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ABSTRACf 
This paper presents results of extended experimentation with selected models of social phenomena 
widely used by the system dynamists in their studies on deterministic chaos. The models selected 
include various versions of a simple model of migratory dynamics and a model of resource allocation 
in a finn, and a simple model of long-term economic fluctuations. Chaotic modes seem to appear in 
each of the experimented model, either due to non-robust or unrealistic rate formulation, or from 
unrealistic parameter or input specifications or both. Minor changes in the models experimented 
with, which improve their correspondence to reality, eliminate chaotic modes. The paper raises the 
issue of the relevance of the chaotic models to real-world phenomena and policy design for system 
improvement. 
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1. INTRODUCITON 
Deterministic chaos, a behavior mode discovered in certain nonlinear system dynamics models has 
lately drawn much attention from scholars and practitioners. System Dynamics Review brought to 
its readers a fme distillation of the important writings on the subject in its Volume Four double issue 
published in 1988. Deterministic chaos appears in the models explored in this issue as a pattern of 
behavior each cycle of which is different from the preceding cycles while no two cycles are 
systematically related. A chaotic mode is usually exhibited only with certain parameter values and 
exogenous inputs lying within narrowly specified ranges. The relevance to real-world systems of 
the chaotic behavior appearing in these highly aggregate and simple models is, however, unclear; 
nor has experimentation with them to-date evolved any principles for system improvement [Andersen 
1988; Mosekilde, Aracil and Allen 1988]. 

This paper attempts to examine the relevance of the chaotic modes appearing in the models to real
world phenomena and to the agenda of system improvement implicit in the use of system dynamics 
method. The paper assumes readers have a working knowledge of system dynamics and some 
familiarity with the models of chaos appearing in the system dynamics literature. Further 
experimentation with the models of chaos selected from those widely used by the system dynamists 

. to illustrate the phenomenon, and intexpretations of the experimental results serve as bases for 
analysis. Chaotic modes seem to appear in each model either due to non-robust or unrealistic rate 
formulation, or from unrealistic parameter or input specifications or both. Minor changes in the 
experimented models, that improve their correspondence to reality, eliminate chaotic modes. 

Our experiments suggest that chaotic behavior may not be inherent in systems represented by the 
experimented models, but rather that it appears due to mis-speciflcations in the models. And if this 
observation can be generalized, the appearance of a chaotic mode in a model may only signal the 
existence of anomalies in the model, calling for a revision of its structure and parameter 
specifications as suggested by Forrester and Senge (1980). 

Chaotic modes can also not easily be identified in the real world because of the long time- constants 
involved in the process, while their conditional appearance in models provides little help in 
interpreting system behavior from its decision structure. Thus, models of chaos, although 
interesting artifacts, might appear irrelevant to the agenda of unification of knowledge and policy 
design for system improvement, which are widely advocated as important foci for the system 
dynamics method [Forrester 1987]. · 
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2. EXPERllvlENTAL DESIGN 
Three areas in which models of chaos have been developed were selected for further analysis: 
migratory dynamics, production and operations management, and macro-economics. Five relatively 
simple models were selected for experimentation, including the Waycross and Weidlich models of 
migratory dynamics [Rasmussen and Mosekilde 1988, Mosekilde, et. al (1985), Reiner et. al. 
(1988), Richardson and Sterman 1988], two versions of a model of resource allocation in a firm 
used respectively by Mosekilde, et. al.(1988) and Andersen and Sturis (1988), and a simple model 
of the economic long wave developed by Sterman and discussed in Rasmussen, et. al. (1985). 
Limitations of time and resources did not allow an exhaustive examination of all models discussed in 
the literature. 

The first task undertaken was to replicate the chaotic modes. This turned out to be a straight 
forward, although laborious process, thanks to the excellent documentation provided by the various 
authors whose work was used. To digress a little, we greatly appreciated the thoroughness and 
accuracy of the published materials accessed, since in our experience such clear documentation is 
quite uncommon. While replicating chaotic modes, we also carefully examined the structure of the 
models for robustness. We even constructed simple MACRO to keep track of the instances in which 
stocks assumed negative values (see Appendix). We also prepared extended phase plots covering all 
important stocks and flows in each model and carefully examined them for negative or otherwise 
absurd regions. 

Because of their simple and highly aggregated structure, the models used in general made many 
simplifying assumptions. These assumptions were carefully debated by the authors for validity and 
accepted unless glaring errors or inconsistencies were found. In each case, a single most 
inconsistent assumption or equation was identified and minimally modified to eliminate the anomalies 
discovered. After this modification, the models were re-simulated with the same parameter sets as 
those giving rise to chaos in the original models. In all cases, the chaos disappeared. The exact 
nature of the modifications made was different in each case, but all enhanced realism. The details of 
the experiments conducted and an analysis 9f results appear in the following sections. 

3. WAYCROSS AND WEIDLICH MODELS OF MIGRATION: 
. CHAOS FROM NON-ROBUST RATE EQUATION FORMULATION 
Both the Waycross and 
Weidlich models deal 
with two hypothetical 
ethnic groups (say Itra
chians and Lomanians) 
and three neighborhoods 
(say Richmond, 
Jonesboro and 
Camden). While the 
two ethnic groups prefer 
to live with their own 
kind, living in an Itra
chian neighborhood is 
of positive value to 
Lomanians while the 
Itrachians view living in 
a Lomanian neighbor
hood to be of negative 
value. 
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Figure 1: Flow diagram ofWaycross/Weidlich models 
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Hence the population in the three neighborhoods is constantly on the move. The total number of 
families in each ethnic group is assumed to remain constant over time. A flow diagram of the 
Waycross model reproduced from Mosekilde et. al.(1988) is shown in Figure 1. The Weidlich 
model is similar in structure. 

The Waycross model employs six net migratory flows while the Weidlich model uses twelve flows 
representing the in- and out- migration of each ethnic group in each district. Both models use 
complicated limitations to prevent out-migration exceeding source population, but unsuccessfully; 
according to our observations, chaos occurs in these models for selected parameter sets due to non
robust rate equations repeatedly causing flows to exceed the stocks feeding them. The chaotic modes 
for one of the parameter sets suggested by the respective authors are shown in Figures 2: a and b. 
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Figure 2:Phase plots of Waycross and Weidlich models with Chaotic parameter sets 

Led by the evidence of negative stock values shown through our switching equations, we closely 
examined the migratory flows and found them to be non-robust in both models. 

The Waycross model assumes that the inclination of a population (P1 or P2) to move from district ito 
districtj (IMPlij, or IMP2ij) is given by a linear combination of the differences of the two 
populations between the two districts. 

For example, 

where i and j represent respectively donor and recipient districts. Migration is then obtained by 
dividing the inclinations by a constant. 

So far, the model is still linear and produces growing oscillations, which periodically leads to 
negative population in one or more of the districts after some time - a clearly meaningless result. 
Non-linear limiting factors have been introduced into the model to slow down the rate of migration 
out of a district as the number of remaining families in it approaches zero. Additionally, a number of 
shift functions are also applied, adjusting the limiting factors corresponding to the populations being 
reduced (Mosekilde et al. 1985). Unfortunately, the complicated limiting factors and shift functions 
cannot stop the populations from becoming negative during the simulation, which seems to create 
aperiodic behavior, evolving in a random fashion giving the impression of chaos. 
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Two solutions were applied separately to correct the stock negativity problem. First, a crude 
solution, the in- and out- migration rates were separated and a MIN function used to ensure that out
flows do not exceed stocks. Second, a relatively more refined solution, the weighting functions 
were normalized by the total population making sure that a fractional flow out of a stock at no time 
exceeds the stock. Modified sets of equations for the two cases appear in the appendix and the 
corresponding simulations are shown in Figures 3: a and b for the same parameter set as for Figure 
2. The system settles into a limit cycle instead of continuing in a chaotic mode. The modified 
models were also simulated for the other parameter sets, identified as chaotic in the original model 
and also for many others. There was no evidence of chaos, which is not surprising since the model 
contains only two conservative systems inter-connected through negative feedback, which is very 
likely to settle into a limit cycle unless something outrageous is happening to the stocks. 
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Figure 3: Limit cycles generated by the modified versions of the Waycross model 

The Weidlich model separates 
in- and out- migratory flows 
and employs a set of expo
nential weighting functions to 
compute fractional flow rates. 
However, this does not alleviate 
the problem of flows assuming 
strange values. The fractional 
migratory flow of a population 
(P1 or P2) from district ito 
district j (FR lij, or FR2ij) is 
given by a an exponential 
combination between the 
differences of the two popu
lations of the two districts. 
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Figure 4: Net flow between two regions vs.population 
imbalance in Weidlich model for the chaotic parameter set 
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For example, FR1·· =Exp[k *(P1· - P1·) + k * (P2·- P2·)] 
lj li J 1 lj J l 

It is evident from this function that a zero value of the argument of the exponential function will be 
returned for many values of population not necessarily representing a balance in size. Figure 4 
shows the scatter plot between one of the population imbalances in one of the pairs of districts and 
the net flow between them. The net flow corresponding to an imbalance of zero is never zero, while 
it stays at zero for many high values of imbalance, both positive and negative. Such flow equations 
are evidently clumsy and should be replaced by one of the modified sets suggested for the Waycross 
Model, which would create a limit cycle rather than chaos. 

4. MODELS OF RESOURCE ALLOCATION IN A FIRM: 
CHAOS FROM UNREALISTIC INFORMATION BASIS FOR A DECISION 

Anderson and Sturis (1988) and Rasmussen and 
Mosekilde (1988) have used the same model of 
resource allocation in a finn to produce chaotic 
modes, although they refer to it differently and use 
slightly differing parameters and slopes of table 
functions. The model deals with resource allocation 
between production and sale activities in a finn 
whose total resources are f~ed. Figure 5 is a flow 
diagram of the model reproduced from the paper by 
Andersen and Sturis (1988). 

A comparison of the actual and desired inventory 
(DI) is the basis for the resource allocation 
decision; the desired inventory is fixed. 
Production is a linear function of workforce in the 
production activity, but involves a 30-day third
order production delay. Sales are linearly related to 
the number of customers who are recruited in 
proportion to the sales-force and normally exit the 
customer pool after an average stay of about eight 
years (actually, 3,000 days). The loyalty of the 
customers, however, also depends on the ratio of 
the inventory level to the fixed desired inventory, 
presumably a proxy for delivery delay. · 

Figure 5: Flow diagram of the resource 
allocation -model 

Both Andersen and Sturis (1988) and Rasmussen and Mosekilde (1988) found that the model's 
chaotic regime contains complicated sequences of multiple periodicities. Figures 6: a and b show 
chaotic modes produced by the two models over one of the suggested parameter spaces. 

Led again by our switching functions which keep track of the incidence of negativity in the stocks, 
we examined carefully the logic of the related flow rates. The model in question treats customer 
reaction as a function of product availability. Product availability is then defined as the ratio of the 
actual inventory to the desired inventory, which is assumed to be fixed. This is anomalous since, 
treated this way, availability does not directly depend on demand. For example, an inventory level 
of 50 units will affect a demand of 100 units in the same way as a demand of 5 units, turning 
customers away in both cases. 

In reality, customers would view delivery delay, or a proxy such as inventory coverage, as a basis 
for their orders, not a fixed fraction of the absolute amount of inventory. Within the frame work of 
the model, this can be easily accomplished by making desired inventory DI a function of order rate as 
follows: 
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DI.K=CUS.K*(ASPC!f)*NIC 

where CUS denotes Customers, ASPC{f is Average Sale Per Customer per unit Time and NIC is 
Normal Inventory Coverage. The ratio of inventory to desired inventory now represents normalized 
inventory coverage. 

--IHIJ 
16.e·Jr----...----r------,r-----, 

4SB •• 
RIP 

a) Andersen and Sturis 

SSB. 65B. 

--I 
16.e·3r----r-----.-------.-----. 

B) Rasmussen and Mosekilde 

Figure 6:Phase plots for two versions of the resource allo'cation model for chaotic parameter sets 

Phase plots of simulations of the modified Anderson and Sturis and Rasmussen and Mosekilde 
versions of the model for the same parameter sets as in Figure 6 are placed at Figures 7:a and b. The 
behavior of neither model shows chaos, but sustained oscillations after the anomalies in the 
information basis for the customer response have been removed. Similar non-chaotic behavior was 
also obtained with other parameter sets identified as chaotic in the original model. 
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Figure 7: Phase plots of two versions of the resource allocation model after modification 
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5. STERMAN'S MODEL OF LONG WAVE: 
CHAOS FROM UNREAliSTIC RESPONSE TO INFORMATION 
AND EXCESSIVE EXOGENOUS DISTURBANCE 

Sterman's model of long wave 
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contains a simple and generally 
robust structure which produces 
chaotic behavior when subjected 
to an unrealistically high 
exogenous disturbance and by 
making one of its behavioral 
functions extremely steep. The 
model represents an aggregate 
production sector that orders 
capital from itself depending on 
the required production capacity. 
For normal parameter values, the 
model exhibits a characteristic 
limit cycle. The details of the 
structure of this model are 
discussed in Rasmussen et. al. 
(1985). A flow diagram 
reproduced from the original 
paper is given in Figure 8. 
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Figure 8:Flow diagram of Sterman's model of long wave 

A critical relationship in the model is a table function used to obtain a multiplier from desired 
production (MDP), which depends on the ratio between desired production and potential output. A 
chaotic mode, reproduced in Figure 9, is obtained from the model by using a very steep table 
function for MDP together with a sinocidal disturbance of rather large amplitude (20%) in the desired 
production of goods (DPG), which is assumed to be constant. This chaotic mode, however, 
disappears when the amplitude of the exogenous disturbance is decreased to 5% or when the slope of 
MDP is reduced to a realistic value, as shown in Figure 10. The modes appearing after these 
changes show limit cycles represented in the phase plots of Figures 11: a and b. 
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Figure 9: Phase plot slwwing chaotic mode Figure 10: Table function creating chaotic mode 
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Figure 11: Limit cycles generated bY_ Sterman's model after modifications 
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Most experienced system dynamists would agree that to preserve the integrity of a system and 
maintain the dominance of its internal trends, outside disturbances should be kept small so that they 
do not overpower the system forces. Also, while the behavior of a model may often not be sensitive 
to the slopes of its table functions, this parameter should be reasonable to make sure it corresponds 
to some extent with reality. Thus, while excessive exogenous disturbance introduces experimental 
error, an over-responsive table function raises doubts about the face validity of the model. A chaotic 
mode arising out of a combination of these two factors cannot be attributed to reality. 

An abstract and highly aggregate model with a somewhat simple structure, such as Sterman's, would 
often lack the compensating feedback loops that render a model parameter insensitive [Saeed 1989]. 
The presence of a chaotic parameter region in such a model may only indicate that the parameters 
must be carefully and realistically estimated or model structure modified. 

6. INTERACTIVE USE OF MODELS 
CHAOS FROM MODULATION OF PARAMETER SENSITIVE MODELS 
WITH UNCOMMON PARAMETER SETS 

Sterman has also reported the occurrence of chaos in models of human behavior using parameters 
related to a significant minority of the subjects participating in experiments using models interactively 
(20%). He also reports that the response of these s~bjects to decision-making information given to 
them was more aggressive than for the majority whose parameter set produced stable behavior 
(Sterman 1985). 

Experiments with abstract models of systems having a limited feedback structure and a high 
sensitivity to parameters can indeed give varied results depending on the personal attitudes of the 
actors creating many of the parameter sets. More realistic models containing a compensating 
feedback structure similar to the real world would be parameter insensitive and would often display 
stable behavior over a wide variety of parameter sets. The question is whether the parameter
sensitive abstract models with unusual parameter sets have any real world counterparts. Our prior 
experience in systems modelling and the experimentation with the various models discussed in this 
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paper suggests otherwise. 

7. CONCLUSION 
This paper has demonstrated with .the help of experimentation with well-known models of chaos 
appearing in the system dynamics literature that the source of chaos might be an imperfection in the 
model structure and parameters rather than a manifestation of a real-world process. 

1. 

2. . 

3. 

Models 

Migratory 
Dynamics: 
Waycross/ 
Weidlich 

Business 
Policy: 
Rassmussen/ 
Andersen 

Macro
Economics: 
Sterman, 
Long Wave 

Non-Robust 
Rate Equation 
Formulation 

* 

Sources of Chaos 

Unrealistic 
Information 
Basis 

* 

Unrealistic Excessive 
Response Exogenous 
to Information Disturbance 

* * 

Table 1: Sources of Chaos in the Experimented Models 

Five models abstracting migratory, managerial, and macroeconomic processes were experimented 
with. The occurrence of chaos was traced to the four main sources summarized in Table 1. These 
are, non-robust rate equations, an unrealistic information basis for a decision, an unrealistic order of 
magnitude of response to information, and excessive exogenous disturbance. Additionally, chaos 
might appear in behavioral experiments using simple models not incorporating a compensating 
feedback structure when these are modulated by non-moderate decision parameters. 

We are of the view that experimentation with models alone without reference to realism and without 
specific a policy focus is more alchemy than life science. Since the traditional practice of system 
dynamics to date has emphasized combining science with real-world problem-solving, we are not 
sure how the study of chaos can be related to this objective. Albeit, we found chaos to be an 
interesting artifact and enjoyed experimenting with the models of chaos out of intellectual curiosity. 
More work is needed to find a real-world relevance for the phenomenon of chaos. 
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APPENDIX 

1. MACRO for keeping track of incidence of flows exceeding stocks 

MACRO COUNTER(ARG) 
L COUNTER.K=COUNTER.J+(DT)($COUNT.JK). 
NCOUNTER=O 
R $COUNT.KL=CLIP(O,l/DT,ARG.K,O) 
MEND 

where ARG is the stock variable being monitored 

981 

2. Modified equations for migratory flows in Waycross Model using MIN function to avoid 
outflows exceeding stocks 

A IMP12.K=A*(P2.K-Pl.K)+B*(I2.K-Il.K) 
A EMP12.K=IMP12.K*(B12.K*DPl.K+(l-B12.K)*DP2.K) 
R MRP12.KL=CLIP(P12.K,-P21.K,EMP12.K,O) 
A P12.K=MIN(EMP12.K,Pl.K)/AMD 
A P21.K=MIN(-EMP12.K,P2.K)/AMD 

A IMP23.K=A*(P3.K-P2.K)+B*(I3.K-I2.K) 
A EMP23.K=IMP23.K*(B23.K*DP2.K+(l-B23.K)*DP3.K) 
R MRP23.KL=CLIP(P23.K,-P32.K,EMP23.K,O) 
A P23.K=MIN{EMP23.K,P2.K)/AMD 
A P32.K=MIN(-EMP23.K,P3.K)/AMD 

A IMP31.K=A*(Pl.K-P3.K)+B*(Il.K-I3.K) 
A EMP31.K=IMP3l.K*(B31.K*DP3.K+(1-B31.K)*DP1.K) 
R MRP31.KL=CLIP(P31.K,-P13.K,EMP31.K,O) 
A P31.K=MIN(EMP31.K,P3.K)/AMD 
A P13.K=MIN(-EMP31.K,Pl.K)/AMD 

3. Modified equations for migratory flows in Waycross Model using population weights to assure 
fractional out-migration rates are less than unity. 

A IMP12.K={A*(P2.K-P1.K)+B*(I2.K-Il.K))/(3000*(A+B)) 
* Inclination to Migrate for P between 1 & 2 
R MRP12.KL=IMP12.K*clip(pl.k,p2.k,imp12.k,O)*MF 
* Migration Rate for P from 1 to 2 
c MF=.2 Mobility Fraction 

A IMP23.K=(A*(P3.K-P2.K)+B*(I3.K-I2.K))/(3000*(A+B)) 
R MRP23.KL=IMP23.K*clip(p2.k,p3.k,imp23.k,O)*MF 

A IMP3l.K=(A*(P1.K-P3.K)+B*(Il.K-I3.K)}/(3000*(A+B)) 
R MRP3l.KL=IMP3l.K*clip(p3.k,pl.k,imp31.k,O)*MF 
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