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ABSTRACT 

System Dynamics (SD) may be viewed as a process of designing ROBUST 
systems. The concept of ROBUSTNESS leads to a need for analyzing the 
effects on SD models of both parameter changes and stochastic inputs. 
It is demonstrated that the effects of large parameter changes can be 
measured by the use of hill climbing techniques given efficient 
computation. The paper describes the traditional ways of assessing 
sensitivities in SD models, together with methods based on perturbation 
techniques which unify the parameter and stochastic sensitivity problems. 
The computational characteristics of the various methods are analysed and the 
factors that affect their computational efficiency are discussed. 

The paper discusses the results of experiments to determine the accuracy 
and speed of the various methods on a 7 state variable, 16 parameter 
model and on a 70 state variable, 160 parameter model derived from it. 
The perturbation methods yield acceptable accuracy and for the models 
described reduce computer time by a factor of between q and 25. Compiler 
changes discussed in the paper would make sensitivity analysis easier and 
quicker and would improve techniques elsewhere in System Dynamics. 
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I. T II E N E E D F 0 R S E N S I T I V I T Y ANALYSIS 

The philosophy of system design by System Dynamics (SD) methods can 

be interpreted as the use of feedback control methods to attain ROBUST 

system performance, (Sharp, 1975), (Coyle, 1975). The concept of 

ROBUSTNESS has at least 3 elements: 

a) that the system show a satisfactory response when subjected to 

a wide variety of inputs. Thus the production planning system of a 

company manufacturing for stock would be expected to maintain adequate stocks 

and change production in a way that was compatible with company policy for 

redundancy and recruitment when subjected to seasonality or a business 

cycle in orders for its products. In this paper we are not concerned with 

this aspect, except indirectly through its bearing on the choice of 

objective functions. 

b) that the system perform satisfactorily over the range of 

parameter values considered plausible; since however system parameters 

(Constant and Initial Values)are estimated they will usually be subject 

to error and similar errors may arise through aggregation, (Sharp, 1974). 

c) that the system be relatively unaffected by the fairly considerable 

amounts of noise usually found in socioeconomic systems as a result of 

structural error, input noise and to errors in measuring variables on 

which system policies are based, (Sharp, 1976a). 

In the analysis and redesign of systems using sn methods sensitivity 

analysis should play a large part. Furthermore .sensitivity analysis 

has two separate, though from certain viewl>uints interlinked, facets, 

which this paper will examine, viz Parameter Sensitivity and Stochastic 

Sensitivity. 
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To assess whether he has been successful in designing a ROBUST 

system the modeller needs to measure the impact of parameter (Constant 

and Initial Value) changes and the effects of noise on the system. In 

most studies certain model constants on initial values may have only 

been estimated rather crudely because of lack of data or because the 

modeller has decided that precise estimation of them is unnecessary since 

the behaviour of the system is expected to be insensitive to changes in 

them. The paper by Graham in this volume illustrates the practicalities 

of· parameter estimation and in· particular how in most cases a Const<mt 

such as Average Housing Life can only be fixed within a certain range. 

In a<Jdition certain parameters that appear in the model as Constants 

may be slowly changing over time. Again other parameters such as 

smoothing times are capable of being changed by managerial decision and it 

is desirable to know the impact on system behaviour of changes to them. 

In practice both modeller and client are usually well aware o[ the 

imprecision in many parameter estimates. This leads naturally to the 

question: Is the policy that appears best as a result of the model 

experiments really the best for all plausible parameter values or is it 

possible to find equally acceptable parameter values for which another 

policy is better? To give a satisfactory answer tb this question, the 

moc.leller needs to examine the sensitivity of system behaviour to these 

uncertain parameters. 

Since in many situations for one or other of the reasons just given 

there are few parameters for which we do not wish to assess sensitivity 

it is natural to searCh for methods of parameter sensitivity analysis 

that can deal with variations in all system parameters. 



A similar problem arises with regard to the effects of noise on 

a system. Most experienced modellers will generally examine the.effects 

of noise in the driving input (very often Sales Rate) on the behaviour 

of the system. There are, however, many other sources of noise in the 

system. 

Any model equation will, in practice, only contain the variables 

that are considered of major importance in determining the behaviour it 

describes. There will of course be many other factors that, from time 

to time, affect this behaviour. Rather than ignore them completely, it 

is better to follow econometric tradition and approximate their effects 

by adding a random noise term (structural error) to the equation. The 

results, when this is done, are often quite dramatic. Figure 1 represents 

the performance of a simple production planning system operating deterministically 

,without. noise terms in the equations. Figure 2 shows the behaviour 

of the same system when noise terms are added to the equations. Not only 

is there little resemblance between the two systems but in some respects, 

e.g. Production Completion Rate, that of Figure 2, is unsatisfactory •. 

The modeller should therefore also attempt to satisfy himself that 

the policies that appear best with deterministic experiments will also 

perform satisfactorily under the noisy conditions likely to prevail in 

the real system. In other words he must measure the sensitivity of the 

system to noise, 

Strikingly little attention has been given to Sensitivity Analysis 

in the SD literature since the publication of 'Industrial Dynamics' in 

1961. Most published studies have been concerned with specific aspects 

of particular models, particularly the World 2 model. There have been 

relatively 'few attempts to consider the general problems of sensitivity 
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analysis. 

On the whole the sensitivity analysis aspect in most SD studies 

appears somewhat unsatisfactory which suggests that even if they recognise 

its importance, most analysts find sensitivity analysis a chore. 

It might be argued that the classical approa~h as outlined by 

Jay Forrester in 'Industrial Dynamics' is not sufficiently systematic 

to determine the effects of uncertainties about parameters or the effects 

of noise on a system. The method adopted there and subsequently followed 

by most other workers is essentially the analysis of the sensitivity of 

the system to certain changes which their experience suggests might 

have considerable effects. Such a procedure would seem to have at least 

two drawbacks: firstly, even experienced analysts may wrongly assume that 

the system is ·insensitive to changes that in fact have a large effect; 

and secondly, it offers little help to the novice in developing the 

system understanding that might enable him to apply it successfully. 

This paper will therefore be concerned with exhaustive methods of 

sensitivity analysis that permit the effects of changes in ~ parameters 

and ~ s·tochastic effects to be measured. 

Sensitivity analysis methods should satisfy a number of criteria, if 

they are to be useful in practice. Firstly, they should be systematic, that 

is they should be capable of assessing the effects of ~ uncertainties on 

the system. They should be simple for the modeller to use so that 

sensitivity testing is not skipped because of the effort required. They 

should also be computationally efficient, since tests of larg~ 1nodels 

they may require substantial amounts of computer time. 



Interestingly enough however, the ROBUSTNESS concept suggests that 

very accurate estimates of the effect of a change are unnecessary, as long 

as the order of magnitude of it is correctly estimated. If the effect is 

large, the system will require redesign to reduce it, whilst if it is small 

quite large percentage errors in estimating it are unimportant. This 

suggests that there may be considerable scope for sensitivity testing 

methods that give a reasonable approximation to the correct result and 

reduce the amount of computing required. 

II P A R A M E T E R S E N S I T I V I T Y A N A L Y S I S 

.ll~havJour .. aud Obj e<: t!Y.E! .. J',J,!!'C t~()_I!'!... 

The behaviour of an SD model ~epends on its structure and its 

parameters. (Constants and Initial Values). The previous section 

discussed the reasons why the modeller must ntudy the effects of parameter 

changes on system behaviour. The behaviour of interest to the modeller will 

vary depending on the situation. It will however be assumed that the 

behaviour is quantifiable, that is it can be defined by numerical measures 

or objective functions. The reason for this assumption is purely pragmatic; 

Sensitivity analysis yields a great deal of information. For example, a 

full parameter sensitivity analysis of the small model described later in 

this paper produced 130 pages of PLOTS and PRINTS. Such volumes are 

wasteful of computer time and little help to the analyst. In practice, the 

analyst is forced to select a few key variables which his experience tells 

him are the most important indicators of system behaviour and examine the 

effects of parameter changes on the behaviour of these variables. Thus 

in the World 2 model Jay Forrester was clearly primarily concerned with the 

behaviour of population - in particular the avoidance of catastrnphic decline

and natural resource consumption. Gil Low in his paper in this volume is 
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concerned with the presence or absence of cycles in GNP. 

In.essence the modeller must construct objective function(s) for 

the system, which, in principle, can be formulated explicitly. Assuming 

that this has been carried out, the analyst has at his disposal a 

relatively small number of measures of system performance to asses~• 

sensitivity. 

In the World 2 model Jay Forrester formulated an expiicit objective 

function, which he called Quality of Life. In addition he also considered 

implicitly the value of other variables such as Natural Resources remaining 

in the year. 2100. DeJong and Dereksen, (1975) have given explicit 

objective functions, of the type engisaged in this paper, for the World 2 

model. Barnett (1973) has shown how objective functions can be set up to 

reflect the financial, engineering and political considerations involved 

in determining how best to exploit a new oilfield. 

.Exploring, .!J!.!'_<tHf!.f~_Qf_~!Janges in mode.l .... HX\1\'tur.<;> I!Y parameter 

.ch<'.nge.~.'-

Though DYNANO makes a clear distinction between parameters (C and N 

variables) and structure (L, A and R equations) this distinction is, 

mathematically, artificial. This fact can usefully be exploited to enable 

the effects of changes in uncertain parts of the model structure. 

For example, by regarding the equation: 

A X.K = Y.K/C 

as a particular case of the equation 

A X.K = Y.K/C + D*Y.K**2 

with D = 0 the analyst can explore the effects of changing model structure 

by introducing a quadratic term into the expression for X.K, by determining 
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the effect of changing the value of D to a non-zero value. 

The control engineering literature that deals with sensitivity 

analysis distinguishes two types of sensitivity analysis: Local 

Sensitivity Analysis and·Global Sensitivity Analysis. 

Local Sensitivity Analysis is concerned with the way in which 

system behaviour is changed by small changes in system parameters. 

The changes should strictly be infinitesimally small for accurate 

estimates of sensitivity (Sharp, 1974). In practice, however, it is 

normal to make l%'~~an~g:erve how much system behaviour is changed. 

For insensitive systems that show small changes (significantly 

less than 1%) in the behaviour of interest such an analysis usually 

gives accurate answers for much bigger changes in parameters. Local 

parameter sensitivity analysis has three uses: 

a) Since it is straightforward to carry out and as has already been 

shown most model parameters are uncertain,it provides a basis for 

assessing how model performance would be affected by parameter changes. 

It thus represents a desirable standard of SD practice that the results 

of such an analysis be published as evidence that the question of parameter 

sensitivity has been considered and as a guide for those who wish to 

evaluate the results of the study as to ways' in which model behaviour 

might be changed, 

b) In the mathematical study of sensitivity analysis Local Parameter 

Sensitivity is a natural starting point because the restriction that 

changes in parameters be very small greatly simplifies the analysis. 

With this restriction it is possible to show that the effects of parameter 

changes is additive, i.e. the effect of say a 0,1% change in parameters 

A and B simultaneously is simply the sum of the effects of a 0.1% change 

in each on its own, This simplification makes possible the development 

of new and potentially powerful methods of sensitivity analysis, 

(Sharp, 1974). 

Global Sensitivity Analysis is concerned with the question of how 

system behaviour is affected by finite changes in parameters. Since 

most parameters can only be fixed within a certain range the model 

sensitivity analysis should ideally be global in nature. Thus the 

value of any particular parameter (p) will only be fixed within a 

certain range, i.e. lower limit ~p ~upper limit. In practice the 

limits are derived on the basis of the modeller's knowledge of the 

system. The range of values capable of being taken is however usually 

quite large - a range equal to the chosen parameter value being not 

uncommon. Since these uncertainties exist for most model parameters 

the Global Sensitivity problem is to find how system behaviour is 

affected by simultaneous changes to all uncertain parameters within 

their range of uncertainty, 

This problem is far more complex than that of local sensitivity 

analysis. Whereas in the latter case the effects of. changes are 

additive, in global sensitivity analy~is synergistic effects arise, so 

that the effect of finite changes to several parameters simultaneously 

is not merely the sum of the effects of individual changes. The 

mathematical theory of global sensitivity analysis is difficult and 

incomplete so no general methods exist for the determination of global 

sensitivity. Nevertheless it is possible to develop practical methods 

that enable global sensitivity to be examined and these will be discussed 

later. 
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The Conventional Method of determining parameter sensitivities is 

that given by Jay Forrester (1961). The model parameters are changed 

one at a time from their initial values, each parameter change generating 

a run. Though it is usual to change the parameters by a finite amount 

this approach is essentially a local sensitivity method. 

The method is simple to use but tedious to apply in practice, since 

each parameter change requires the generation of a C or N card depending 

on whether we are chang.ing a Constant or an Initial Value and a RUN card. 

In large models the total number of parameters is normally about the same 

as the total number of variables so this procedure may require the modeller 

to set up several runs. For this reason few modellers seem to carry out 

sensitivity testing of ail model parameters. Thus existing DYNAHO compilers 

do not encourage systematic sensitivity testing. 

It can be shown (Sharp, 1974) that if v is the number of L,A and R 

variables in the SD model then the time taken to carry out a full sensitivity 

analysis is given by K(l) v 2/DT where DT is the length of the simulation 

time step and K(l) is a constant that depends on the computer being used. 

The quadratic nature of this formula implies that the time to carry out a 

full sensitivity analysis depends on the square of the number of model 

variables and hence increases rapidly with model size. 

If good progranmti.ng practice is followed the actual computations in 

DYNAHO models are very efficient because complex expressions are normally 

defined as auxiliaries. It follows that 1 i ttle reduction in the time for 

sensitivity analysis can be gained by reformulating the model itself. For 

many business systems however the effects of changes in initial values 
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quickly die out (Sharp, 1974), 1976b) and therefore the time required for 

sensitivity analysis by the conventional method can be reduced by merely 

carrying it out only for model constants that appear in L,A and R equations. 

Even if the scope of parameter sensitivity testing is reduced in this way 

however the effect is merely to reduce the factor K(l) by 20-30% and for 

models such as World 2 that may be sensitive to certain initial values such 

a simplification of parameter testing is undesirable. 

Statistical Methods of Local Parameter Sensitivity Analysis 

Another approach to local sensitivity testing is the use of a 

statistical approach, i.e. the modeller makes random changes to tht> parameter 

and initial condition vectors, carries out model runs and measures· their 

effects. Sfnce locally the effects of parameter changes are additive the 

effects of individual parameter changes can be estimated by either regression 

or correlation methods. However that such an approach requires more than 

p runs for p parameters to give a reasonable estimate of the sensitivities. 

Statistical approaches are, consequently inferior to the Conventional method 

and will not be considered further. 
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Local Parameter Sensitivity Analysis By Perturb.ation Hethods 

The control engineering approach to local parameter sensitivity 

analysis, (Tomovi~and Vu~obratovi{, 1972) is very different to the 

Conv~ntional SD method. Since the mathematics are complex only a 

brief outline of the method will be given here, Full details are 

given in Sharp, (1976b) and Sharp (1974). 

To illustrate the method the following SD model will be considered: 

L X.K ~ X.J - DT*C*X.J 

N X= 

(1) 

(2) 

This may be rewritten mathematically in accordance with the way 

the DYNAHO compiler actually simulates as: 

X(N+l) = (1-DT*C)*X(N) 

X(O) = 

where X(N) denotes the value of X at time N*DT. 

(3) 

(4) 

Suppose that the value of c were changed by a small amount Sc to C+ r c 

and the initial value is changed by a small amount ~I. Corresponding 

to the equations (3) and (4) new equations can be derived for the variable 

Y(N) corresponding to X(N) in the original simulation 

Y(N+l) ~ Y(N)*(l-DT*(C+fC))*Y(N) 

Y(O) = 1+\"r 

(5) 

(6) 

The obvious measurement of parameter sensitivity for this system is 

simply the difference between corresponding values of X and Y, that is 

the value of D(N) = Y(N)-X(N) 

Subtraction of equation (3) from equation (5) gives 

D(N+l) = (Y(N)-X(N)) * (1-DT*C) + C*DT*Y(N) 

D(N)*(l-DT*C)+ C*DT* X(N)+D(N) 

D(N)*(l-DT*C)+ C*DT*X(N)+ C*DT*D(N) (7) 
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If C is small it is easy to see that C*DT*D(N) is small. As an 

approximation the last term in equation (7) is therefore dropped to give: 

D~N)+l) a (1-DT*C)*D(N)+ C*DT*X(N) (8) 

From equations (4) and (6) the initial conditions for this equation 

are 

D(O) ~~I (9) 

Since the values of X(N) are known from the original model runs 

equations (8) and (9) can now be solved to give the value of D(N), Writing 

for notational convenience (1-C*DT) = a, CxDT = b, 

D(N+l) = b. X(N) + aX(N-l)+a2X(N-2) '." .. aNX(O) 
+ aN+lD(O) (10) 

Note that in computing the effect of the change in the constant c, 

the effect of the change in initial value ~I is obtained as a by-product. 

Note also that the approximations are strictly valid only for very small 

changes fc and ~I. 

The procedure just outlined can be generalized to the case of a 

model with many variables. The general case, however, involves the use 

of partial differentiation and matrices in order to obtain the formulae 

for the sensitivi~e~Sharp, 1976b), This method is therefore by no means 

as easy to understand and in fact has the disadvantage that, before it can 

be applied to any particular model, the equations of the model must be 

partially differentiated, This requires mathematical expertise and is a 

tedious and error-prone process, To counter balance these substantial 

disadvantages the perturbation approach offers the following advantages: 

a) it provides a theoretical basis for the Conventional Method of assessing 

local parameter sensitivities 



b) 

c) 

d) 
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the method is applicable to many other SD problems. The papers 

by Peterson and Thissen in this volume, for example, discuss methods 

which involve the use of this same perturbation approach 

the approach is easily adapted to assessing the effects of noise 

on the system with very little additional computational effort. 

the approach lends itself to a variety of computational tricks for 

the reduction of computation time that cannot be applied to the 

Conventional Hethod (Sharp, 1976b). It can be shown that the 

computational time required for a model with v variables and time 

step DT is given by K(2) v2/DT. Though the dependence on model 

size is quadratic as with the Conventional Hcthod the constant K(2) 

can be considerably smaller than the constant K(l) associated with the 

Conventional Hcthod. Therefore, as will be shown later in this•paper 

the perturbation approach offers the possibility of substantial 

reductions in computing time that are highly desirable. 

Computational Hethods for Global Sensitivity Analysis 

Though no general Global Sensitivity Analysis method exists it is 

possible to carry out global sensitivity analysis by using local sensitivity 

analysis in conjunction with a hill-climbing or minimization program. Such 

a program will minimize the value of a nonlinear function of several or 

many variables. Standard programs for this purpose are available at most 

installations, (ICI, 1969), 

These methods either use local sensitivity analysis methods to guide 

the direction in which variables should be changed to reduce the value 

of the function being minimized and are suitable for use with either method 

of local sensitivity analysis or operate in an equivalent way by observing 
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the effects of parameter changes on the value of the function and using 

this information to guide the minimization process, which in effect carries 

out directly the conventional method of local parameter sensitivity 

analysis. In effect, they use information about the local sensitivity 

of the function in a systematic way to seek out the global minimum. 

The way in which they can be used is best illustrated by an 

example. Assume, for simplicity, that the model behaviour of interest 

is Cumulative profit over the run. Assume that two policies (l'l and P2) 

have been considered and that policy Pl gives a higher profit(l'Rl)than the 

profit (P~2) attained with policy P2. Assume further for simplicity, that 

the model depends only on one parameter (C) whose value lies iu Llw 

ThP. question then arises as to whether for any plausible value of 

C the profit generated by Policy 2 would be higher than that generated 

by Policy 1. If it cannot then obviously Policy 1 is to be preferred to 

Policy 2 for any plausible value of C - the preferred policy is insensitive 

to variations in C. 

To set this up as a global sensitivity problem it is necessary to 

construct a double model that can generate the profits under both policies 

simultaneous1y, that is supply the values PRl and PR2. This is a 

straightforward matter. This model is now used to supply the values for 

the computation of the function to be minimized by the minimization program 

by varying the value of C. 
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This function is defined by the equations 

F = PRl - PR2 + Penalty 

PENALTY a lOOOOOO*(C-C2) 

= lOOOOOO*(Cl-C) 

= 0 

if 

if 

if 

C ;_, C2 

C ~ Cl 

Cl.( C < Ci 

The purpose of PENALTY is to ensure that the minimum will be found 

inside the range of plausible C values. The choice of the weighting factor 

- here 1000000 - depends on the likely value of (PR1-PR2) since it should 

give value of PENALTY larger than this difference. With this function F the 

minimization routine will find the minimum value of the difference (PR1-PR2) 

for values of C in the range Cl ~C~ C2. If the minimum value that is found 

turns out to be negative then for the corresponding value of C we have that 

PRl<PR2, in other words Policy 1 is not superior for all values of C. If 

the minimum value of F is positive, on the other hand, we can only conclude 

that the minin1ization has not found a value of PRl less than PR2. Because 

such a procedure cannot be guaranteed to attain the global minimum of the 

function the modeller cannot be absolutely certain that a C value cannot be 

found for which Policy 2 is superior to Policy 1. Nevertheless the use of 

a minimization procedure of the type outlined represents a much more 

systematic and thorough attempt to determine global sensitivities than the 

modeller can usually undertake by a series of ad hoc parameter changep. 

Provided a suitable compiler is available that· enables the DYNAI>IO 

program to be used together with say a FORTRAN program - for example the 

DYSMAP language (Ratnatunga, 1975) used at the University of Bradford 

the use of a minim~zation program in 

- 778 -

the way outlined is quite straightforward and requires little mathematical 

expertise. Since the minimization process is likely, however, to require 

the equivalent of several hundred runs it is necessary to ensure 

efficient computation if large models are to be tackled. The minimization 

process is best broken off from time to time so that the modeller can 

guide the progress towards the minimum. The time required of the analyst 

is however much less than where the more usual strategy of ad hoc 

changes on the basis of experience is used to explore global sensitiv.ity, 

General Computational ConsideratioOSin Parameter Sensitivity Analysis 

If t!1e computer time required for parameter sensitivity analysis is 

to be minimized efforts should be made to make the process computationally 

efficient no matter which method of sensitivity analysis is adopted. 

In part the analyst must formulate the model in a form that will 

reduce the computing required, Doing so is a m~tter of mundane programming 

skills, such as not computing a complex expression twice, It is also 

worth paying attention to variables defined through TABLE functions, since 

these functions merely consist of an array of parameters, exhaustive 

sensitivity analysis accordingly would require the variation of all TABLE 

parameters used in the simulation. Such a procedure would, in general, 

.be far·more time consuming than replacing the TABLE with a mathematical 

function and testing the parameters of this function. 
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III S E N S I T I V I T Y 0 F A S Y S T E M T 0 N 0 I S E 

In Section I reasons were given for studying the effects of noise on 

systems. Few published models however systematically examine these effects. 

Most studies, following Jay Forrester (1961), consider the effect of noise 

in the driving input but few consider the effect of noise terms representing 

Structural Error or imperfections in the way individual equations describe 

reality, This is unfortunate since the effects of such noise can, as discussed 

in Section 1, be dramatic, 

Sharp (1974) has argued that under ideal conditions SD and Econometric 

methods would represent different ways of obtaining the same model. One of 

the ways in which SD differs most from Econometrics at present, however, is 

the Jack of attention paid to structural error. This is a natural consequence 

of the way SD models are built, certain difficulties associated with 

modelling noise that will be discussed later, an<! of the fact that structural 

error terms appear explicitly in Econometric models. 

In this section · we shall be concerned with the 

effects of random noise with zero mean and no serial correlation (correlation 

between a noise term from one time step to the next), on the system. ·These 

restrictions are unimportant, since control engineering methods for the 

modelling of more complex noise processes are well developed, (Kwakernaak 

and Sivan, 1972). 

The discussion will focus on computational methods for evaluating the 

sensitivity of a model to noise. The question of the form and size of noise 

terms that should be incorporated into the model will not be considered, For 

a discussion of these the reader is referred to Peterson's paper in this 

volume, A cruder approach was given by Sharp (1974). 

- ·rno -

The Perturbation Approach to computing the Effects of Noise on the System 

As an illustration of the type of analysis under discussion it is 

convenient to consider a simple example. Comprehensive discussions lwve 

been given by Sharp (l976b), (1974). 

We consider the simple model of equation (I) to which a random nuise 

term R(N) with zero mean and no serial correlation has been added to 

represent the effects of structural error. To make things more definite 

we llOW take the value of Cas -0.1. 

The system we wish to consider is therefore 

X(N+l) = X(N) - DT*X(N)/10 

or with the addition of the random noise term 

Y(N+l) = Y(N) -DT*Y(N)/10 + R(N) 

both with initial condition 

X(O) = Y(O) = 1 

(ll) 

(12) 

If as before, we define D(N) = Y(N) -X(N), then D(N) represents the 

effects of noise on the system up until time N. In statistical terms ll(N) 

of course a random variable since different noise sequences will give rise 

to different values of~ (N). 

Subtraction of equation (11) from equation (12) gives: 

D(N+l) = D(N) (l-DT/10) + R(N) (13) 

Equation (13) is of no use as it stands because D(N+l) is a random variable. 

It is therefore necessary to derive from this equation the statistical 

characteristics of D(N+l), If we denote the statistical expectatio11 operator 

by 8( ), then we require the mean of ll(N+l) = I'(D(N+l)) and its vari_!l~ 

E(ll(N+l)**2) - E(D(N+l))**2. 
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From equation (13) we have 

E(D(N+l)) = E(D(N)) (1-DT/10) + E(R(N)) (14) 

Since by assumption the mean of R(N) is zero 

E(R(N)) = 0, Similarly D(O) • 0, Equation (14) therefore gives 

E(D(N+l)) = E(D(N)) • ,,, E(D(l)) • E(D(O)) = 0, 

To compute the variance of D(N+l) we therefore need only compute the 

term E(D(N+l)**2), From equation (13) this is 

E(D(N+l)**2) = E((l-DT/10)**2*D(N)**2 + 2*(1-DT/lO)*D(N)*R(N) + R(N)**2) 

Since the R(N) are by assumption not serially correlated equation (15) 

reduces to: 

E(D(N+l)**2) = (l-DT/l0) 2*E(D(N)**2) + E(R(N)**2) .(16) 

The value of E(R(N)**2) -·the variance of R(N) - i , of course, fixed 

by the modeller at some value V. Equation (16) therefore becomes: 

E(D(N+l)**2) = E(D(N)**2)*(1-DT/10)**2 + V (17) 

Since E(D(0)**2) = 0 by assumption equation (17) enables us to 

successively compute E(D(l)**2), then E(D(2)**2), etc, 

In this simple case it is easy to show that as N increases 

E(D(N+l)**2) fairly rapidly approaches a limiting value of 

~(D(N+1)**2) = v 
(2DT/10 + DT**2/lOO) 

or since the term DT**2/l00 will be negligible in practice: 

E(D(N+l)**2) 5V 
liT 

(18) 

(19) 

The approach just described is easily generalized to more complex 

(15) 

systems and to deal with noise in inputs such as SALES RATE or uncertainties 

in initial conditions. As in the comparable case for local parameter 

sensitivity the computations involve the use of matrices, The matricef! are 

in fact the same as those used in parameter sensitivity analysis. The 
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perturbation approach therefore allows parameter and noise sensitivities 

to be determined in a single run using less computer time than the sum of 

the times taken for either type of sensitivity analysis singly. As will be 

shown later, no such advantages exist with the Conventional methods of 

determining parameter and noise sensitivities, 

The perturbation method of determining of noise sensitivities is an 

approximate method, Its computer time re;uirements are given by K(3)V 2/DT, 

where, as before, V is the number of model variables, DT the time step and 

K(3) is a constant that depends on the computer used, (Sharp, 1974). 

The Conventional Method of Determining Noise Sensitivities 

The Conventional Method (Monte Carlo) of determining the sensitivity 

of the system to noise is best illustrated by reference to the example of 

equations (11) and (12). The model is set up in DYNAMO form as: 

L X.K =X,J-DT*(X.J/lO)+R.J 

N X=l 

A R.K=NORMRN(~,JV)*NS 

A run is first carried out on the noise free system by setting NS=O. 

NS is then set equal to 1 and a number of runs carried out with noise. The 

value of D(N) for a particular run with noise is computed by subtracting 

from the value of X(N) for that run the corresponding X value from the noise 

free run. Means and variances are computed by the usual numerical formulae. 

This process is easy to carry out with a compiler such as DYSMAP that 

generates a FORTRAN program that can be suitably modified. With ordinary 

DYNAMO compilers it is not quite so straightford since they provide no 

mechanism for using the X - value generated by the first noise free in the 

later runs nor for storing the sums of squares, etc, necessary for the 

computation of variances, 
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This approach involves no approximations. The computer time requirements is less than 2 days. Where the actual standard deviation is significantly 

can be shown to be equal to K(4) V/DT, (Sharp, 197'•). This is therefore the (say 50%) leas or greater than a value of 2 days this can be done using 

only method for computing some aspect of model sensitivity that has been a t-test with only a few model runs. 

discussed that does not involve computer time requirements increasing with The ·Effect of DT in Examining Noise Sensitivities 

the square of model size, Unfortunately the efficiency of the method is more 
In computing noise effects by the conventional method care must be taken 

apparent than real. Firstly computer random number generators as used by 
to choose the variances of noise terms with reference to the size of DT. 

DYNAHO function NORMRN required a lot of computation. Secondly, it can be 
If this is not done a halving of DT will produce a dramatic - and totally 

shown, (Sharp, 1976b) that even to estimate the standard deviation of tht'! 
spurious - apparent change in the effects of noise on the system. .Since 

effects of noise on the value of X to within 50% requires about 70 runs 
the usual modelling practice is to choose a suitably small time step that 

and therefore, as will be shown later, even for quite large models the 
the analyst varies, if necessary, to ensure numerical accuracy but otherwise 

computer time requirements are a lot higher than for the perturbation method. 
to ignore the actual size of DT completely, it seems worth drawing attention 

Only for models involving thousands of variables is it even likely to be 
to this fact. The reasons for it are buried deep in the somewhat 

attractive with regard to computer time. For models of this size however 
counterintuitive theory of stochastic differential equations, (Kwakernaak 

the computations for the perturbation method could be speeded up by various 
and Sivan, 1972). 

approximate methods so even for them it is somewhat doubtful. 
The point however is easily illustrated for the model discussed earlier 

It is worth noting however, that is we do not wish to estimate 
in this section by reference to equation (19). If the value of V chosen 

accurately the standard deviation of D(N+l) (and hence its variance) but 
is 1/640 and DT is chosen as 1/32 the variance of D(N+l) tends to 

merely wish to confirm that it is different from some chosen value then the 
5 x 32/640 = 1 , If the modeller now changes DT to 1/64 without changingV 

4 
the variance of D(N+l) will magically change to j! l•lhile D'f is kept constant 

Conventional Method may be attractive as far as computer time requirements 

are concerned. 
during the modelling activity no problem arises - provided, of course, that 

Suppose, for example, that we are concerned with a library. system and an 
the noise variances appropriate for the system under study and the time step 

important measure of service is the time a would-be borrower must wait for 
being Used were properly chosen initially. Very of ten, however, a [ ter 

a book that he has requested and which the library does not own. Suppose 
certain redesign work on the system the analyst. finds he can increase the 

that with a certain set of policies the average waiting time is 15 days. In 
size of DT and does so to reduce computing costs. If he does not at the 

many circumstances it might be considered satisfactory if in the noisy 
same time adjust noise variances accordingly, he is in danger of drawing 

conditions that prevail in the real system the standard deviation of this 
erroneous conclusions about the sensitivity of the improved system to noise. 

waiting time were less than 2 days. It is therefore necessary to use the 

model to test the hypothesis that the standard deviation of the waiting time 



- 785 -

IV M 0 D E L EXPERIMENTS 

To gain a feeling for the actual performance of sensitivity analysis 

methods there is no substitute for actual tests. Various experiments were 

accordingly carried out on the model given in the appendix. These 

experiments are described in detail in Sharp, 1976b. The purpose of 

the present discussion is to summarize the conclusions of that more detailed 

study. 

Reasons for Choice of Model 

A number of factors dictated the choice of model. 

a) 

b) 

c) 

Most SD applications involve the use of a model that is driven 

by one or more inputs, e.g. Order Rate. A model of a production 

planning system was therefore chosen as being more 'typical' 

of actual applicati~ns than the World 2 model with which most 

workers seem to have experimented. 

A small model was required so that a number of experiments 

could be carried out quickly and so that the partial differentiation 

of the model equations required by the perturbation methods would 

not be too burdensome. 

The model should contain nonlinearities to test how well various 

methods could cope with them and a performance measure of a type 

that might be used in practice.· 

The model chosen contained 7 state variables (LEVELS), F,S,I,B,C,M,G. 

Most of the J.EVEL equations are straightforward. That for M represents a 

quadratic performance measure of a type frequently used in control engineering. 

A similar type of measure has been applied to production planning systems 

by Holt et al., 1961. 
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The measure M contains 3 terms; the first penali~es deviations of 

inventory from desired inventory; the second pelalizes rapid changes in 

production rate and the third high order backlogs. The constant W2 determines 

the weighting of production change penalties relative to those for deviations 

of inventory from desired inventory and the constant WJ the weighting of 

backlog penalties relative to those for deviations of inventory from 

desired inventory. 

The equation for G demonstrates a way in which it is possible to 

introduce complicated.noise terms into an SD model. Its purpose is to 

ensure that there is a degree of serial correlation and intercorrelation 

between the noise effects as might frequently be found in practice. Thus a 

random event such as a change in quality of incoming raw materials will 

have effects that may be expected to persist for some time (serial 

correlation) and also to impinge on various parts of the system (inter

correlation). This approach to the modelling of noise is common in control 

engineering (c.f. Kwakernaak and Sivan, 1972). It was introduced into 

System Dynamics by Jay Forrester (1961) but unfortunately seems to have 

received little attention since then. 

The RATE and AUXILIARY equations are again fairly standard in form 

except that Despatch Rate (D). This was chosen to be a fairly complex 

nonlinear function of a form that ensures that Despatch Rate becomes zero 

when Inventory reaches some minimum level greater than zero. The input 

to the system Order Rate was taken as the sum of a constant, a term 

representing seasonal variation and a term representing a longer term 

business cycle variation. Such test inputs are very useful in assessing 



the performance of systems of this type. 

Two types of sensitivity analysis were carried out on the model, 

local parameter sensitivity analysis in which the effects of varying each 

parameter by 1% were studied; and a stochastic sensitivity analysis to 

determine the effects of setting the noise switch (NS) in the model equal 

to 1. 

The local parameter sensitivity analysis was carried out for the 

CONSTANTS, TAU, KAPPA, LA!-!BDA, ALPHA, RIIO, NU, MU, SIGMA, THETA, W2 and W3. 

The first 9 constants need little explanation. The last 2 are perhaps 

more interesting. They enable us to answer the question: if we weight 

production rate changes or order backlogs more heavily, how will this 

affect our perfprmance measure. 

Local parameter sensitivity analysis was also applied to the initial 

values FINV, IlNV, BINV, SINV and CINV. No sensitivity analysis was· carried 

out on the initial values of M or G. The initial value of M is arbitrary and 

may as well be set to zero by the analyst. The variable.G is a random 

variable with zero mean and the natural initial value is this mean value. 

In all then, local parameter sensitivity analysis was carried out for 

16 parameters (11 constants plus 5 initial values). 

Assessing Performance for larger models 

As mentioned earlier there were good practical reasons for experimenting 

with a small model. Nonetheless most models used in actual applications are 

likely to be of the order of ten times the size of the one described. A 

'pseudo-model' ten times the size of the one described here was constructed 

from the model in the appendix. 
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This involved running the model in a suitable way to reproduce the 

computational effort required to deal with a problem ten times bigger. 

The procedure is best illustrated by the process of local sensitivity 

analysis. The problem described has seven state variables and eleven 

parameters. To simulate the process of local sensitivity analysis (or a 

model with seventy state variables and one hundred and sixty par,.,neters, 

the sensitiv.ity analysis for each of the eleven parameters was carried 

out ten times and at each time step of the model run each model equation 

was computed ten times. 

'l'he pseudo-models made it possible to assess the computer time 

requirements for the different methods on bigger models. 

Computer Used for the Experiments 

The experiments were carried out on an ICL 1904S. This is a medium 

speed scientific machine. Basic instructions such as multiply two numbers 

together typically require several microseconds. A large scientific 

computer such as a CDC 7600 would probably have carried out the calculations 

described some fifty times faster. 

Computational Aspects of Experiments 

In the experiments that were carried out a number of techni<'al 

'hygiene factors'of good computing practice were found to be very important 

in reducing the time required for both types of sensitivity analysis whatever 

method was used to carry them out. These are well known to computer 

scientists but in the author's experience are unknown to most SU pL·actitioners. 

These will therefore be treated in some detail. 
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In the earlier discussions the reader will have noted that the 

time required for any sensitivity analysis method is universely proportional 

to the size of the simulation time step (DT). Therefore to reduce 

computer time requirements it is necessary to select the largest value 

of DT compatible with reasonable numerical accuracy. Most practitioners 

on the other hand tend to select a time step that they know will not 

give rise to accuracy problems and this is generally much smaller than 

necessary. Thus for the model described the time step originally selected 

was DT = 0.125. Experiments showed however that DT = 1 gave satisfactory 

results. In other words a couple of simple model runs· enabled the time 

for sensitivity analysis to be reduced by 87.5% ~ (The reader who is 

unconvin~ed by this may care to confirm that Forrester's World 2 model 

runs quite satisfactorily with DT = 1 instead of DT = O.Q5 as used by 

Forrester). 

In theory there are more sophisticated methods of computing a model 

than the Euler method used by DYNAMO. One such method is the Runge Kutta 

method (Henrici, 1962). This method was tried on the model described but 

took twice as long as the usual Euler method. Though it may, of course, 

prove quicker for some models it was not so in this case. 

Once the maximum feasible time step is determined the process of 

sensitivity analysis can begin. At this stage however the software of 

the computer being used begins to have an important effect. 

- 790 -

A DYNAMO model has to be translated or compiled before the computer 

can run it. ~or the DYSMAP language used at Bradford, 2 compilers are 

available. The compiler that is usually used is designed to compile 

a program very quickly but to produce computer code that is rather slow 

to run. In most university computer systems the reality is that the 

majority of computer programs fail during compilation which is why 

most installations generally use such compilers. On the other hand most 

installations generally have available an optimizing compiler that compiles 

the progr?m in such a way as to minimize the computer time taken to run it. 

Such compilers take longer to compile a program which is why in general 

it is necessary to specify that they be used. In sensitivity analysis 

however the extra compilation time is handsomely compensated for by the 

reduction in time required for the sensitivity analysis. It was found that 

the time required for sensitivity analysis by the conventional method was 

reduced by about 25% when the optimizing compiler was used. For technical 

reasons the use of an optimizing compiler was even more beneficial with 

the perturbation methods reductions in computing time of 50% being achieved. 

Once the program has been compiled another factor comes into play. 

It is usual to run DYNAMO programs in conjunction with sn error-trapping 

package that detects, for example, where the user's program has attempted 

to divide by zero. The use of such packages increases computer run time 

considerably. Thus for the seven state variable model and one of the 

perturbation methods a local sensitivity analysis took 32 seconds with the 

error-trapping package and five seconds without it. 
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Finally in trying to increase computational efficiency it is 

necessary to bear in mind that the setting up of PRINT and PLOT output 

requires a great deal of computer time. A full local sensitivity analysis 

for parameters and initial conditions together with PLOT and PRINT 

information took 510 seconds and produced 15000 lines of output. The 

PLOT and PRINT commands were replaced by output of a summary of the 

information generated during the run that occupied only 50 lines of 

lineprinter output. The time required for this run was only 8 seconds. 

To sununarize the discussion of this section the modeller should, if 

he wants to minimize the computer time required for sensitivity analysis: 

i) use the largest time st~p compatible with reasonable accuracy. 

ii) use an optimizing compiler to compile the program 

iii) not use an error-trapping package 

iv) reduce the amount of line printer output as far as possible. 

Com_P.arison of Sensitivity Ana.!J.sis Methods - Accuracy 

The discussion of section II shows that the perturbation method is 

accurate for Local Parameter Sensitivity Analysis. Comparison of the 

results obtained from it with those obtained by using the Conventional 

method showed this was the case. 

For stochastic sensitivity analysis the Perturbation method gives 

only approximate answers whereas the Honte Carlo method is capable of 

giving as accurate an answer as desired, if enough r.uns are carried out. 

The question therefore arises as to whether the approximate answers given 

by the Perturbation method are good enough to be useful in practice. 
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Comparing the results of the perturbation method and the ~1onte 

Carlo method, the former gave excellent results apart from the variables 

B and M, where the standard deviations calculated were about 50% and 

40% of the true values, respectively. However, the noise signals have 

deliberately been chosen to be large. A comparison of Figures I and 2 shows 

that the introduction of these noise signals has a drastic effect on 

system performance, in that the graphs of any variable, for example, C 

differ markedly. Indeed it is difficult to believe that the time series 

of Figure 1 and those of Figure 2 are produced by the same system. 

The final value of M in the noise free run, for example, is about 

2.25E08. Its mean value for the runs with noise is about 2.0E¢9 

very far from the value of zero assumed by the perturbation methods and 

8 times the value attained in the noise free run. lts computed standard 

deviation is extremely large relative to the mean and, since H cannot 

be negative, implies a very skewed distribution. The standard deviations 

of C, I and 8 are very large, In fact, in many runs these variables aetually 

take on negative values, In other words, the performance of the system 

with these noise inputs is quite unaeceptable. The results of th<' 

perturbation methods are accurate enough to indicate the need for redesign 

in this case, that is, they are quite acceptable for measurement uf system 

robustness. 
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Comparison of Sensitivity Analysis Methods - Time Requirements 

The experiments carried out involved a number of different versions 

of the perturbation method and various combinations of sensitivity 

analysis, (Sharp, 1976b). The results are summarized in Table 1 which 

shows the best results attained for each method of sensitivity analysis. 

All the times given are for the 70 state variable, 160 parameter pseudo model. 

Table l Computer time required for various sensitivity analyses 

Method of Sensitivity Analysis 

Type of Sensitivity Analysis Conventional Perturbation 

Local Parameter Sensitivity 

(170 parameters) 705 seconds 74 seconds 

Stochastic Sensitivity 

(Compute variances of effects 1720 seconds + 
noise terms of model in 
appendix) 

Stochastic and Local 

Parameter Sensitivities 2420 seconds 100 seconds 

combined 

+ This experiment not carried out. Note however figure for both types 

of analysis combined. 
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Choice of Sensitivity Analysis Method 

'As Table 1 shows, if we wish to carry out local parameter sensitivity 

analysis for all parameters or a stochastic sensitivity analysis the 

perturbation methods can substantially reduce the computer time required. 

The conventional method of parameter sensitivity analysis has however 

certain advantages compared with the perturbation method, The perturbation 

method is an all or nothing method, It takes almost as much time to carry 

out a. sensitivity analysis for l parameter as for 170~ To carry out local 

parameter sensitivity analysis for l parameter by the conventional method 

requires o~ly l/l70th of the time required for all 170 parameters. 

The conventional method is therefore preferable where local parameter 

sensitivity analysis is only required for a few parameters. Furthermore, 

the utility of the perturbation method is much reduced at present by the 

fact that partial differentiation of the model equations must be carried out 

before it can be used, 

As was noted in earlier discussions, the conventional method for 

stochastic sensitivity analysis should be quicker than the perturbation 

method for models beyond a certain size. If, as here, it is desired to 

compute variances of the effects of noise terms on the model then this 

.Point has clearly not been reached. Of course if we only wish to test 

whether these variances are significantly different from a certain value 

then as was pointed out in section Ill the conventional method may be 

preferable particularly since it is at present easier to apply. 

For either type of sensitivity analysis the perturbation methods work 

best where we wish to evaluate the sensitivities of a relatively small 

number of performance measures. The figures given above are for a model 
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in which only 7 out of the 70 state variables are performance measures. 

The conventional method is relatively insensitive to the number of 

performance measures (providing lineprinter output volumes are kept down). 

The factors that favour the choice of one method of computing 

sensitivities rather than the other are shown in Table 2. 

Table 2 Factors affecting choice of Sensitivity Analysis Hethod 

Factors favouring Conventional Hethod 

Small number of parameters whose 

sensitivity is to be determined 

Large number of performance 

measures 

Required to test effects noise 

different from specified value 

Hethod needs to be simple 

to apply 

Very accurate measurement of 

stochastic sensitivities 

required 

Factors favouring Perturbation Hethod 

Parameter sensitivities required 

for large number parameters 

Small number of performance 

measures 

Required to compute variance 

noise effects 

Combined Parameter and Noise 

Sensitivities required 
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V C 0 N C L U S I 0 N S 

The following conclusions to this paper appear reasonable: 

a) The time required for full sensitivity analyses of major probl <'IllS 

by the conventional and Monte Carlo methods is probably far shorter than 

assumed by most analysts. This insight opens up the prospect for using 

sensitivity analyses in conjunction with hill-climbing programs on a wider 

scale than at present. In view of the results of Table 1, it would seem 

worth while to design a special efficient compiler for sensitivity aualysis 

purposes. 

As fa~; as stochastic sensitivity is concerned, the biggest problem 

would seem to be determining the size and form of the noise signals. 

Peterson's paper in this volume indicates how this can be done. 

b) The perturbation methods appear to yield results that are accurate 

enough for the measurement of robustness in practice. If further effort 

were devoted to improving their computational efficiency, they should be 

capable of producing very rapid sensitivity analyses. Perturbation m<'thods 

are particularly well-suited to cases where large numbers of paranwters and 

stochastic effects are present, and offer considerable benefits if both 

parameter and stochastic sensitivities must be assessed together. Tile-y are 

probably capable of further refinement to produce rapid approximate <mswers. 

Indeed for large systems that break up into a number of weakly connected 

subsystems, the perturbation methods seem to lend themselves to the 

construction of approximate methods based on block diagonal matrices (Sharp 1974). 

The biggest obstacle to their use is Likely to be the need for partial 

differentiation of the model equations. It would therefore seem well worth 
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exploring the use of a programming language, such as ALTRAN (Brown), to 

carry out the necessary partial differentiati.ons. This facility would be 

useful elsewhere in System Dynamics, for instance, .for some of the 

calculations described in the papers by Peterson and Thissen in this volume. 

c) With suitable developments to compilers, sensitivity analyses should become 

as natural a part of the model building and policy development as normal 

runs are at present. The extent to which system robustness had been. 

attained would then be apparent not only to the analyst, but also to those 

responsible for assessing his recommendations. 
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7.5 .D 
7.6 L 
7.:t N 
7.8 D 
7.9 L 
~0 tl 
:n ll 
~z A 
:0 A 
H L 
~5 II 
~0 ll 
~7 L 
~8 II 
~9 D 
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~endix Model used for Tests 

SENSITIVITY TEST EXAMPLE 
E1,K•NORHRNC0~,6,)•NS 
E2, K•tiORI\RN CO,, 4,) *liS 
EJ,KcNORI1RNC0,,8,)•NS 
~4,K•NORI\RNC0,,9,)•11S 
E5,K•IIORI1RIIC0,,5,)•11S 
E7.KcNORIIRIHO, ,4,)•NS 
0, KL•1 000+250•S IIHb, ;!8•T IIIE, K/220) 
O•(UNITS/UK) ORDER REtEIPT RATE 
P,KLcf,K+((R,K•I,K)+(B,K•E,K))/TAII 
P•<UIIJTS/WK) PRODIICTIOU START RATE 
R,K,.KAPPA•F.K 
R•CUNJTS) REQUIRED IIIV[NTORV 
E',K"'tW•F,k 
Em<UNITS) EXPECTED BACKLOG 
D,Kl•B,K•(1•EXPC·ALPHA~I,K/S,K>J/NU~RHO•B~K•<l,K•THETA> 
D•CUNITS/WK> DESPATCH RATE 
C, K"C, J+DT• <P, JK•C, J > /IIU+DT• <1:1'. J+50•G. J) 
C•CJIIV 
Ca(UNITS/\IK) PRODIICTIOII COIIPLETlON RATE 
F,K•F,J+PT•<O,JK•F.J>/LAMPDA 
faFJNV 
F•CUNITS/WK> DEHANP FORECAST 
I,K•J,J+DT•<C·,J·D.JK)+DT*(E3,J+30•G,J) 
I• IIUV 
l•CUNITS/WK> FINISHED GOOPS IIIVtiiTORV 
B, K•B, J+DT• (0, J K·P, JK).+DT• < E4t, J+30•G, J) 
BaPJNV 
Pm(UNITS) ORP~R BACKLOG 
S, K•S, J+DT• CO, J K•S. J > /S I Gf!A+DT•E 5·, J 
S•SINV 
S•<UNITS/IIK> SIIOOTIIED ORDER RATE 
A1,K•(R,KPI,K)*(R,K•I,K) 
A2,K•(P,KL•C.K>•<P.KL•C,K) 
H, K•l-1, J+DT• < A1, J+lll•Al. J+U3•B•, Ji •j!) 
Mao 
tla <1 ). IIEASIIRE SYSTEII P[RfORI~AIICE 
G,K•G,J+DT•CE7.J•G,J)/4 
GaO 
Gc(1) NOISE TERH 
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Hodel Continued 

40 ~OTE CO~STANTS 
1,1 C T/111=11 
1,2 D T/\li=(IIK) PROPUCTIO~ SIIOOTIIING TillE 
43 C KAPPA=I> 
44 p KAPPA=CWK) DESIRE(> IIUIIOER OF \lEEKS ORDERS IN STOCK 
45 C N0=2 
46 0 IW=<IIK) EXPECTED UUIHIER IIEEKS ORDERS IU BACKLOG 
47 C LAIHll>A=20 
t,B 0 LAtiBDA=CII\;) FORECAST SIIOUTfiiiiG TillE 
49 C ALPHA=O,!iO 
SO D ALPHA=C1JWKJ EFFECT IUVENTORY SHORTAGE ON DESPATCHES 
~1 C RH0=0,000005 
~2 D RHn=<1/U~ITS/IIKJ EFF~CT BACKLOG A~D IUVENTORV 0~ DESPATCH~S 
53 C THETA=6000 
54 P THETA=(UNJTS) PREAKPOJNT FOR CHANGE IN INVENTORY AND BACKLOG EFFECT 
55 c llll=6 
56 D 1-IU=WK) I'RODIICTIOII COIIPLETIOII I>H/\V 
57 C SJGIIA=4 
511 D SIGIIA=(I.JK) SIIOOTHI~G TillE 
59 c 112=20 
60 II W2=(11K .. i!/llNITSu2) WEIGHTING COIISTAflT 
1\1 c 113:0,05 
f>2 D W3=(1/UNITS**Z> IJEIGHTIIIG CONSTAIIT 
63 C CINV=1000 
1\4 !l CIHV•CUNITS/WK) IIIITIAL VALUE C 
1\5 C FIUV=1000 
66 !l flNV=CilNITS/WK) IIIITIAL VALUE F 
1\7 C IINV=6000 
1\8 0 ll"V~(IIfliTSl IIIITIAL VALUE 
(,9 C lli11V=2000 
70 D lliNV~CliNJTSl I~ITIAL VALUE B 
71 C SHIV=1000 
72 0 SltiV=<IINJTS/WK) IIIITIAL VALUI; S 


