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We will propose that the expression, 'exponential function increase’ causes 
confusion and that such phrases used to describe a state do not serve in modeling the 
structure of a phenomenon.  We will propose that it is necessary to clearly state in 
details the rule of the increase when discussing modeling. Our presentation focuses 
especially on logistic curves and shows that the first increase in this curve is not 
exponential-like by the fluctuation index which was defined with the purpose of 
analyzing the instability degree of time series data (Appendix1). 

 
What images do users usually envision when expressing 'exponential increase' or 

'exponential function increase'? There is a tendency for users to borrow 
such expressions when there is a wish to project images of fast change or sudden 
increase of data.  Whether the subject under discussion is an 'exponential function 
increase' or a 'high order function increase', they tend to think there is no impact to the 
latter part of the discussion.  As long as the discussion proceeds and remains limited to 
a description of an adjectival state, then there is no issue. 
  However when the discussion shifts mid-ways to that indicative of increasing 
volumes or structure, it becomes necessary to distinguish whether the subject is in its 
truest sense an exponential function increase or a high order function increase. 
  Discussions on distribution of durable goods or spread of epidemics are proceeding 



without the above distinction being made. 
  In this presentation, we will propose that the expression, 'exponential function 
increase', readily causes confusion and that such phrases used to describe a state do not 
serve in modeling the structure of a phenomenon.  We will propose that it is necessary 
to clearly state in details the rule of the increase when discussing modeling. 
  Our presentation focuses especially on logistic curves. A reconfirmation of the 
mathematical principle of the growth model is as follows. 

 
  Fixed model based on fixed growth rate: 
  dN/dt=RN       R: Growth rate (Constant)  (1) 

 
As widely known, N becomes the exponential function of time t. 
  

Generally, however, the growth rate decreases when the quantity reaches a certain 
level.  In other words, R becomes the function of R (N) based on the population N. The 
simplest R (N) is a straight line. When R=a-bN, the equation of the model becomes the 
following.  

 
dN/dt=N (a-bN)     (2) 
 

Then the curve of N materializes as a S-shaped growth curve or a logistic curve. The 
expression of ‘an exponential function like growth’ is often used about N which 
indicates the population. This appears to be for the following reasons.  
 

1. Solution of the differential equation (2) has combination of exponential functions.  
2. When t is very small, equation (2) is approximated by equation (1).  
 
However, our research indicates that whichever part of this curve in the very early 

stage is examined, it does not increase exponentially. Then what increases 
exponentially? This expression is not used for the population but for the next equation. 
The relation of equation (3) appears in the midst of solving the differential equation (2).  

N/(S-N)   ⇒    exp (at)            S=a/b      (3)  

The ratio of the member N at each moment and the part (S-N) which is to be member 
after that does increase like exponential function. Today's confusion arises by the 
growing part of the S-shaped curve having been related to ‘an exponential function like 
increase’ while leaving this equation behind.  



As for equation (2), it is possible to solve analytically. The solution is  

Ｎ＝Ｓexp(at)／(1+exp(at))          S=a/b      (4)  

 
The graph of the variable N becomes a S-shaped curve. Since equation (4) contains 

an exponential function in both the numerator and the denominator, it is likely to be one 
of the reasons that we tie hastily the exponential like growth to the increasing part of 
this curve.   

It is possible to show theoretically and statistically that the first part of the S-shaped 
curve is approximated with 3rd order polynomial better than with exponential function. 
(Appendix 2)   

As long as only the increasing tendency is being analyzed qualitatively, the confusing 
use of S-shaped curve and exponential increase is considered not to cause such an 
unclear problem.  The dangers that are to be caused by using such adjectival 
expressions are examined as follows.  

There is an exercise explaining the differential equation model in the textbook 
(Reference [5]). 
1. The number of accumulation of the AIDS patient in the United States is given. The 
model which is in proportion to the times of contact is built. The equation (1) that the 
number of patients becomes the well known exponential function is presented with the 
model.  
2. The exercise ask you to look for the most suitable model through application of 
optimal curves, such as exponential function, 2nd order, or 3rd order polynomial 
expressions to the actual data. Then it points out that the 3rd order polynomial fits the 
actual data better than the exponential or other models. 
3. The exercise also suggests that it is wonder the exponential increase does no result 
while the first simple model is suitable in understanding of the AIDS.  
 

The data given by the beginning are simple increasing data, and it is difficult to 
expect a S-shaped curve. It is appropriate to add the upper limit of the number of 
infected persons to the equation (2) as the simple model which meets these data. It is 
better to use the early part (until the start of the function) which is calculated with the 
equation (2) from our calculation result. However, since the observed data is not 
exponential, there are possible dangers for those unfortunate students connecting the 
exponential like increase to the logistic curve to come up with other models. For 
example, the next equation gives the 3rd order polynomial solution.  
 



dN/dt=C*N (2/3)  
 

And, even for those students coming up with the S-shaped curve, there is a possibility 
that they introduce unnecessary modification factors to modify the first part.  

Our proposal is that, when expressing increasing data, it is better not to use the 
expression of 'exponential function like increase' except for the real exponential case. It 
is not so easy for beginners to appreciate whether the term 'exponential function like' is 
adjectival or not from the context. 

We are interested in the analysis of the increasing tendency of time series data, and 
have been continuing the research. This time, we defined fluctuation index 
distinguishing the exponential growth and reports that the first increase in the S-shaped 
curve is not exponential-like by the indices. 
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Appendix 1    Data fluctuation index. 

Consider general time series data.  
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Let the time step 1��� ii tth be fixed for simplicity. When there is less much 
misunderstanding, not ti but its suffix i indicates time. 

Define the index based on the ratio of the changes of the time series data. The basic 
concept is expressed with the following equation.  
 
(Present amount of change) =α* (Average of the past amount of change)        
 

The value of α becomes large when the amount of change in the present system is 
equal to several times of the past. α is defined as the index which shows the degree of 
the instability of the system as follows.  
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Though it is possible to define using the average of three terms and more in the same 
way, the index based on two terms is discussed in this paper from the purpose of 
presenting as simple an index as possible.  
Generally this index becomes the function of the independence variable (time) n and the 
time step h.  
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This index becomes fixed value for the well-known simple increase functions as 

follows.  
 
1. Linear function: bat �         (a, b are coefficient)   

The value of the index α becomes 1.  
The index α of the linear functions is always 1 under the optional a, b, t.  

 

2. Exponential function: tae      (a is coefficient.) 
The index becomes the function of the time step h only.  
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α(1) andα(2) become the function of h. In other words, the index value of exponential 
functions is fixed and is not affected by the value of the independence variable. Table 1 
reports the calculation results of the relations of time step h and each α. 
 
                    Table 1  Time step h and the α value  

ｈ 0.25 0.5 0.75 1.0 
α（１） 1.6 2.7 4.5 7.4 
α（２） 2.1 4.0 7.3 13.0 

 
3. Power function: kat    (a, k are coefficient)  
 The indexα becomes the function related to both time t and time step h. The index is 
found to approach 1 when time t increases upon calculating α for several power 
functions. However, large change is observed around the extreme value and the turning 
point. But, it is possible to show that the index becomes 1 in the region where the time 



is large enough. (See appendix) Therefore, when the independence variable is 
sufficiently large, it can be said that the power function is not increasing exponentially 
but is in the same as the linear function. Figure 1 shows the example of the third power. 
Although, the index α has larger value than that of the exponential function around the 
origin, it approaches 1 rapidly when leaves the origin. Using the numerical calculation, 
we have confirmed up to K=9 that the value of α for the k power function becomes 
smaller than that for the exponential function with t≧k .  
 

 
Figure 1   Third order function and index α 

  
 
Appendix 2    Logistic (growth) curve 

We applied the proposed index to the logistic curve. Figure 2 shows the index α (1) 
and α(2) with the time step h=0.25. Index α(1) is 1 in all the ranges. And it has the value 
smaller than 6. α(2) is 2 as well. Because it is less than 0, it cannot be said that the first 
portion of this graph is exponential function like increase. 

To verify this, we performed the application of optimal curves in the range[0,2] by 
using the statistics analytic software (SPSS). Data is calculated using the equation in the 
Figure 2 with initial value (X=0.1 at h=0). Since index α(2) is larger than 1 and is 
smaller than 2, we tried the 2nd order and the 3rd order polynomial expressions which 
have larger increasing rate than 1st order linear function and have lower increasing rate 
compared to exponential functions. Both the 1st order linear function and the 
exponential function are also indicated for the comparison. The result by the decision 
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coefficient became the order indicated in the following table. (Table 2)  
 

Table 2 Approximate curve ( range[0,2]) of logistic curve  
 
 Decision 

coefficient 
Adj. decision 

coefficient 
Standard error 

3rd order  0.99999 0.99998 0.00056 
2nd order  0.99996 0.99995 0.00087 

Exponential  0.99560 0.99498 0.03681 
1storder  0.98092 0.97820 0.01799 

 
 
 

 
Figure2 Logistic curve and the index 

The curve is plotted by the difference equation; )1( XXX �� . 
  (Initial value is 0.1 at h=0) 
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