusively of inputs, parameters, and outputs.  Thus each of Qe and Qn can be partitioned 
as follows:  
 
   ΠQe = {R;X;V} ΠQn = {U;P;Y}.  
 
In succeeding discussions, the abbreviation “end.” to mean endogenous shall be 
employed.  
 
 Next, a definition for a structural element that Forrester [4] refers to as the 
feedback loop is provided.  As a minimum, the feedback loop consists of just two 
quantities qj and qk (and associated connectors).  We represent such feedback loops by 
Lmin and refer to them as minor submodels.  The following definition is intended to 
formalize these notions.   
 D9.  Minor Submodels:  Any feedback loop consisting of just two quantities qj 
and qk is a minor submodel and is represented by Lmin, where Lmin is the following set:  
 
   Lmin = {qj,qk,Ac(qj),Ec(qj),Ac(qk),Ec(qk)}. 
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     decision process 
 
              (rate) 
  information connector             flow connector 
 
              stock 
             (level) 
 

Fig. 3.  Feedback loop.  
 

An illustration of a minor submodel is provided in Fig. 3.  Note that for such structures to 
exist both mjk and mkj must be nonzero in the STM.  
 

V.  AXIOMS 
 
 Using the assumptions and definitions previously alluded to, this section relates 
the axioms of system dynamics.  The intent of the axioms is to capture the essence of the 
methodology reported in [3], [4] and applied in [5]-[7] and elsewhere.  Since an axiom is 
a maxim or proposition that is widely accepted or regarded as self-evident, many of the 
axioms will appear tautologous to previous notions popularized by Forrester.  The first 
axiom stocks the constituents used by Forrester to model a system.  
 
 A1.  Elements:  The basic components of a dynamic system S can be modeled by 
means of the following quantity categories – stocks X, rates R, inputs U, outputs Y, 
auxiliaries V, and parameters P, and by means of the following connector categories—
flow F and information I.  Symbolically, S ~ D = {Q,C}, where Q is the specified set of 
quantities, C is the specified set of connectors, and  
 
      Q = X ∪ R ∪ U ∪ Y  ∪ V ∪ P. 
 
while C = F ∪ I.  
 
 The next axiom is, perhaps the most fundamental to the Forrester methodology [3, 
Ch. 4].  
 
 A2.  Feedback.  Any feedback loop consists of a minimum of rate, flow 
connector, stock, information connector, and associated connector, as depicted in Fig. 3.   
 
 Mathematically, this is denoted as follows.  Let LI represent the set of identified 
connectors and quantities that comprise a feedback loop.   According to the axiom, the 
minimum set of such entities, represented by LImin, is the following:  
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 LImin, = {ri, xj, cij ∈ F cji ∈ I, and adjacent connectors}.        
(A2) 
 
 A comparison of A2 with D9 above yields the conclusion that one of qj, qk is a 
rate and one is a stock.  As a result, statements can also be made as to the classification of 
connector subsets Ac(qj), Ec(qj), Ac(qk), and Ec(qk), as will be demonstrated later.  
 
 Note that the axiom does not allow or permit constructions in which a single 
quantity is involved in a loop with itself.  However, feedback loops involving more than 
two quantities are entirely permissible.  Other consequences of this axiom can be 
inferred:  for example, no feedback loop may consist exclusively of auxiliaries; or for that 
matter, neither may a feedback loop consist entirely of rates, or entirely of stocks.  The 
feedback loop must possess at least one stock and one rate.  As the feedback loop 
embodies more than two quantities, it may also possess auxiliaries or additional stocks 
and rates.  
 
 The next two axioms are concerned with the equations associated with rates and 
stocks.  The rate axiom is stated in [3, ch. 4, and ch. 9].  
 
 A3.  Rate Equations:  Rate equations are models of decision processes that control 
rates of flow.  These decision processes may be explicit (conscious) or implicit (governed 
by nature).  Moreover, decision processes or rates use information about the values of 
stocks, parameters, and inputs to control rates of flow into and out of stocks.  This 
information may, at times, be transmitted by means of auxiliaries.  (In rare instances, 
rates may also use “measured” information about other decision processes.  This situation 
is modeled by means of a smoothing function, a construction that has been eliminated 
from the fabrication of the basic feedback structure by the consistency supposition.  Such 
constructions can be added after the basic structure has been formulated.)  In a more 
rigorous vein, the axiom could be worded so as to require that there exists a solution ri to 
a decision process represented by fi{Aq(ri)} [16].  The solution ri controls rates of flow 
and is based upon information about levels, parameters, and inputs as represented by 
Aq(ri).  
 
 In an off-line batch simulation environment, the ri are specified by dimensionally 
consistent equations.  In an on-line interactive simulation environment, each of the ri 
could be specified by the decision maker(s) directly responsible for decision process fi; as 
could be accomplished in a gaming simulation situation.  Alternatively, each decision 
maker would be allowed to specify the “form” of his decision process fi; this form would 
be translated into a specific structural equation for ri in terms of Aq(ri).  The next axiom 
involves the stocks (levels) and their associated equations [3, chs. 5 and 7].   
 
 A4.   Stock Equations:  The level or stock equation is an accounting of the net 
change in the amount of the accumulation within the level or stock as the simulation 
proceeds from time-step to time-step.  
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 Let xi(n +1) represent the solution of the stock equation Si.  Then the axiom could 
be worded in such a fashion as to require that there exists an xi(n + 1) satisfying Si.  
Clearly then, xi(n+1) could be expressed as a function of Si, using xi(n + 1) = Si[xi(n), 
{Aq(xi)}].  Then the axiom maintains that there exists a solution to the stock equation at 
time point n + 1 prescribed by Si[…], and that this solution is dependent upon the value 
of the stock at time point n and the affector subset Aq(xi). 
 
 The next two axioms are concerned with the nonendogenous quantities Qn, which 
includes inputs, parameters, and outputs.  From the definition of endogenous quantities, it 
is known that  
 
   Qn = {qj|Ac(qi) = ∅ ∨ Ec(qj) = ∅}. 
 
Even so, the modeler does not include within the set Q of quantities any that are 
completely isolated from the rest of the set.  Such disjoint elements neither affect nor are 
affected by a particular system. In addition, it is impossible to partition the set Q into 
disjoint subsets Q1 and Q2 such that ℜ(Q1,Q2) ∪ ℜ(Q2,Q1) = ∅.  These concepts are 
stated in the following axiom, called the “axiom of connectedness.” 
 
 A5.  Connnectedness:  The set of quantities Q includes no elements which are 
disjoint from the rest of the set, as specified by C; moreover, it is also impossible to 
partition the set Q into disjoint subsets Q1 and Q2. 
 
 Next, consideration must be given to the kinds of connectors directed from inputs 
and parameters or directed toward outputs.  There are four possibilities as depicted in Fig. 
4.  The I intent is to include within the boundary of the model the dynamics of the 
problem [3, ch. 4], and generally inputs and parameters are not permitted to become time-
varying.  Thus the model must include within its boundary submodels of any subsystems 
that “drive” or otherwise influence a subsystem of interest.  This is the essence of the 
sixth axiom.  
 
 A6.  The Closed Boundary:  There are no flows across the boundary of a model D, 
and parameters and inputs are not allowed to become time-varying, at least initially. 
 
 The result of this axiom is that constructions (b) and (d) in Fig. 4 are not 
permitted, as shall be argued in Theorem T4.  Finally, the following axiom regarding 
conservation of flow is required.  The essence of this axiom is that branching of flow 
lines is not permitted when the model structure does not explain how the flow would be 
divided.  
 
 A7.  Conservation of Flow:  As a substance flows from stock to stock, the 
quantity that is flowing is neither created nor destroyed, but nevertheless is controlled. 
 
 In terms of the flow diagram this axiom will not permit constructions shown in 
Fig. 5. 
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 Having considered assumptions, definitions, and axioms, the implications of these 
primitives can be explored.  It is appropriate to digress momentarily and comment on the 
class of problems to which this approach may be applicable.  With the possible exception 
of the consistency supposition, each primitive is just a set theoretic treatment of 
analogous notions found in [3], [4].  Since the assumption of consistency can be relaxed 
after the basic structure has been delineated, it seems fair to assert that the problem class 
to which the approach is applicable is essentially the same as the class treated by system 
dynamics.   
 

VI. IMPLICATIONS OF THE DEFINITIONS  
AND AXIOMS 

 
 In the development of any theory involving a list of quantities Q and a set of 
connectors C, there are two approaches that can be taken.  The theory can focus on the 
quantities, or the theory can focus upon the connectors (interactions) between the 
quantities.  An explanation of the quantity categories by reference to the connectors is 
referred to as field theory, whereas an explanation of the relations (interaction or 
connector categories) by reference to the attributes of the quantities is monadic theory.  In 
the succeeding development, use is made both of monadic and field concepts.  The 
development is based upon the preceding definitions and axioms, and  
 
    
          (a)  
   
  I    qj                   
                   (outputs)   
   
  F   qj         (b) 
 
 
     qj                   I     (c)  
 
             (inputs)    
     qj                 F   (d) 
      
 

Fig. 4.  Four Conceivable Non-endogenous Constructions  
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         x1       x1  x2 
 
 
 r1       r1 
 
 
         x2        x3     x3       
 
 

Fig. 5.  Constructions involving flows that are not permitted. 
 
 
and employs a theorem/proof format. 
 
 
 
The Consequences of Consistency 
 
 The first theorem is a direct consequence of the consistency supposition S1.   
 
 T1:  The following statements are true for any quantity qj.  
 

a)  If cij ∈ I, then Ac(qj) ⊆ I. 
b)  If cij ∈ F, then Ac(qj) ⊆ F. 
c)  If cik ∈ I, then Ec(qj) ⊆ I.  
d)  If cjk ∈ F, then Ec(qj) ⊆ F 

 
 P1:  To prove the first two statements of the theorem, let CC represent a particular 
connector subset category:  thus, CC is either F or I, and CC is the other. Now if cij ∈ CC 
and cmj ∈ CC, both of which are by definition elements of Ac(qj), then not all elements of 
Ac(qj) are of the same generic category, and supposition S1 is violated.   Thus, if cij ∈ 
CC, cmj ∈ CC, and all of the elements within Ac(qj) are also elements of CC; then Ac(qj) 
⊆ CC.  The last two statements of the theorem are proved by an identical rationale, 
except involving Ec(qj) rather than Ac(qj).   
 
 This theorem enables the identity of all connectors associated with a particular 
quantity qj to be identified provided at least one connector directed toward and one 
connector directed away from the quantity is known.  The corollary to T1 is the 
following.  
 
COR1:  Given a connector cij whose identity is known, then all connectors in the subsets 
Ec(qj) and Ac(qj) are also known. 
 

P:  Note that cij is common to both subsets Ec(qj) and Ac(qj).  By T1, parts a) and 
b), the identify of Ac can be established; whereas by T1, parts c) and d), the identity of Ec 
is known.  
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 As an example, consider the connector c12 in Fig. 2.  If c12 is an information 
connector, then all connectors shown in row 1 must be information connectors, whereas 
all connectors shown in column 2 must also be information connectors.  Accordingly in 
Fig. 2, Ec(q1) = {c12, c15, c18, c1,13}, whereas Ac(q2), = {c12, c32}.  Since c12 is common to 
both Ec(q1) and Ac(q2), its identity enables the identification of all connectors in both 
subsets.  
 
Recognition of Endogenous Quantities 
 
 The next theorem is concerned with the recognition of endogenous quantities 
when the identity of a connector directed toward and a connector directed away from the 
quantity in question is known.  
 
 T2:  The identity of an endogenous quantity can be determined provided at least 
one connector on either side of the quantity has been identified.  In particular,  
 

a)  if cij ∈ F ∧ cik ∈ I for some end. qj, then qj ∈ X; 
b)  if cij ∈ I ∧ cik ∈ F for some end. qj, then qj ∈ R; and 
c)  if cij ∈ I ∧ cik ∈ I for some end. qj, then qj ∈ V. 

 
 P2:  The theorem can be established provided each of parts a), b), and c) are 
proven.  From T1, cij ∈ F ⇒ Ac(qi) ⊆ F and cik ∈ I ⇒ Ec(qj) ⊆ I.  From D3, however, any 
quantity qj whose Ac(qj) ⊆ F and whose Ec(qj) ⊆ I is a stock.  This argument is sufficient 
to establish part a); the remaining parts b) and c) are established using an identical 
rationale except involving definitions D4 and D5, respectively.  
 
 As an example of the use of this theorem, suppose (in Fig.1) that c13,10 is an 
identified flow connector, whereas c10,12 has been identified as an information connector. 
Then by T2, q10 is a stock.  
 
The Nonexistent Quantity Phenomenon 
 
 One is inclined to ask at this point whether it would be possible to classify a 
quantity when one and only one connector is known.  The response is affirmative, but 
only when the connector is known to be a flow connector.  Consider that with respect to 
the two connector categories previously defined, four permutted possibilities are 
conceivable for any particular endogenous quantity qi,  These are shown in Fig. 6.  Of the 
four possibilities shown, only the first three are possible.  There is no quantity type of 
which q4 is characteristic – no quantity exists which will admit flow connectors directed 
both toward and away from it when the quantity and it connectors are depicted in the 
causal diagram.  This is due to the interpretation that is applied to the connector cij as 
depicted in the causal structure.  In general, a connector (qi,qj) indicates that qi somehow 
directly affect, causes, influences, or has an impact upon qj somehow directly affects, 
causes, influences, or has an impact upon qj.  By definition D6, a flow connector cij is any 
connector whose qi is a rate or whose qj is a stock.  By axiom A3 flows into and out of 
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stocks are controlled by rates.  By axiom A4, a level is an accounting of the net change in 
the amount of the  
 
 
  I  q1  I 
 
 
  I  q2  F 
 
 
   F  q3  I 
 
 
  F  q4  F 
 

 
Fig. 6.  Four conceivable endogenous quantity constructions. 

 
 
 
       xi   
      
 r1     
       
        x2 
 

r2   
       
        x3    
      
            r3 
         
        x4 
 
 
Fig. 7.  Stock-and-flow and causal diagram models for a hypothetical conservative 
subsystem. 

 
 
accumulation within the level due to flows of substance into and out of a level variable.  
These postulates all suggest that flow connectors represent the effect that rates ultimately 
have upon levels (stocks).  Thus a flow connector may be directed from a rate or toward a 
stock.  Any other construction(s) will produce a violation of D6, A3, or A4.  Thus there is 
no quantity analogous to q4 in Fig. 6 in the source methodology when considered in the 
causal diagram context.  
 



Translation of CLD’s into SFD’s – James R. Burns, Atlanta, July 2001 – page 18 

 An example is shown in Fig. 7.  The direction of flow is downward as shown in 
the stock-and-flow diagram model on the left.  Even so flow connectors shown in the 
causal diagram model proceed from rates to stocks because of the “causes” or “affects” 
interpretation that is applied to the connector.  This argument is sufficient to establish the 
following theorem. 
 
 T3:  In the casual diagram context there exists no such quantity qj such that Ac(qj) 
⊆ F ∧ Ec(qj) ⊆ F.  
 
 The implication of this theorem is the following corollary involving rates and 
stocks.  
 
 COR 3:  Given cij ∈ F; then qi ∈ R and qj ∈ X. 

P:  By COR1, Ec(qi) ⊆ F and Ac(qj) ⊆ F.  Now Ac(qi) and Ec(qi) are unspecified.  
However, if Ac(qi) ⊆ F, T3 is violated; therefore Ac(qi) ⊆ I and qi must be a rate by D4.  
Likewise, if Ec(qj) ⊆ F, T3 is violated; hence Ec(qj) ⊆ I.  This rationale is sufficient to 
establish the following theorem.  Likewise, if Ec(qj) ⊆ F, T3 is violated; hence Ec(qj) ⊆ I 
makes qj a stock by D3 and establishes the corollary.   
 
 As an example of the use of this result again consider Fig. 1.  If c61 were known to 
be a flow connector then by COR3, q6 must be a rate, whereas q1 must be a stock.  When 
a connector cij is known to be an information connector, it is not possible to uniquely 
identify the adjacent quantities because, as shown in Fig. 6, when cjk ∈ I, there is no 
restriction imposed upon adjacent connectors cij and ckl.  These may be either information 
connectors of flow connectors.  We refer to the quantity qj such that Ac(qj) ⊆ F ∧ Ec(qi) ⊆ 
F as the nonexistent quantity.  
 
From Field Theory to Monadic Theory 
 
 Up to now, the development has been field-theoretic in the sense that the attempt 
has been to categorize quantities on the basis of the connector between them.  We turn 
now to a discussion of the kinds of interaction (connector) that can be identified by 
reference to the attributes of the quantities.  The following theorem is intended to lessen 
the restriction required to identify connectors, as specified by definitions D6 and D7.  
 
 T4:  Given a quantity qj whose identity is known, then its associated connector 
subsets Ec(qi) and Ac(qi) are also known.  Specifically,  
 

a)  for any qj ∈ R, Ac(qi) ⊆ I ∧ Ec(qi) ⊆ F; 
b)  for any qj ∈ X, Ac(qi) ⊆ F ∧ Ec(qi) ⊆ I; 
c)  for any qj ∈ V, Ac(qi) ⊆ I ∧ Ec(qi) ⊆ I; 
d)  for any qj ∈ PU, Ac(qi) =  ∅ ∧ Ec(qi) ⊆ I; 
e)  for any qj ∈ Y, Ac(qi) ⊆ I ∧ Ec(qi) = ∅. 

 
 P4:  Since R, X, V, P, U, and Y represent all of the quantity types, the theorem 
can be proved provided each of parts a) -e) can be established.  Now part a) is just the 
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contrapositive of D4 and is consistent with axioms A3 and A4.  Part b) is the 
contrapositive of D3 and likewise is consistent with A3 and A4.  Part c) is the 
contrapositive of D5.  Part d) is the contrapositive of D1 and is consistent with A5 and 
A6, whereas part e) is the contrapositive of D2 and is also consistent with A5 and A6.  
For part d), if Ec(qi) ⊆ F, then either A5 or A6 is violated; whereas, for part e), if Ac(qi) ⊆ 
F, then likewise either A5 or A6 has been violated.  This completes the proof. 
 
 As an example of the utility of this theorem, suppose a particular quantity qj 

shown 
in Fig. 2 has been identified.  Then all interactions shown in the row and column 
associated with qj are also known.  Specifically, if in Fig. 2, q4 were identified as an 
auxiliary, then all connectors shown in row 4 and column 4 must be information 
connectors.  
 
Compounding the Previous Results 
 
 With the previous theorems, it is now possible to compound the implications of an 
identified entity (connector or quantity) in the causal model.  For example, if the 
connector cij between an endogenous pair of quantities (qi,qj) is known to be a flow 
connector, then by COR3, qj ∈ R,  qj ∈ X, and by T4, part a), Ac(qj) ⊆ I  ∧ Ec(qi) ⊆ F; 
whereas by T4, part  b), Ac(qj) ⊆ F ∧ Ec(qj) ⊆ I.  This rationale is sufficient to establish 
the following theorem.  
 

T5:  If for any end.  pair (qi,qj), cij ∈ F, then qi ∈ R ∧ qj ∈ X ∧ Ac(qi)  
 
   ⊆ I  ∧ Ec(qi) ⊆ F ∧ Ac(qj) ⊆ F ∧ Ec(qi) ⊆ I. 
 
 As an application of this result consider connector c21.  If c21 is a flow connector, 
then q2 is a rate, q1 is a stock, the sets Ac(q2) = {c12,c32}, Ec(q1) = {c1,13,c18, c12,c15}are 
information subsets, whereas the sets Ec(q2) = {c21}, Ac(q1) = {c21,c61}are flow subsets.  
In terms of the STM, all connectors along the row of q1 and column of q2 are information 
connectors, whereas all connectors along the column of  q1 and row of q2 are flow 
connectors.  The sequel to this theorem is the following. 
 

T6:  If for any endogenous pair (qi,qj), cij ∈ I, then Ec(qi) ⊆ I ∧ Ac(qj) ⊆ I ∧ qi ∈ 
XV ∧ qj ∈ VR.  

 
P6:  By COR1 and T1, cij ∈ I ⇒ Ec(qi) ⊆ I ∧ Ac(qj) ⊆ I.  By definitions D3 to D5 

the only endogenous quantities qi for which Ec(qi) ⊆ I are stocks or auxiliaries; thus qi ∈ 
X ∪ V.  Again, by definitions D3-D5 the only endogenous quantities qj for which Ac(qj) 
⊆ I are auxiliaries or rates; thus qj ∈ V ∪ R.  

 
The next theorem enables identification of adjacent quantities when a quantity qj 

is known. 
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 T7:  If an endogenous quantity qj is known, then such knowledge imposes specific 
limitations upon the subsets Ac(qj) and Ec(qj) as follows:  
 
 a)  if qj ∈ X, then Aq(qj) ⊆ R ∧ Eq(qj) ⊆ VRY;  

b)  if qj ∈ R, then Aq(qj) ⊆ VXPU ∧ Eq(qj) ⊆ X; 
 c)  if qj ∈ V, then Aq(qj) ⊆ VXPU ∧ Eq(qj) ⊆ VRY.  

 
P7:  The theorem can be established provided each of its parts can be substantiated.  
Considering part a), if qj ∈ X, they by T4, part b), Ac(qj) ⊆ F.  This each cij ∈ A c(qj) is a 
flow connector to which its associated qi must, by T5, be a rate; thus Ac(qj) ⊆ R.  
Likewise, by T4, part b),Ec(qj) ⊆ I.  By definition D1-D5, the only quantities which may 
have information connectors directed toward them are auxiliaries V, rates R, or outputs 
Y; thus Eq(qj) ⊆ V ∪ R ∪ Y = VRY.  Parts b) and c) are established using an identical 
rationale involving definitions D1-D5 and Theorem T4.    
 
 In terms of the STM the effect of this theorem is that along any row whose 
associated qj ∈ R, those qk for which mjk ≠ 0 must be stocks.  Likewise, the entries along 
the column associated with any qj ∈ X for which mij ≠ 0 must be rates.  
 
Feedback Loops and Minor Submodels 
 
 In the following, the concern is with minor submodels, as denoted by Lmin.  Lmin 
consists of just two quantities, qj and qk, one of which is rate and one of which is a stock.  
Thus for any qj ∈ Lmin, qj ∈ X ∨ qj ∈ R.  The following theorem provides a useful 
technique for identifying rates in minor submodels. 
 
 T8:  For any ri ∈ R, 1 ≤ | Ec(rj)| ≤ 2.   
 
 This theorem claims that the cardinality of the effector subset associated with any 
rate must be either 1 or 2; in other words, every rate must possess at least 1 and at most 2 
outward directed flow connectors.  
 
 P8:  Since all rate quantities are endogenous, their affector and effector subsets 
Ac(ri), Ec(ri) must have cardinalities which are greater than zero; that is, they must 
possess at least 1 inward-directed connector and at least 1 outward-directed connector.  
Consequently, | Ec(rj)| ≥ 1.  Now, consider the implication of an  | Ec(rj)| > 2.  As shown in 
Fig. 5, when the cardinality of Ec(rj) is greater than 2, the corresponding flow diagram is 
incongruous with A7:  every rate controls a flow which must be conserved.  
Consequently, Ec(rj) can never be greater than 2 and the theorem is proven. 
 
 The use of these theorems are illustrated in the next section.  Other implications 
for the minor submodel could be stated in additional theorems, but because of their lack 
of utility in the example problem of the next section, were omitted.  For example, it could 
be shown that whenever a component (a quantity or connector) in a minor submodel Lmin 
has been identified, the identity of all remaining components in Lmin can be inferred 
immediately.  
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VII. APPLICATION TO THE EXAMPLE DEPICTED 
IN FIGS. 1 AND 2 

 
 The implications of the previous section are applied to the causal diagram shown 
in Fig. 1 and its square ternary matrix shown in Fig. 2.  By means of the definitions and 
theorems just provided, the sets Q and C can be partitioned into their subset categories.  
The partition enables the flow or stock-and-flow diagram to be delineated as a graphical 
representation of the quantity and connector categories and their interactions.  
 
 Consider first quantities q9, q15, q16, and q17.  Since the columns associated with 
these quantities contain no entries, the quantities are, by D1, parameters or inputs and the 
connector directed away from them are, by T4, part d), information connectors.  Now 
consider what happens as one proceeds from q9 toward q6.  Quantity q6 must be either a 
rate or an auxiliary (by D3-D5 the only endogenous qj for which Ac(qj) ⊆ I are auxiliaries 
or rates).  However, q6 has a connector that is directed toward q1 – a connector that is a 
flow if q6 is a rate, or an information transfer if q6 is an auxiliary (D4 and D5).  If q6 is a 
rate, then q1 must be a stock or level (T7, part b)); if q6 is an auxiliary, then q1 must be 
either a rate or an auxiliary (D5 and T6). 
 
 What is q1?  By virtue of the minor submodel involving just q1 and q2, it is 
possible to identify q1 as the stock.  By A2, q1 is either a rate or a stock.  By T8, the rate 
cannot have more than two connectors directed away from it.  Consequently, q1 cannot be 
the rate, as |Ec(q1)| = 4.  Thus q1 is a stock, and all connectors directed toward it from q2 
and q6 are flow connectors (T4, part b)). Consequently, q2 and q6 or rates (COR 3).  The 
connectors directed  toward q2 and q6 or away from q1 are information transfers (T4, parts 
a) and b)).   
 Next, consider quantities q7, q8, and q15.  Quantity q8 must be an auxiliary or a rate 
by virtue of the information connectors directed toward it (T6).  Quantity q7 must be an 
auxiliary or a stock by virtue of the information connectors directed away from it (T6).  
In this instance, there is not enough information to identify either q8 or q7; if the identity 
of one of those could be determined, the identity of the other would be prescribed.  At 
this point, additional information is required.  If the procedure being described were 
algorithmatized, the algorithm would at this point interrogate the modeling consultant and 
ask for an identification of q8.  Assuming the information that is returned designates q8 as 
an auxiliary, then the path directed from it and toward q7 is an information transfer (T4; 
part c)), and q7 must also be an auxiliary (T2, part c)). 
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Fig. 8.  Stock-and-flow diagram model corresponding to causal diagram model shown in Fig. 1. 

 
TABLE II - Names of Quantities in Example 

Quantity       Dimension   Name 
 
      1              AA  Deer Population 
      2           AA/DD  Deer Net Growth Rate 
      3              I/DD  Growth Rate Factor 
      4           dim/less  Food Ration 
      5            CC/AA  Food per Deer 
      6            AA/DD  Deer Predation Rate 
      7        AA/(BB⋅DD) Deer Kill Rate 
      8            AA/ZZ  Deer Density 
      9                BB  Predator Population 
    10     CC  Food Supply 
    11             CC/DD  Food Generation Rate 
    12      DD  Food Regeneration Time 
    13             CC/DD  Food Consumption Rate 
    14         CC/(AA⋅DD) Food Consumption per Deer 
    15                 ZZ  Area 
    16              CC/AA     Food Needed per Deer 
    17                 CC  Food Capacity 
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 This analysis has been sufficient to identify all quantities and connectors inside 
the area of the stock-and-flow diagram model (SDM) shown in Fig. 8 enclosed by a 
dash/dot line.  A similar rationale can be applied to the decomposition of the remaining 
quantities and connectors in the CDM to yield the SDM shown.  In all, two interrogations 
are required to resolve ambiguities.  The example employed is the “Kaibab Plateau” 
model [18, p. 377], which depicts the growth and decline of a deer population on the 
north rim of the Grand Canyon (the Kaibab Plateau).  The exercise, if carried out in its 
entirely, would enable the correct identification of all connectors and quantities shown if 
Fig. 1, producing Fig. 8, which is comparable in form to [18, Fig. S15.2, p. 382].  The 
names of the quantities used in the example are indicated in Table II.  The information 
depicted in Fig. 8 could also be represented in matrix format through modification of the 
STM, as shown in Fig. 9.   
 
 

VIII. Development of Equations 
 
 The next step in methodology as discussed in Section I is the determination of the 
model equations from the stock-and-flow diagram model.  Equations for stock variables 
can be formulated just by inspection of the SDM, whereas equations for rates, auxiliaries, 
and outputs require the use of dimensional consistency in addition to the information 
provided in the modified STM (Fig. 9), while all parameters and inputs require 
specification to a constant.  The procedure described herein is one that could be 
algorithmatized.  
 
 It should be clear that the stock equation associated with q1 is given by x1(t + ∆t) 
= x1(t) + ∆t{r2 - r6}.  Similarly, the level equation for q10 is given by x10(t + ∆t) = x10(t) + 
∆t{r11 - r13}.  Alternatively, these relationships could be formulated in differential 
equation format: & ,x1 = r r2 6−  and & .x10 = r r11 13−  
 
 Equations for rates auxiliaries, and outputs are formulated as follows.  By 
proceeding down the column (in the modified STM) associated with any vi or ri, the set 
Aq(qi), the affector subset, is determined.  Clearly, qi = f[{Aq(qi)}].  For example, 
consider r2 (r2 is a function of x1 and v3).  The possible functional combinations are  
 
   r2 = ± x1 ± v3         r2 =  ± x1/v3 

r2 = v3/x1        r2 =  ± x1 ⋅ v3. 
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(all blank positions are zeros) 

 
      dimensions      type   1     2     3     4     5     6     7      8     9    10    11   12   13    14    
15  16  17     

 
 1    AA                  x1            I       -I                    I                                   I 
 
 2    AA/DD           r2     F 
 
 3    I/DD        v3           I 
 
 4    dimless         v4         I              I 
 
 5    CC/AA            v5      I      
 
 6    AA/DD        r6   -F 
 
7     AA/(BB.DD)  v7                                        I        
 
 8    AA/ZZ        v8                                                I 
 
 9    BB        p9                  I 
 
10   CC        x10           I                                         -I     I 
 
11   CC\DD        r11                                               F 
 
12   DD        v12         -I 
 
13   CC/DD           r13                                                            -F 
 
14   CC/(AA.DD)  v14                           I 
 
15   ZZ                   p15                     -I 
 
16  CC/AA          p16            -I 
 
17  CC        p17                              I     -I 
 

 
 
 

Fig. 9.  Modified square ternary matrix corresponding to stock-and-flow diagram model  
shown in Fig. 8. 
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Signs can be determined by the signs associated with the connectors.  Only one of these 
equations is dimensionally consistent: r2 =  ± x1 ⋅ v3.   
 
 Now consider the next variable v3.  Evidently, v3 is a function only of v4.  In this 
particular instance it is impossible to establish dimensional consistency; it would 
therefore be appropriate to surmise that v3 is a tabular function of v4 and that tubular data 
are required to define and describe the relationship.  The relationship will be denoted here 
as simply v3 = f3(v4), where f3(⋅) is to be determined by tabular information provided by 
those who are knowledgeable about the system concerned.  The remaining relationships 
for each of the rates and auxiliaries can be established by a similar rationale: 
 
    v4 = v5/p16  
    v5 = x10/x1  
    r6 = v7 ⋅ p9 
    v7 = f7(v8)  
    v8 = x1/p15 

            r11 = (p17 - x10)/v12  
            v12 = f12(x10/p17) 

               r13 = x1 ⋅ v14  
               v14 = f14(v4).  
 
 These equations would be written in any 4GL language and ordered properly so that all 
variables appear on the left-hand side of the equal sign before being used on the right-
hand side.  The result, shown in Table III, is a subroutine capable of being called a 
routine that performs the numerical integration.  Once parameter values, initial stocks, 
and tabular functions have been established by a main program, the simulation model 
shown in Table III could be executed for a given time horizon with the results printed and 
plotted at regular intervals.   
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TABLE III 

RESULTANT DIFFERENTIAL EQUATION SUBPROGRAM 
 
  SUBROUTINE MODEL (Z, DZ, N, TIMME) 
  REAL Z(N), DZ(N ) 
  COMMON /2/  F3(15), F7(15), F12(15), F14(15) 
  COMMON /3/  F9, P15, P16, P17 
  X1 = Z(1) 
  X10 = Z(2) 
  V5 = X10/X1 
  V4 = V5/P16 
  V3 = TABLE (F3,…., V4) 
  V8 = X1/P15 
              V12 = TABLE (F12,…., X10/P17) 
              V14 = TABLE (F14,…., V4) 
  V7  = TABLE (F7,…., V8) 
  R2 = X1⋅V3 

R6 = V7⋅P9 
R11 = (P17 - X10)/V12 
R13 = X1⋅V14 
DZ(1) = R2 - R6 
DZ(2) = R11 - R13 
RETURN 
END 
 

 
IX.  Conclusion 

In this paper a new approach to the problem of converting CLD’s to SFD’s is presented.  
The approach merges notions taken from digraph theory [17] and system dynamics [3].  
The basic postulates of system dynamics were reformulated into set-theoretic definitions, 
axioms, and a supposition. The reformulation does provide refreshed insight and 
understanding regarding the hypotheses that underlie and support system dynamics.  
Whenever the underlying hypotheses of any methodology are explicitly exposed, it 
becomes easier to question the premises and suggest alternative hypotheses. 
             
 Also in this paper, the logical consequences of the axiom set A1-A7 made explicit 
in [3], [4] or implicit by its application [5]-[7] were explored in the causal diagram 
context.  It was found that certain constructions in the signed digraph dictated the kind or 
type of quantities and connectors that must necessarily comprise the construction.  It was 
also suggested that algorithms would be capable of detecting the identifying 
characteristics of these constructions and of performing the quantity and connector 
classifications in an automated fashion.  Such classifications effectively induce a partition 
on the quantity and connector sets Q and C.  Once such classifications are complete, 
algorithms might then perform the equation compositions.  State equations follow 
directly from the information provided in the modified STM. Rate and auxiliary 
equations require the additional use of the notion of dimensional invariance.  
  
 The equation composing step would be followed by execution of the simulation 
model, also accomplishable by the use of algorithms.  If the computer aids were designed 
to operate as interactive time-sharing software, then these algorithms would perform 



Translation of CLD’s into SFD’s – James R. Burns, Atlanta, July 2001 – page 27 

interrogations whenever additional information was required, to which a team of 
participating managers and planners could respond.  As previously indicated, planner 
participation improves the credibility of the model. 
 
 As mentioned in the introduction, other strategies for formulating SFD’s are 
possible.  Such strategies may usefully employ many of the concepts introduced herein--
consistency, the square ternary matrix, set-theoretic definitions and axioms, even the 
theorems.  In the absence of empirical and experimental comparison of various strategies 
in controlled model formulation exercises, it is difficult to ascertain what strategy seems 
most appropriate for the broadest class of problems.  Certainly each would have 
advantages and disadvantages.  Therefore, the approach of the paper has been to illustrate 
how set and graph theoretic definitions, axioms, and theorems might be utilized within 
the context of one of the strategies while avoiding discussions about detailed algorithms 
employed by any one strategy.  
 
 In conclusion, a theory for computer-aided construction of simulation models is 
discussed in this paper.  The computer aids, once developed, could be employed to 1) 
check the validity and integrity of manually constructed models, 2) assist the modeler to 
expeditiously construct models, and 3) encourage manager and planner participation in 
the model construction process.  
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