
1

15 Things System Dynamics can Learn

from Software Development

Nathaniel Osgood

Yuan Tian

Department of Computer Science

University of Saskatchewan

Abstract

While System Dynamics involves a diverse set of issues outside the scope of software development, one

of the key outcomes of the System Dynamics process is software artifacts, in the form of simulation

models. Many of the principles and concerns of software development more generally apply by

extension to the development of System Dynamics models. In recent decades, the software

development field has benefited greatly from a series of process-based and technologies to make the

production of software artifacts more reliable, more timely, and more predictable. Within this paper,

we argue that System Dynamics projects can benefit from adoption of processes and techniques in

software development, and discuss some of the adaptations required to take best advantage of such

approaches.

1. Introduction

As a form of computational modeling, System Dynamics is tied up with the creation of computational

artifacts. While such artifacts are built with a specificity of purpose that distinguishes them from most

software development, as computational artifacts, the process of building, developing confidence in,

reasoning about, and interacting with System Dynamics models has important parallels to the process of

building, developing confidence in, reasoning about, and interacting with other types of software. As

someone who teaches multiple courses in both software engineering and System Dynamics, the author

has long been struck by underlying similarities between the methods, and the prospects for each

discipline to learn from the other.

2

Beginning with the seminal work of Abdel Hamid and Madnick [1], there has been an increasingly rich

literature applying System Dynamics insights to improve the timeliness [2, 7] and quality [6] of software

development process. A recent book by Madachy [2] testifies as to the continuing promise of this

approach. While accessible and feature-full software packages have provided a key enabler for System

Dynamics modeling, there have been very few attempts to explicitly apply lessons learned in software

engineering within the System Dynamics modeling process.

This paper seeks to set out an initial survey in which principles of Software Engineering (including the

process of software development) could be applied to the field of System Dynamics. The paper’s scope

is purposefully broad, sacrificing detailed discussion about any one method in favor of a wide look at

possible enablers. This paper also does not seek to be comprehensive, but rather focuses on a small

handful of principles and innovations – typically focusing on the process side of System Dynamics – that

seem likely to offer the greatest leverage within the System Dynamics field. For size reason, we defer to

later papers certain relevant topics that merit extensive examination on their own, such as the use of

ideas from software development methodology, and requirements elicitation and engineering.

2. Process Related Innovations

This section focuses on principles and innovations focusing on the process of System Dynamics

modeling, rather than on the technical elements of building up a model.

2.1. Debugging Processes

In software development, much time is spent in the process of “debugging”– the process of tracking

down the underlying cause of observed system faults. The debugging process is a meticulous one, and

contains elements of both science and art. It has been estimated that developers vary in their

debugging productivity by an order of magnitude. These variations are not so much reflective of

variations in raw intelligence or technical support for debugging, but of the fact that some developers

make use of very powerful debugging strategies. Within recent decades, the software development has

been enriched by articulation of powerful debugging strategies in the literature [8, 9] as well as powerful

tools to support debugging [8, 10].

System Dynamics tools already offer one of the most powerful enablers for debugging, due to their

capacity to record the full state of a model over time, and the ability – offered by some – to literally step

3

backwards over time (such as in Vensim’s gaming mode). Despite such technical support, the process of

debugging System Dynamics models remains challenging. One reason is the difficulty of distinguishing

“bugs” from unexpected but legitimate emergent model behavior. Another significant reason is the

predominance of feedback loops within models –complicating the process of distinguishing the

symptom of a problem from its cause. Yet another overarching issue is the complicated nature of many

models, with many “moving parts” that could be of issue. Based on observations over the years we posit

that the variability in debugging proficiency in System Dynamics – partly as a result of these challenges –

may approach that in other areas of software engineering. Many experienced System Dynamicists have

developed strong debugging skills, permitting them to quickly home in on problems they encounter. By

contrast, many others appear to have difficulty knowing where to start. For this reason, we believe that

it is important to borrow from the software development experience, and to articulate principles and

semi-formal debugging methodologies to assist System Dynamics in developing their debugging skills.

2.2. Build Mechanisms

In Software Development, a “build” process is a key step in transitioning from work on the specification

of a software system to work observing or interaction with execution of that system. At its most

traditional level, a build involves the “compilation” of a system’s specification into a form that can be

executed. However, modern development environments use the build step for many additional

purposes – for triggering automated tests, for stylistic and risk checking of the system’s specification, for

updating developers as to the current status of the project, for deployment of the system to remote

servers and to developers’ machines, and for initialization of test databases. Current packages for

System Dynamics modeling do support “Build” functionality – occurring just prior to model execution –

but expose limited (if any) options for customizing or extending it. Modular support for “pluggable”

extensions could be valuable for both individual and team developers, and could help build up a

marketplace of 3rd party plug-ins to enhance the quality and transparency of the System Dynamics

modeling process. For example, pug-ins could be made for stylistic checking of models, more

sophisticated unit checking mechanisms, publishing findings of the projects, and testing. Such “hooks”

into the development process could further provide support for 3rd party tools such as SILVER [3].

Modeling software support for annotations and other mechanisms for supporting 3rd-party defined

metadata could further extend the richness of build mechanisms that could be supported.

4

The sections below discuss below two particular processes – automated testing and smoke testing – in

greater detail.

2.2.1 Continuous Integration and Smoke Testing

Software development traditionally suffered from a “big bang” phenomenon, in which new pieces of a

system – which depended loosely on one another – were developed separately, and then joined

together later in the process. This approach tended to lead to an “explosion” of integration problems in

the later phases of the project – often at a point and to an extent that was not anticipated in the

schedule. Microsoft’s teams in the 1990s [11] popularized an approach of instead perform frequent,

bite-size integration of new pieces of this system. Importantly, this was combined with a “smoke test”

that confirmed after each such step the basic operation of the system by running system-wide tests of

essential functionality. Individuals who “broke the build” by preventing integration could be easily

identified and would be notified, and would generally be responsible for rectifying the situation.

Because of the poor modularity associated with current System Dynamics models (see Section 3.3), the

“big bang” phenomenon has not typically been as pronounced in System Dynamics, and there is

appreciation for the need to start simple, and expand a model incrementally. However, the use of

“smoke tests” could be fruitfully adopted from the software development area, so as to provide rapid

checks to confirm that overall system behavior stays within certain recognized limits (e.g. that stocks

representing physical resources do not go negative).

2.2.2 Automated Testing

Since at least the 1980s (and probably earlier), testing in software development has taken place in a

combination of modes: Automated and Manual. In addition to its critical use in Smoke Testing (see

section 2.2.1), automated testing is also widely used for a variety of other types of tests, notably

including regression tests. Such tests – designed to prevent a “Regression” in the software – both check

to for resurfacing of old defects and to make sure that previously implemented features continue to

operate properly even as new features are added to a piece of software. Frequently there are many –

hundreds or thousands – of such tests run on a nightly or semi-daily basis. Additional focuses of

automated testing include random testing of algorithms where quick (if not definitive) checks on results

are possible, and of User Interface elements (helping to raise confidence that the user interface works

consistently and properly in invoking the remainder of the system).

5

We believe that similar sorts of testing could play a role in the System Dynamics area. While System

Dynamics models often produce unexpected and surprising results, we contend that something similar

to regression testing could find a place in System Dynamics modeling. While we leave thorough

discussion of possible test criteria – and discussions of implementation strategies – to another paper,

obvious criteria would include checking that variables (including input parameters) are within some

clear range (e.g. non-negative, or between 0 and 1), confirming conservation properties (that the sum of

a set of stocks is close a particular value), validating history properties (e.g. that a given quantity never

declines over time), ordering properties (e.g. one value is always above another).

We particularly note the applicability of regression tests for confirming whether any mistakes resurface

(whether due to similar flawed lines of thinking, or because flawed structure is resurrected in a later

stage of modeling). Certain mistakes are common in System Dynamics modeling – for example,

mistaking a rate for a time constant, etc. Many – but not all – such mistakes could be characterized in

tests immediately after their discovery, inspected for on a regular basis.

2.3. Customizable Style Checking

In both System Dynamics and software development, build tools routinely check the apparent semantic

consistency of the software artifacts that they process. Like their more general software development

counterparts, System Dynamics build tools routinely find errors both in the phrasing of models (“Syntax

errors” such as a misspelled function name for a forgotten “+” in an expression) and in the semantics of

models (e.g. cases in which a subscript is applied to a variable that does not support it). Such checks

help avoid errors during execution of a model or program, and are a key productivity enhancer.

However, such routine error messages do not address cases where a model is potentially correct, but

where risky practices are being employed.

Since at least the 1970s (which saw the advent of the “lint” program for the C programming language),

there have been a growing set of tools provided for checking software programs. Such tools could be

readily applied in the System Dynamics areas. For example, simple heuristics could be used to spot

many common errors (e.g. discovering the addition or subtraction of a stock & flow, or similar variable

names). More sophisticated (but readily realizable) analysis could be used to, for example, recognize

cases where a divisor could plausibly be zero, when a formula that expects a value between 0 and 1 is

passed a value that could fall outside of that range, or cases where there could be strong loss of

precision in calculations due to the underlying mathematics floating-point arithmetic. Additional

6

examples of where a “boilerplate” style checker could be helpful would be for spotting variable names

that are very similar (and thus risk confusion), a quotient where the divisor could apparently be zero,

unit inconsistencies, and cases where subscripts on the left and right side of an equation do not vary in a

typical way, and cases where there are many formulas that could be phrased more succinctly (and with

reduced risk) in a single formula.

The past 10 years have witnessed the growing use of customizable style checkers in development. Such

checkers can enforce user-specified rules, and are frequently used to check team-dictated stylistic

conventions. For example, such style checks could confirm consistency in the capitalization or

punctuation of variables. It is our conjecture that customizable style checkers can offer considerable

promise for enforcing project- or team- specific conventions in the System Dynamics world as well.

2.4. Peer Reviews

One of the foremost discoveries in the software quality assurance area within the past several decades

has been the efficacy – and cost-effectiveness – of performing peer reviews. While software

development projects routinely devote major efforts to automated and manual testing of software, peer

reviews – review of technical artifacts by peers – have been demonstrated to be even more effective in

maintaining software quality. Peer reviews vary along many dimensions, including the whether they

take place during a pre-scheduled meeting, whether artifacts to be reviewed are circulated prior to the

meeting, the level of preparation required, whether there are formal roles assigned to different parties,

the presence of follow-up meetings, etc. Types of reviews of particular relevance for System Dynamics

modeling include the following:

 Pair programming. Pair Programming (popularized as a part of the Extreme Programming Agile

methodology [12]) involves two or more individuals working at software development side-by-

side. Despite the name, this approach can be applied at any phase of the modeling process,

from requirements recording to architecture and design to implementation to test design and

execution and debugging. Experience has demonstrated that pair programming can significant

improve the quality of reasoning exercised during software development.

 Peer Deskchecks. Peer deskchecks are an informal, unscheduled sort of review that can take

place at ad-hoc points, when a creator seeks feedback on their work.

7

 Formal Inspections. Recognized as a software development industry Best Practice [13], formal

inspections have been shown to find a larger fraction of defects [14], and to do so with less

investment of human time per defect found [14].

While these approaches are applied overwhelmingly for the verification of software engineering

systems, we posit that they could offer strong benefits both for technical correctness (“did I build the

model right”) and model representation (“Did I build the right model” when applied to System Dynamics

modeling). While such approaches enjoy a measure of informal use in current modeling practice, we

believe that the value offered could be much greater if they were institutionalized in a manner

comparable to what is seen in contemporary software development organizations. At the experimental

level, we see the quantitative evaluation of such methods as an important line of investigation.

3. Technical Innovations

In addition to the process-related innovations, there are a number of technical innovations that can

shape how System Dynamics models are specified.

3.1. Language Support for Annotations and Metadata

The languages used for specifying programs by many – but not all – programming languages are

statically defined. While languages such as LISP have long allowed for extending the syntax of the

language, most procedural and object-oriented languages have long adhered to a fixed grammar, in

which a pre-defined set of constructs can be used. While such languages are computational universal –

and are thus capable of expressing the same computations specified by any program in more flexible

languages such as LISP – sometimes expressiveness and programs suffered as a result. In more recent

years, languages such as Java and C# have relaxed the strictures of language definition, permitting user

“annotations” that allow the user to mark up elements of a program with user-specified information.

Thus a software team might define annotations to indicate the operating system platform or position in

a distributed computational system (client/server) to which particular pieces of code belong, or even the

unit of measure associated with the results of a construct (such as a function or method). Alternatively,

annotations might be used to describe more process-oriented metadata (here, used to mean data about

the program), such as the organization or individual responsible for creating a given construct, the time

at which it was created, etc. When joined with language parsing and Reflection mechanisms – which

8

allow a program to access information about its own structure – such annotations help support the

creation of custom or 3rd party tools to run over the specification (“source code”) of a program, and

identify or extract information of interest (e.g. reporting all elements created older than a certain date,

or created by a team within a given time period). It can also allow for custom reasoning – for example,

performing semantic analysis such as that conducted by unit checkers.

The use of annotations bears consideration within the System Dynamics context. Tools that are

currently “hard coded” into System Dynamics packages – such as Unit Checkers – might be more flexibly

and easily built by riding atop of annotations. Currently, much metadata – the source of a parameter

estimate, the party responsible for deriving an expression or specifying a table function, the degree of

confidence about or estimated standard error associated with a given piece of data, notes on alternative

formulations that have been explored for some structure – is either not specified at all, or is specified in

external documents or in comments.

While maintaining metadata in external documents or comments is better than neglecting it entirely, it

does not lend itself to automated processing. Such processing could, for example, allow for automated

reasoning (e.g. unit checking), or identification of components of the program in response to custom

queries – for example, identifying pieces of data with specified confidence intervals (or with confidence

intervals of above a certain size), those lacking a clear attribution or provenance, or those using “stale”

data (data timestamped as having a source prior to a specified date).

3.2. Naming Conventions

Both System Dynamicists and Software Developers have long needed to provide names to quantities in

their models and programs. For System Dynamicists, such names apply to variables in the model

(stocks, flows, auxiliaries, table functions, etc.) as well as to custom graphs, output filenames, and other

constructs that articulate with a model. For Software Developers, primary naming concerns relate to

program constructs – such as variables, functions, modules, classes, and types – but also to components

such as database tables and columns, resources, filenames, and filenames of various sorts.

For many years, such naming was treated as purely a personal matter, and one of limited concern to the

software development enterprise or the software engineering process. In the late 1970s, the pioneering

work of Simonyi [15] helped draw attention to the potential for naming conventions for communicating

software developer intention, thereby enhancing reasoning and elevating the quality of the software

9

artifacts produced. The ensuing years have growing recognition of the benefits of choosing names

carefully [16, 17], and a proliferation of formalized and semi-formalized naming and stylistic conventions

[18]. While some approaches have focused on the importance of clarity in the meaning of the name of a

construct, others [19] have sought to explicitly encode metadata within the chosen name – for example,

using the name to encode information about how it is to be used (e.g. as an index, as a map, as a storage

array), and the associated formal universe of values (“type”) from which it is drawn. Concurrently,

recent advances in language design have witnessed a relaxing of constraints on variable name selection

(e.g. as newer languages put aside earlier imposed limits on variable name length), thereby providing

developers with enhanced flexibility in selecting names.

By contrast, System Dynamics practice has seen comparatively little in the way of formal naming

guidelines or conventions. While guides to good modeling practice do give some guidelines for selection

of clear names, there has been little formal attempts to encoding metadata in names, or even to define

basic lexicographic guidelines.

We would argue that clear capitalization, consistent abbreviation, and word separation conventions

within System Dynamics models would aid in the sharing, transparency and adoption of models. In the

absence of the sophisticated analysis tools that allow some metadata (e.g. types) to be provided to

software developers “live” while editing code, we also believe the benefits of incorporating metadata

into naming guidelines could be particularly valuable. For example, variables could be named in such a

fashion to indicate the associated subscripts. To minimize the risk of unit errors, some variables might

additionally incorporate an indication of the units associated with the variable.

3.3. Modularity

One of the key principles that has emerged in the software engineering area is the importance of

modularity in software. The capacity to subdivide a program (or model) into pieces affords a number of

benefits: A divide-and-conquer strategy in which different developers are responsible for developing or

modifying different pieces of a program in parallel, the capacity to build up a program piece-by-piece,

the cognitive and the capacity to substitute one piece for another, and the capacity to “mix and match”

different systems out of a universe of pieces, and the ability to reduce the number of changes required

when a given conceptual subcomponent must be modified. While constructs such as the “molecules”

of Hines [20, 21] have sought to articulate modular subcomponents of System Dynamics models, and

some tools have emerged to piece together a program out of pieces, most System Dynamics modules

10

remain stubbornly monolithic. While different conceptual pieces (e.g. a 1st order delay formulation, or

an aging chain) might be used in different models, often this is accomplished simply by cutting and

pasting from the original. A change in that original structure (e.g. to fix a mistake or capture information

with added fidelity) would then need to be replicated across many different particular models.

Modularity in System Dynamics models could be enhanced permitting different pieces of a program to

be composed by different modules (represented, for example, in different files), with the whole model.

A given module might be used in several different models. Modifications to that module would only

need to be made at one location, and would then be automatically exploited by other models.

3.4. Encapsulation and Abstraction by Specification

A concept related to but distinct from modularity is that of encapsulation. Encapsulation is concerned

with taking a modular system further by hiding the details of the modular subcomponents, and allowing

outside components to reason about and interact with that modular component through a well-defined

interface. Encapsulation helps ensure that the other pieces of the system that depend on a module do

so through a small set of well-defined pieces – thereby minimizing the cognitive load of those creating

the interfacing components, and allowing for modification of the internal elements of the module of

concern with confidence that their structure is not relied upon by the external modules. Specifications

of the behavior of a module – focusing on what it does, rather than how it does it – provide the “well

defined” understanding between the module and external modules that use that functionality. As with

a legal contract, such a specification allows both parties to be clear about what is expected. The creator

of a module is clear about what is being promised to outside parties – and about what is not being

promised (and can therefore be modified). The user of a module has a clear specification of what is

being promised, and need not be concerned about the internal details of how the module works.

Following investments in modularity, System Dynamics modules would be well suited to abstraction by

specification. Such specifications could state the variable names and characteristics (e.g. units) that are

provided as output of or input into a module, and what behavior is must be provided for the inputs (e.g.

that a variable must take on a value between 0 and 1 inclusive, or that another variable must be non-

negative. Given these conditions, the specification would further specify the properties guaranteed for

the outputs – including invariants that specify properties that hold at any one time (e.g. the output is

strictly positive) and history properties that specify any guaranteed behavior over time (e.g. the output

is non decreasing).

11

Encapsulation via specification provides the well-defined guarantees that permit different parties to

work on different pieces of a system with confidence that they will “play well together” even as the

system evolves.

3.5. Interface-Based Development

A further extension to the principle of encapsulation and specification is to distinguish the specification

itself from a particular module that implements that specification. Modules would depend not on each

other’s implementation, but instead could use any module that implemented some specification. A

given module might then implement one or more specifications – and could be used in any place that

one of those specifications was called for. This approach is termed “interfaced based programming”,

and allows for ready substitution of one module for another – as long as they the second one obeys the

required interface. Interface based development also allows for components of a program to be

developed and to have some validation attempted before the pieces on which they depend (via

interfaces) are developed – something made possible because the interface is well defined. Interface-

based development permits use of mocking (see Section 3.6).

We propose that System Dynamics packages using interface-based development for modules would

offer a significant enhancement of the System Dynamics development process. Among other

considerations, just as interface-based development has allowed for emergence of a 3rd party

marketplace of components in interface-based languages such as Java, C#, it could also allow

interchangeable System Dynamics modules (components).

3.6. Mocking

Given the presence of an interface-based module (component) system, the opportunity is raised for a

software development technique offering great power in system development and debugging –

mocking. Mocking takes advantage of the ability to interchange any implementation of an interface.

Specifically, it deliberately substitutes a greatly simplified – but cleverly built – “mock” where a full-

fledged component (matching the same interface) would otherwise be expected. Such a mock for A can

allow for testing the client code before the full component A is developed. It can also allow for more

localized testing of one or more components C of a program (or model) by using purposely simple

(mocked) versions of other components used by components C. Debugging can also be enhanced by

substituting in more and more mocks where full components would otherwise be used, thereby

increasingly localizing a problem.

12

A modularized, interface-based System Dynamics program could benefit from the use of mocking to

speed development, testing, and debugging.

3.7. Plug-In Architectures for System Dynamics Modeling Packages

An important enabling technical advance in software development concerns the creation of modular,

“pluggable” integrated development environments. While the early decades of software development

were marked by the use of simpler text editors for use in editing programs, the 1980s and 1990s

witnessed the rise of integrated development environments that would support not just editing text

documents, but also the source code browsing, build, debugging or testing processes, profiling,

database access, and integration with version control systems (see Section 3.8). Building on the vision

of GNU EMACS [4] but expanding beyond its text-only interface, a variety of graphical “integrated

development environments” were developed to provide a rich platform for developers. While early

environments (such as those associated with the Microsoft Visual X series [22]) supported a wide range

of functionality, and increasingly provided interfaces for 3rd party extensions (e.g. for additional build

tools, UML or data modelers, etc.). The rise of the Eclipse project [5] in the 2000s marked the

emergence of a prominent open-source system offering deep extensibility via a “plug-in” architecture

that was core to the project. Eclipse helped both to stimulate and benefitted a massive outpouring of

3rd party plug-ins, handling tasks from profiling to visual modeling to database integration to UI design to

version control access. Such tools ease and enrich the software development process, and the vibrant

3rd party market coupled with the ability to “mix and match” different plug-ins for a given project aided

in significant enriching the Java development space.

While the user base of System Dynamics modelers is nowhere near as big as that for Software

Developers, we posit that System Dynamics modeling platforms could benefit from the adoption of plug-

in architectures. Among other factors, this could allow 3rd party developers to more readily support

tools in all of the major platforms, and further enrich the tools available to modelers, and reduce

pressure on the primary package developers to add support for non-core functionality (e.g. tools for

calibration and sensitivity analysis, model and data visualization, software artifact provenance and

versioning systems, etc.)

3.8. Version Control and Documentation Systems

For decades, Software Developers have placed source code, design documents, test scripts and code,

database schemas, requirements specifications, graphical resources, estimation documents, and other

13

elements of a software project, within repositories. These repositories – such as Subversion, RCCS,

SCCS, Visual Sourcesafe, etc. – are known variously as “Version Control” systems, “Source Code Control”

systems. However, the use of such systems have evolved over the years, and such names do not fully do

justice to the breadth of functionality and versatility of such systems, or to the absolutely central role

that such system have played in modern software development.

Such repositories do support saving away successive version of software artifacts, but also operate as

key connective processes linking different developers with information on the history of contributions to

the project, help understand the relationship between two developer’s changes, integrate with the

continuous integration and build processes (see Section 2.1), allow for retrieval of historic documents,

support status updates to enable “change awareness” across the project, and increasingly serve as a

rich set repository of information for process visualization and decision making.

While some System Dynamicists routinely use such version control mechanisms, they offer potential for

much wider and richer use. For example, version control systems could support cross-linking various

artifacts produced analyzing run output, to the assumptions underlying such runs, and the outputs of

such runs, all associated with the corresponding model version. Just as in Software Development,

“change awareness” can add important insight and inform decision making in the System Dynamics

process, and version control systems can provide such awareness. As in software development, such

systems can also serve as sources of data for managerial insight, via visualization, and through use of

data mining and business intelligence tools. The recent SILVER [3](and accompanying SILVERVIZ[23])

system offers an important contribution in this regard, but suffers from poor support for 3rd party tools

in many of today’s software platforms.

3.9. Assertions

One of the most powerful technically-involved innovations to assist software development in the past

several decades is the use of assumption-checking predicates known as assertions. The key idea behind

assertions is that software developers routinely make use of assumptions when building software, and

that the correctness of such assumptions is essential to the correct operation of that software. A close

corollary to that premise is the observation that it is desirable to have such assumptions documented

and, if there is a defect in a software developer’s assumptions, it is best that it be recognized as soon as

possible in the testing of the software system. Assertions are a technique for systematically, explicitly

and operationally documenting a software developer’s assumptions, such that they are automatically

14

checked throughout the testing, development, and debugging processes, and laid bare for anyone

seeking to modify the program specification. Because many software projects disable assertions once

the software artifacts are provided to clients, assertions will sometimes verify quite high-level program

properties – for example, the fact that a tuned version of an algorithm yields the same results as a

straightforward but computationally expensive version of that algorithm, or that two different ways of

computing some quantity yield the same results. Experienced software developers will often routinely

pepper their code with such “sanity checks”, reflexively creating an assertion to document assumptions

that they consider while designing the program. Such assertions are responsible for uncovering a

massive number of defects – both defects that reflect logical reasoning errors and those that reflect

communication lapses or other misunderstanding between developers. While individually humble and

modest in their implications, collectively the assertions for a software project commonly represent one

of the pillars on which the quality processes for that project rest.

The fundamental motivations for, ease of creating, and capacity to implement assertions apply as much

to System Dynamics as they do to other areas of software development. Like all areas of Software

Development, building System Dynamics routinely involves reliance upon assumptions. Some of these

assumptions – concerning the fashion in which external processes work in the real world – are not

typically feasible to test from assertions. However, others assumptions can be readily and valuably

tested. For example, one could confirm that a stock is non-negative, that parameter representing a

fractional quantity is between 0 and 1, that a discount rate is non-negative, that a set of stocks total up

to some known value, or that several computed fractions for each of the different sub-pieces of some

whole total up to 1. With somewhat more mechanism, one could confirm history properties, such the

fact that a given stock is non-decreasing, or that it never declines beyond its initial value. Just as

Software Developers will sometimes check assumptions with more involved computations (e.g.

comparing two versions of an algorithm), System Dynamicists might even try checking the divergence of

results between two different implementations of some model structure (one a simplified proposed

representation structure, another more complex structure purely used for the sake of testing). If the

two implementations prove to be consistently sufficiently close in their results, the degree of confidence

in the adequacy of the simplified representation would be enhanced.

As for Software Development more generally, such assertions are, on an individual level, of quite

modest benefit. However, by serving as documentation for assumptions, they collectively help to

15

significantly reduce the risk that model modifications will inadvertently run afoul of assumptions – and,

worse, that violations of some of the hundreds of relative assumptions in a model might go unnoticed.

Moreover, there are some cases which raise significant risk of the chance of violation of such

assumption. Examples would be sensitivity analyses and calibration processes. Such processes routinely

vary one or more sets of parameters over ranges that may inadvertently violate assumptions – such as

by drawing a stock of a physical quantity negative, or by depressing the values of auxiliary values outside

some range. An assertion failure during such exercises could signal that the parameter variation has

gone outside the assumptions of the model, but allow for continuing on to examine other simulations

with acceptable assumptions.

Existing System Dynamics packages do offer some manner of implementing assertions – for example, by

having conditional statements that force an arithmetic expression (e.g. cause a division by 0 error) in the

event that the tested condition is violated. As in regular software development, such assertions could

be disabled in the event that the code is used by clients, or when faster simulation is sought (e.g. for a

demonstration). However, System Dynamics packages would benefit from explicit support for

assertions – for example, allowing logging of custom error messages upon assertion failure, and

providing built-in options for enabling or disabling assertions.

3.10. Reflection and Metaprogramming

While early computing approaches tended to blur the distinction between program encoding and the

data on which they operated [24], for many subsequent decades, the dominant computing languages

enforced a strict and narrowly defined separation of these two domains. Within this methodology,

programs operated on data, but not on their own representation. While this imposed constraints, this

approached simplified reasoning about many aspects of program structure. For many years, the

construction of programs that reasoned about – and even modified – their own structure was a black

art, and was relegated to experts in small subsets of the computing field.

There are compelling reasons for giving programs access to their representation and to information

about their behavior, and to “metadata” regarding the data circulating within them – a technique that

broadly goes under the contemporary label of “reflection”. Such access allows programs to reason

about their own structure, eases the creation of debugging and testing instrumentation. For example,

the use of reflection permits general test suites such as JUnit [25] or NUnit [26] to identify testing

methods within the programs to be tested. Reflection also permits debuggers to access information on

16

the structure of the program being debugged, on the data fields and methods associated with different

elements of program structure (e.g. within classes or associated with functions or structures). Access to

metadata can also allow a program to implement just one or a small number of general mechanisms

where many specialized mechanisms would instead be required – for example, implementing a single

routine to persist objects to a database (where that routine uses metadata to identify the relevant data

in each object), rather than using a set of specialized methods, with one such method for each object.

The capacity to change a program’s representation (also supported by some implementations of

reflection) can allow for performance enhancement (e.g. user’s query could trigger creation of

specialized search code custom-tuned, or empirical observation of program use could allow for the run-

time specialization of pieces of a program to certain highly utilized cases), for modification of program

semantics (e.g. “hooks” to allow for incorporation of logging functionality, or debugging messages or

reports), and for application of techniques such as genetic programming [27] that permit evolving

program structure.

Within a System Dynamics context, the prospects for access to metadata and information on model

structure offers some significant opportunities. As for general purpose programs, the creation of 3rd

party debugging and testing tools can be considerably facilitated by support for reflection. While the

provision of existing APIs do allow for support for such tools, opening access to reflective capabilities

within the model logic might aid this process further, and support the creation of 3rd party tools for

common tasks such as calibration and sensitivity analysis. The creation of evolving System Dynamics

models has been explored in some previous contributions, but could be greatly facilitated through the

use of reflection. While Aspect oriented approaches might provide a better avenue for instrumenting

program functionality (e.g. for logging or persistence), thorough support for reflection techniques could

also give access to such functionality.

3.11. Aspect-Oriented Approaches

Languages popular for software development have long been effective in supporting the definition of

centralized points of logic for program functionality. In classic procedural languages (such as C, PASCAL

and FORTRAN), functions (or “subroutines”) are responsible for much functionality. In modern object-

oriented languages, classes group together state and functionality associated with certain types of

entities described within a program. While such abstractions support the succinct description of many

types of computational needs, there are certain types of needs for which they offer a poor fit. One of

17

the most notable is “cross-cutting” functionality -- common services (such as persistence, logging,

reporting, object pooling, transactioning, security concerns, etc.) that are needed across many modules

of entire program.

While cross-cutting functionality can be achieved by traditional mechanisms – for example, by scattering

function calls to invoke such services throughout a program – such distribution of control is fragmented,

offers limited transparency, is brittle to change, and time consuming to place. Frequently underlying

logic by which the calls are placed is not documented or captured in a single location; if it is, it is typically

only the result of commenting rather than explicit language support, and can be easily overlooked. As a

result, the system can easily fall prey to omission of such service requests where they are needed, or

placement of requests for services where they are not required. When the service interface evolves

(perhaps requiring an extra parameter, or just one call and not two), the program must be changed at

many locations. Through oversight, a developer might neglect to update certain of the uses, potentially

yielding a defect. Finally, the placement of such service requests throughout a program can be very

time consuming. The time can care required for such placement less of an issue when the code involved

is for long-term use – e.g. for transactioning, object pooling, and security concerns. However, such

placement of calls is sometimes used to address ephemeral needs – for example, to report on certain

components of program operation or for logging during debugging. Placement of the full set of calls

required across can entail substantial effort; rushed deployment of such calls may yield omissions or

erroneous placemen, thereby impairing the accuracy of the reporting and of the insights gained during

debugging.

To allow for succinct, expressive specification (and, implicitly, documentation) of cross-cutting

functionality, researchers in the 1990s and 2000s introduced the notion of “Aspect Oriented”

programming. Aspect Oriented programming provides a centralized means of describing and deploying

cross-cutting functionality across a program. In its most popular form [28], aspect oriented

programming permits software developers to specify the patterns (“pointcuts”) specifying locations at

which specified bits of code should be woven into a program, and the specific code (“advice”) to weave

in at those points. Pointcuts provide a succinct way of specifying the rules for location of such cross-

cutting functionality – rules that would otherwise often be left implicit within the structure of a

program.

18

There are a number of cross-cutting concerns that apply within design and use of System Dynamics

models. During debugging, having regular updates on the value of model variables (or expressions

involving such variables) can be very helpful. Aspects would provide a succinct way of indicating the

variables on which to report, the frequency of such reporting, and any processing required prior to

reporting (e.g. computing a function of several of the variables, such as totalling them up). Aspects

would also provide a clean way of implementing custom persistence mechanisms (e.g. saving certain

data to a database). In addition, aspects could be used to test certain invariants across a program --

thereby providing a concise mechanism to specify cross-model assertions (see Section 3.9). Aspects

might also merit consideration as a powerful and more transparent way to specify subscripts across an

entire section of a program from one central place, thereby reducing the effort that is required when

adding or deleting a subscript. Coupled with Reflection mechanisms (see Section 3.10), Aspects could

potentially further provide a convenient way to implement model analysis algorithms, such as loop gain

analysis, eigenvalue elasticity computations, etc.

Most current implementations of aspect oriented programming are geared towards incorporation in

object-oriented languages, and an implementation in System Dynamics packages would need to be

adopted dramatically to accommodate the declarative nature of existing System Dynamics languages.

This effort may draw important insights from other attempts to apply aspect orientation to functional

and declarative languages, such as from the PolyAML experience [29].

Acknowledgements

Nathaniel Osgood gratefully acknowledges the generous support of the National Engineering and

Science Research Council (NSERC) Discovery Grant program for this work.

References

[1] T. A. Hamid and S. E. Madnick. 1991. Software project dynamics: an integrated approach. Prentice-

Hall, Inc., Upper Saddle River, NJ.

[2] R. J. Madachy. 2007. Software Process Dynamics. Wiley-IEEE Press, Los Alamitos, CA.

[3] N. Osgood. 2009. Silver: Software in support of the system dynamics modeling process. The 27th

International Conference of the System Dynamics Society.

[4] GNU Emacs. http://www.gnu.org/software/emacs/.

http://dl.acm.org/citation.cfm?id=124574&CFID=90573294&CFTOKEN=20930183
http://dl.acm.org/citation.cfm?id=124574&CFID=90573294&CFTOKEN=20930183
http://www.gnu.org/software/emacs/

19

[5] Eclipse. http://www.eclipse.org/.

[6] H. Rahmandad and D. M. Weiss. 2009. Dynamics of concurrent software development. System

Dynamics Review 25(3): 224-249.

[7] D. M. Raffo. 1996. Modeling software processes quantitatively and assessing the impact of potential

process changes on process performance, Ph.D. Dissertation. Graduate School of Industrial

Administration, Carnegie Mellon University, Pittsburgh, PA.

[8] A. Zeller. 2005. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann Publishers

Inc., San Francisco, CA.

[9] R. Metzger. 2004. Debugging by thinking: A multidisciplinary approach. Burlington, MA: Elsevier

Digital Press.

[10] B. Lewis. 2003. Debugging backwards in time, In 5th Workshop on Automated and Algorithmic

Debugging (AADEBUG), Ghent, Belgium.

[11] M. A. Cusumano. 1998. Microsoft Secrets: How the World's Most Powerful Software Company

Creates Technology, Shapes Markets, and Manages People. The Free Press, New York, NY.

[12] K. Beck. 1999. Extreme Programming Explained: Embrace Change. Addison Wesley, Reading, MA.

[13] D. A. Wheeler, B. Brykczynski, and R. N. Meeson (editors). 1996. Software Inspection: An Industry

Best Practice for Defect Detection and Removal. IEEE Computer Society Press Los Alamitos, CA, USA.

[14] K. E. Wiegers. 2001. Peer-Reviews in Software: A Practical Guide. Boston, Addison-Wesley.

[15] C. Simonyi. 1977. Meta-Programming: A Software Production Method. PhD thesis, Stanford

University.

[16] S. McConnell. 2004. Code complete, 2nd ed. Microsoft Press, Redmond, WA.

[17] R. C. Martin. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall.

[18] A. Vermeulen, S. W. Ambler, G. Bumgardner, E. Metz, T. Misfeldt, J. Shur and P. Thompson. 2000.

The Elements of Java Style. New York, NY: Cambridge, University Press.

[19] Hungarian Notation. http://msdn.microsoft.com/en-us/library/aa260976(VS.60).aspx.

[20] J. H. Hines. 1996. Molecules of Structure. System Dynamics Group, Sloan School of Management,

MIT.

[21] R. Eberlein and J. Hines. 1996. Molecules for modelers. Proceedings of the International System

Dynamics Society. Cambridge: System Dynamics Society.

[22] Z. Naboulsi and S. Ford. 2011. Coding Faster: Getting More Productive with Microsoft Visual Studio.

Microsoft Press.

[23] Y. Xue, N. Osgood and C. Gutwin. 2011. SILVERVIZ: Extending SILVER for coordination in distributed

collaborative modeling. In The 29th International Conference of the System Dynamics Society,

Washington, DC. 108.

[24] H. Abelson, M. Halfant, J. Katzenelson and G. J. Sussman. 1988. The Lisp Experience. Annual Review

of Computer Science, 3, pp. 167-195.

http://www.eclipse.org/
http://msdn.microsoft.com/en-us/library/aa260976(VS.60).aspx

20

[25] JUnit. http://www.junit.org/.

[26] NUnit. http://www.nunit.org/.

[27] J. R. Koza. 1992. Genetic Programming: On the Programming of Computers by Means of Natural

Selection (Complex Adaptive Systems). A Bradford Book, 1st edition.

[28] R. Laddad. 2009. AspectJ in Action: Enterprise AOP with Spring Applications. Manning Publications,

2nd edition.

[29] D. S. Dantas , D. Walker , G. Washburn , S. Weirich. 2005. PolyAML: a polymorphic aspect-oriented

functional programming language. Proceedings of the tenth ACM SIGPLAN international conference

on Functional programming, Tallinn, Estonia.

http://www.junit.org/
http://www.nunit.org/

