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ABSTRACT ‘
This paper presents results of extended experimentation with selected models of social phenomena
widely used by the system dynamists in their studies on deterministic chaos. The models selected
include various versions of a simple model of migratory dynamics and a model of resource allocation
in a firm, and a simple model of long-term economic fluctuations. Chaotic modes seem to appear in
each of the experimented model, either due to non-robust or unrealistic rate formulation, or from
unrealistic parameter or input specifications or both. Minor changes in the models experimented
with, which improve their correspondence to reality, eliminate chaotic modes. The paper raises the
issue of the relevance of the chaotic models to real-world phenomena and policy design for system
improvement.
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1. INTRODUCTION

Deterministic chaos, a behavior mode discovered in certain nonlinear system dynamics models has
lately drawn much attention from scholars and practitioners. System Dynamics Review brought to
its readers a fine distillation of the important writings on the subject in its Volume Four double issue
published in 1988. Deterministic chaos appears in the models explored in this issue as a pattern of
behavior each cycle of which is different from the preceding cycles while no two cycles are
systematically related. A chaotic mode is usually exhibited only with certain parameter values and
exogenous inputs lying within narrowly specified ranges. The relevance to real-world systems of
the chaotic behavior appearing in these highly aggregate and simple models is, however, unclear;

nor has experimentation with them to-date evolved any pnncxples for system improvement [Andersen
1988; Mosekilde, Aracil and Allen 1988].

This paper attempts to examine the relevance of the chaotic modes appearing in the models to real-
world phenomena and to the agenda of system improvement implicit in the use of system dynamics
method. The paper assumes readers have a working knowledge of system dynamics and some
familiarity with the models of chaos appearing in the system dynamics literature. Further
experimentation with the models of chaos selected from those widely used by the system dynamists
.to illustrate the phenomenon, and interpretations of the experimental results serve as bases for
analysis. Chaotic modes seem to appear in each model either due to non-robust or unrealistic rate
formulation, or from unrealistic parameter or input specifications or both. Minor changes in the
experimented models, that improve their correspondence to reality, eliminate chaotic modes.

Our experiments suggest that chaotic behavior may not be inherent in systems represented by the
experimented models, but rather that it appears due to mis-specifications in the models. And if this
observation can be generalized, the appearance of a chaotic mode in a model may only signal the
existence of anomalies in the model, calling for a revision of its structure and parameter
specifications as suggested by Forrester and Senge (1980).

Chaotic modes can also not easily be identified in the real world because of the long time- constants
involved in the process, while their conditional appearance in models provides little help in
interpreting system behavior from its decision structure. Thus, models of chaos, although
interesting artifacts, might appear irrelevant to the agenda of unification of knowledge and policy
design for system improvement, which are widely advocated as important foci for the system
dynamics method [Forrester 1987].

972




System Dynamics 'S0 973

2. EXPERIMENTAL DESIGN

Three areas in which models of chaos have been developed were selected for further analysis:
migratory dynamics, production and operations management, and macro-economics. Five relatively
simple models were selected for experimentation, including the Waycross and Weidlich models of
migratory dynamics [Rasmussen and Mosekilde 1988, Mosekilde, et. al (1985), Reiner et. al.
(1988), Richardson and Sterman 1988], two versions of a model of resource allocation in a firm
used respectively by Mosekilde, et. al.(1988) and Andersen and Sturis (1988), and a simple model
of the economic long wave developed by Sterman and discussed in Rasmussen, et. al. (1985).
Limitations of time and resources did not allow an exhaustive examination of all models discussed in
the literature.

The first task undertaken was to replicate the chaotic modes. This turned out to be a straight
forward, although laborious process, thanks to the excellent documentation provided by the various
authors whose work was used. To digress a little, we greatly appreciated the thoroughness and
accuracy of the published materials accessed, since in our experience such clear documentation is
quite uncommon. While replicating chaotic modes, we also carefully examined the structure of the
models for robustness. We even constructed simple MACRO to keep track of the instances in which
stocks assumed negative values ( see Appendix). We also prepared extended phase plots covering all
important stocks and flows in each model and carefully examined them for negative or otherwise
absurd regions.

Because of their simple and highly aggregated structure, the models used in general made many
simplifying assumptions. These assumptions were carefully debated by the authors for validity and
accepted unless glaring errors or inconsistencies were found. In each case, a single most
inconsistent assumption or equation was identified and minimally modified to eliminate the anomalies
discovered. After this modification, the models were re-simulated with the same parameter sets as
those giving rise to chaos in the original models. In all cases, the chaos disappeared. The exact
nature of the modifications made was different in each case, but all enhanced realism. The details of
the experiments conducted and an analysis of results appear in the following sections.

3. WAYCROSS AND WEIDLICH MODELS OF MIGRATION:
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Figure 1: Flow diagram of Waycross/Weidlich models
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Hence the population in the three neighborhoods is constantly on the move. The total number of
families in each ethnic group is assumed to remain constant over time. A flow diagram of the
Waycross model reproduced from Mosekilde et. al.(1988) is shown in F1gurc 1. The Weidlich
model is similar in structure.

The Waycross model employs six net migratory flows while the Weidlich model uses twelve flows
representing the in- and out- migration of each ethnic group in each district. Both models use
complicated limitations to prevent out-migration exceeding source population, but unsuccessfully;
according to our observations, chaos occurs in these models for selected parameter sets due to non-
robust rate equations repeatedly causing flows to exceed the stocks feeding them. The chaotic modes
for one of the parameter sets suggested by the respective authors are shown in Figures 2: a and b.
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a) Waycross Model b) Weidlich Model
Figure 2:Phase plots of Waycross and Weidlich models with Chaotic parameter sets

Led by the evidence of negative stock values shown through our switching equations, we closely
examined the migratory flows and found them to be non-robust in both models.

The Waycross model assumes that the inclination of a population (P; or P7) to move from districti to
district j (IMPHJ-, or ]MPZij) is given by a linear combination of the differences of the two
populations between the two districts.

For example, IMPy.. = A*(P,; - Py.) + B* (P,; - Py))
_ 1jj 1371 27 2

where i and j represent respectively donor and recipient districts. Migration is then obtained by
dividing the inclinations by a constant.

So far, the model is still linear and produces growing oscillations, which periodically leads to
negative population in one or more of the districts after some time - a clearly meaningless result.
Non-linear limiting factors have been introduced into the model to slow down the rate of migration

- out of a district as the number of remaining families in it approaches zero. Additicnally, a number of
shift functions are also applied, adjusting the limiting factors corresponding to the populations being
reduced (Mosekdlde et al. 1985). Unfortunately, the complicated limiting factors and shift functions
cannot stop the populations from becoming negative during the simulation, which seems to create
aperiodic behavior, evolving in a random fashion giving the impression of chaos.
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Two solutions were applied separately to correct the stock negativity problem. First, a crude
solution, the in- and out- migration rates were separated and a MIN function used to ensure that out-
flows do not exceed stocks. Second, a relatively more refined solution, the weighting functions
were normalized by the total population making sure that a fractional flow out of a stock at no time
exceeds the stock. Modified sets of equations for the two cases appear in the appendix and the
corresponding simulations are shown in Figures 3: a and b for the same parameter set as for Figure
2. The system settles into a limit cycle instead of continuing in a chaotic mode. The modified
models were also simulated for the other parameter sets, identified as chaotic in the original model
and also for many others. There was no evidence of chaos, which is not surprising since the model
contains only two conservative systems inter-connected through negative feedback, which is very
likely to settle into a limit cycle unless something outrageous is happening to the stocks.
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a)Limiting outflows not to exceed stocks b) Normalizing fractional flow rates
Figure 3: Limit cycles generated by the modified versions of the Waycross model
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For example, FRlij =Explk 1i*(P1j -Pj) +k lj* (sz - Pyl

It is evident from this function that a zero value of the argument of the exponential function will be
returned for many values of population not necessarily representing a balance in size. Figure 4
shows the scatter plot between one of the population imbalances in one of the pairs of districts and
the net flow between them. The net flow corresponding to an imbalance of zero is never zero, while
it stays at zero for many high values of imbalance, both positive and negative. Such flow equations
are evidently clumsy and should be replaced by one of the modified sets suggested for the Waycross
Model, which would create a limit cycle rather than chaos.

4. MODELS OF RESOURCE ALLOCATION IN A FIRM:

CHAOS FROM UNREALISTIC INFORMATION BASIS FOR A DECISION
Anderson and Sturis (1988) and Rasmussen and
Mosekilde (1988) have used the same model of
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Andersen and Sturis (1988).
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' Figure 5: Flow diagram of the resource
allocation model

Both Andersen and Sturis (1988) and Rasmussen and Mosekilde (1988) found that the model's
chaotic regime contains complicated sequences of multiple periodicities. Figures 6: a and b show
chaotic modes produced by the two models over one of the suggested parameter spaces.

Led again by our switching functions which keep track of the incidence of negativity in the stocks,
we examined carefully the logic of the related flow rates. The model in question treats customer
reaction as a function of product availability. Product availability is then defined as the ratio of the
actual inventory to the desired inventory, which is assumed to be fixed. This is anomalous since,
treated this way, availability does not directly depend on demand. For example, an inventory level
of 50 units will affect a demand of 100 units in the same way as a demand of 5 units, turning
customers away in both cases.

In reality, customers would view delivery delay, or a proxy such as inventory coverage, as a basis
for their orders, not a fixed fraction of the absolute amount of inventory. Within the frame work of
the model, this can be easily accomplished by making desired inventory DI a function of order rate as
follows: :
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DI.K=CUS.K*(ASPC/T)*NIC

where CUS denotes Customers, ASPC/T is Average Sale Per Customer per unit Time and NIC is
Normal Inventory Coverage. The ratio of inventory to desired inventory now represents normalized
inventory coverage.
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Figure 6:Phase plots for two versions of the resource allocation model for chaotic parameter sets

Phase plots of simulations of the modified Anderson and Sturis and Rasmussen and Mosekilde
versions of the model for the same parameter sets as in Figure 6 are placed at Figures 7:a and b. The
behavior of neither model shows chaos, but sustained oscillations after the anomalies in the
information basis for the customer response have been removed. Similar non-chaotic behavior was
also obtained with other parameter sets identified as chaotic in the original model.
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Figure 7: Phase plots of two versions of the resource allocation model after modification
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5. STERMAN'S MODEL OF LONG WAVE:

CHAOS FROM UNREALISTIC RESPONSE TO INFORMATION

AND EXCESSIVE EXOGENOUS DISTURBANCE
Sterman's model of long wave
contains a simple and generally
robust structure which produces
chaotic behavior when subjected
to an unrealistically high
exogenous disturbance and by
making one of its behavioral
functions extremely steep. The
model represents an aggregate
production sector that orders
capital from itself depending on
the required production capacity.
For normal parameter values, the
model exhibits a characteristic
limit cycle. The details of the
structure of this model are
discussed in Rasmussen et. al.
(1985). A flow diagram
reproduced from the original
paper is given in Figure 8.

Figure 8:Flow diagram of Sterman'’s model of long wave

A critical relationship in the model is a table function used to obtain a multplier from desired
production (MDP), which depends on the ratio between desired production and potential output. A
chaotic mode, reproduced in Figure 9, is obtained from the model by using a very steep table
function for MDP together with a sinocidal disturbance of rather large amplitude (20%) in the desired
production of goods (DPG), which is assumed to be constant. This chaotic mode, however,
disappears when the amplitude of the exogenous disturbance is decreased to 5% or when the slope of
MDP is reduced to a realistic value, as shown in Figure 10. The modes appearing after these
changes show limit cycles represented in the phase plots of ]Eggures 11:aandb.
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Figure 9: Phase plot showing chaotic mode Figure 10: Table function creating chaotic mode
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Figure 11: Limit cycles generated by Sterman’s model after modifications

Most experienced system dynamists would agree that to preserve the integrity of a system and
maintain the dominance of its internal trends, outside disturbances should be kept small so that they
do not overpower the system forces. Also, while the behavior of a model may often not be sensitive
to the slopes of its table functions, this parameter should be reasonable to make sure it corresponds
to some extent with reality. Thus, while excessive exogenous disturbance introduces experimental
error, an over-responsive table function raises doubts about the face validity of the model. A chaotic
mode arising out of a combination of these two factors cannot be attributed to reality.

An abstract and highly aggregate model with a somewhat simple structure, such as Sterman's, would
often lack the compensating feedback loops that render a model parameter insensitive [Saeed 1989].
The presence of a chaotic parameter region in such a model may only indicate that the parameters
must be carefully and realistically estimated or model structure modified.

6. INTERACTIVE USE OF MODELS

CHAOS FROM MODULATION OF PARAMETER SENSITIVE MODELS

WITH UNCOMMON PARAMETER SETS
Sterman has also reported the occurrence of chaos in models of human behavior using parameters
related to a significant minority of the subjects participating in experiments using models interactively
(20%). He also reports that the response of these subjects to decision-making information given to
them was more aggressive than for the majority whose parameter set produced stable behavior
(Sterman 1985).

Experiments with abstract models of systems having a limited feedback structure and a high
sensitivity to parameters can indeed give varied results depending on the personal attitudes of the
actors creating many of the parameter sets. More realistic models containing a compensating
feedback structure similar to the real world would be parameter insensitive and would often display
stable behavior over a wide variety of parameter sets. The question is whether the parameter-
sensitive abstract models with unusual parameter sets have any real world counterparts. Our prior
experience in systems modelling and the experimentation with the various models discussed in this
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paper suggests otherwise.

7. CONCLUSION

This paper has demonstrated with the help of experimentation with well-known models of chaos
appearing in the system dynamics literature that the source of chaos might be an imperfection in the
model structure and parameters rather than a manifestation of a real-world process.

Sources of Chaos

Non-Robust Unrealistic Unrealistic Excessive
Models Rate Equation Information Response Exogenous
Formulation Basis to Information Disturbance

1. Migratory *
Dynamics:
Waycross/
Weidlich

2. - Business
Policy: *
Rassmussen/
Andersen

3. Macro- . * *
Economics:
Sterman,
Long Wave

Table 1: Sources of Chaos in the Experimented Models

Five models abstracting migratory, managerial, and macroeconomic processes were experimented
with. The occurrence of chaos was traced to the four main sources summarized in Table 1. These
are, non-robust rate equations, an unrealistic information basis for a decision, an unrealistic order of
magnitude of response to information, and excessive exogenous disturbance. Additionally, chaos
might appear in behavioral experiments using simple models not incorporating a compensating
feedback structure when these are modulated by non-moderate decision parameters.

We are of the view that experimentation with models alone without reference to realism and without
specific a policy focus is more alchemy than life science. Since the traditional practice of system
dynamics to date has emphasized combining science with real-world problem-solving, we are not
sure how the study of chaos can be related to this objective. Albeit, we found chaos to be an
interesting artifact and enjoyed experimenting with the models of chaos out of intellectual curiosity.
More work is needed to find a real-world relevance for the phenomenon of chaos.
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APPENDIX

1. MACRO for keeping track of incidence of flows exceeding stocks

MACRO COUNTER(ARG)

L COUNTER.K=COUNTER.J+DT)($COUNTJK)
N COUNTER=0

R $COUNT.KL=CLIP(0,1/DT,ARG.K,0)

MEND

where ARG is the stock variable being monitored

2. Modified equations for migratory flows in Waycross Model using MIN function to avo1d
outflows exceeding stocks

B PR R D

IMP12.K=A*(P2.K-P1.K)+B*(I2.K-I1.K)
EMP12.K=IMP12.K* (B12.K*DP1.K+(1-B12.K) *DP2.K)
MRP12.KL=CLIP(P12.K,-P21.K,EMP12.K,0)
P12.K=MIN(EMP12.K,P1.K)/AMD
P21.K=MIN(-EMP12.K,P2.K)/AMD

IMP23.K=A* (P3.K-P2.K)+B* (I3.K-I2.K)

EMP23 .K=IMP23.K* (B23 .K*DP2.K+(1-B23.K) *DP3.K)
MRP23.KL=CLIP(P23.K,~-P32.K,EMP23.K,0)
P23.K=MIN(EMP23.K,P2.K)/AMD
P32.K=MIN(-EMP23.K,P3.K)/AMD

IMP31.K=A*(P1.K-P3.K)+B* (I1.K~-I3.K)
EMP31.K=IMP31.K* (B31.K*DP3.K+(1-B31.K) *DP1.K)
MRP31.KL=CLIP(P31.K,-P13.K,EMP31.K,0)
P31.K=MIN(EMP31.K,P3.K)/AMD
P13.K=MIN(-EMP31.K,P1.K)/AMD

3. Modified equations for migratory flows in Waycross Model using population weights to assure
fractional out-migration rates are less than unity.

L BL YR O T i ¥

ol

IMP12.K=(A*(P2.K-P1.K)+B*(I2.K-I1.K))/(3000% (A+B))

Inclination to Migrate for P between 1 & 2
MRP12.KL=IMP12.K*clip(pl.k,p2.k,impl2.k,0)*MF
Migration Rate for P from 1 to 2

MF=.2 Mobility Fraction

IMP23.K=(A*(P3.K-P2.K)+B*(I3.K-I2.K))/(3000*(A+B))

MRP23.KL=IMP23.K*clip(p2.k,p3.k,imp23.k,0) *MF

IMP31.K=(A*(P1.K-P3.K)+B*(I1.K-I3.K))/(3000*(A+B))

MRP31.KL=IMP31.K*clip(p3.k,pl.k,imp31l.k,0)*MF
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