
A NEW GENERATION OF DYNAMOS 

Alexander L. Pugh, III 
D. Ross Hunter 

Todd Sjoblom 

ABSTRACT 

The emergence of powerful personal computers and CAD/CAM 
machines offers a new opportunity for DYNAMO. Although users are 
generally satisfied with the language, a survey shows they want 
expanded simulation capabilities including single simulations, 
eigenvalue analysis, sensitivity analysis, and optimization by 
multiple simulation and hill climbing. Novices want easier ac­
cess to models and simulation. 

The modular version of DYNAMO now in development wi'll meet 
these goals. It will break DYNAMO's normal functions into sepa­
rate program's that users can reassembl.e in different ways. For 
example, one compiler will translate both conventional models and 
games. The simulation controller will work with a regular rerun, 
a game, or a sensitivity analysis package. The report generator 
will display output from any of these packages. 

These modules will communicate through standard data files, 
which users can also access for other purposes such as statisti­
cal analysis. 

The system requires seven different files: 

Generic model 
DYNAMO model 
Object code 

Generic rerun 
Rerun file 
Model results 

Definition file 

- includes menus to customize it 
- standard DYNAMO source file 

machine dependent o.bJect code generated by 
DYNAMO compiler which may be linked or 
loaded with user's external functions 

rerun statements and menus to customize them 
- standard rerun output 
- simulation output that can be used for report 

generation or read by another simulation 
- variable definitions which DOCUMENTOR or other 

program can use to display more readable 
information. 

175 2 

DYNAMO has been the simulation language of system dynamics 

for over 25 years. It has held that position by evolving simul-

taneousl y with the field and the hardware we use. With the ad-

vent of standard generic models, huge models and personal comput-

ers, DYNAMO must evolve further. This paper discusses some of 

the pressures forcing the creation of a new generation of DYNAMOs 

and the new features designed to ease theBe pre11sure11. 

In 1958, before FORTRAN was available, DYNAMO was cre.ated 

to avoid the necessity of writing a model in machine language. 

It was a pioneer in its thoroughness in checking a model before. 

running it, and in ease of specifying output. Built-in macros 

'simplified the inclusion of standard constructs such as third-

order delays. 

The advent of the IBM S/360 brought about the next genera-

tion, DYNAMO II. DYNAMO II supported any ~lgebraic expression 

and user-defined macros, which simplified the construction of 

larger models. 

The spread of systems dynamics in the 1960's resulted in a 

need for DYNAMO on other computers. DYNAMO II/F, a compiler 

'' written in FORTRAN and supporting the DYNAMO II language, met 

this requirement. 



grew, 

tion. 

3 

As system dynamics grew in self. confidence the model size 

arid more advanced tools were needed to aid model con·struc­

The addition of arrays to DYNAMO provided the necessary 

tools.· Again, thorough checking .by DYNAMO avoided two problems 

of most languages that support arrays: the element that is never 

cQ~puted and writing outside the array bounds. 

In the 1970's another change in hardware affected the re-

quirements for DYNAMO. Minicomputers, much cheaper than main-

frames, became popular at many colleges teaching system dynamics. 

Mini-DYNAMO was created to run on 16-bit machines with modest 

memory. Mini-DYNAMO has amazing capacity given its memory re-

quirements. 

could 

Mini-DYNAMO's architecture was so efficient of space that it 

even be run on microcomputers with only 611 Kilobytes of 

.This version was named Micro-DYNAMO, in recognition of memQry. 

the computers it was being run on and the change in the source 

language from FORTRAN to Pascal. 

What are the requirements of the 1980's? We build even larg-

er models and need software that can accomodate them. We need 

special tools to analy'ze the reasons for be.havior of complex mod-

els. MQre. non-professionals use our models and require better 

176 
II 

output facilities and easier ways to specify runs. We cone eiv e 

more wayiJ to test models and require software tools to support 

this effort. We relate models to data in more ways and. need ta-

cilitating software. We produce standard, generic models tor 

non-professionals and require software to reduce the time and ef­

fort required to tailor the standard model for a particular ap­

plication. The hardware we use is even more diverse than before. 

Many personal computers offer as much power and more memQry than 

the minicomputers of a few years ago; professional work stations 

such as the Apollo offer as much power as a large mainframe gives 

a single user. 

This diversity of requirements calls for a new approach to 

DYNAMO. A monolithic program cannot answer all of these require-

menta. It would be cumbersome to maintain, difficult to modify 

to meet new requirements, and expensive for people not needing 

all of its features. On the other hand, a modular approach that 

breaks the total job into its natural subtasks and clearly speci­

fies the boundaries between tasks, in the form of disk files, 

would simplify maintenance, could be packaged with as many mod­

ules as a particular user wanted, and could be extended by any 

computer professional to meet new requirements. 

A modul sr DYNAMO writ ten in a powerfu'l' computer language 

available on most computers would eliminate the need for the four 



5 

distinct versions of DYNAMO. The C language, the source language 

of the UNIX operating system which has ~lao been implemented out­

side the UNIX a·yatem, appears to be such a language. 

The modules that have been identified to date are: 

DYNAMO Editor- a text editor integrated with the DYNAMO 

compiler to simplify the creation and correction of 

DYNAMO models. It highlights each error in the 

model with its appropriate error message. 

Model customizer - givea non-professional users a se­

quence of menus to select the type and number of 

sectors from a generic model, to create a DYNAMO 

model representing a spec~ fie real world system. 

Compiler - translates a DYNAMO source code into inter­

mediate code, independent 'of the particular machine 

on which it is to be run. 

Native code translator translates the intermediate 

code into the native code of the particular compu­

ter on which it is to be run. This module would be 

unique to each computer and, possibly, operating 

system for which DYNAMO was implemented. 

177 
6 

Rerun customizer - shows users a series of menus to se­

lect the particular parameters of a run and output 

desired. 

Simulator - runs a model with the specified parameters 

to produce intermediate (unformatted) results. 

Report generator - creates reports based on the results 

of one or more runs according to user specifica­

tions. The reports can be laid out in any format 

the user desires, including graphical output. 

Optimizer optimizes model performance according to 

user-specified objective functions by repeated sim­

ulations and hill climbing. 

Eigenvalue analysis - analyzes model behavior by comput­

ing eigenvalues, participation factors, and parame­

ter elasticities. 

Model documentor - integrates model source and defini­

tion file into an easily read document. 

Fl.ow diagram generator interacts' 'with user, model 

source, and definition file to produce a flow dia­

gram of a model or sector. 



7 

These modules would communicate by means of a number of 

standard disk files. These files can b& processed either by oth­

er DYNAMO modules or by user-written programs. Thus, users who 

do not find the particular facility they desire can build that 

faci-lity out of their own modules plus one or more DYNAMO 

modules. 

Disk files accessible to the modules are: 

Generic model - DYNAMO source plus menus to direct the 

creation of a DYNAMO model. 

DYNAMO source- traditional DYNAMO source file (perhaps 

without PRINT and PLOT statements). 

Hodel intermediate code -DYNAMO compiler output, inde­

pendent of the particular ·host computer. 

Hodel object code - output of native code translator 

which would be loaded or linked with the DYNAMO li­

brary ·and any ·user-supplied external functions to 

produce a running model. 

Generic rerun - standard rerun instructions plus menus 

to create a rerun. 

178 

8 

Rerun - standard rerun instructions. 

Format instructions- instructions to report senerator. 

Unformatted results - simulation results that could be 

reprocessed by several other programs, such as a 

report generator, a graphics package or a statis­

tical package. 

Formatted results - tabular and graphi.c results gener­

ated by the report generator. The user might de­

sign this format to be· compatible with non-DYNAMO 

programs. 

Definitions - quantity definitions for inclusion in Doc­

umentor listing or flow diagrams, or for helping 

the user in reruns. 

The evolution of DYNAMO has paralleled the evolution of sys-

tem dynamics. Today, we need a very flexible tool on a wide va-

riety of machines. The authors are writing a modular DYNAMO in 

the C language to meet this need. 
'I 


