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In this paper we outline and evaluate a simple technique for 
analyzing the ability of a model to reproduce an oscillatory 
behavior mode. The technique consists of using a model as a 
predictor, and then performing spectral analysis on the 
prediction errors. The technique is referred to as the spectral 
analysis of residuals or SAR test. The paper motivates the use 
of prediction residuals and illustrates the technique with a 
simple model of inventory oscillation. The SAR test appears to 
yield a substantial amount of information about the performance 
of a model. However, the technique breaks down if the observed 
behavior is a result of the system being subjected to shocks with 
similar dynamic characteristics to the system output or if the 
system has more than one set of mechanisms generating the · 
behavior of interest. The SAR test is not capable of 
distinguishing between models which can explain the behavior 
equally well using different state space representations. 
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Introduction 

The process of model building in System Dynamics involves 

the consideration of the behavior modes of the system being 

modeled. The reproduction of these behavior modes is considered 

to be an important part of the model validation process [1). The 

evaluation of the model's ability to reproduce behavior modes is .. 

difficult and requires a great deal of time consuming analysis 

of model output. The purpose of this paper is to present one 

statistical aid for behavior-mode verification. The use of 

sta·tistical tools can increase both the efficacy of behavior-mode 

validation and the ability of the modeler to communicate 

validity. 

Validation in System Dynamics modeling has been the focus of 

a good deal of criticism of the field [2). The responses to this 

criticism have been varied. The strongest defense of the 

existing validation techniques in System Dynamics has been the 

inability of proposed alternatives to adequately deal with the 

problem [3]. However, there has been some work done to develop 

statistical techniques for the model validation process. 
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Peterson [4,5] advocates the use of system identification 

techniques developed for engineering models. Sterman [6] 

considers the use of statistical tools not for the determination 

of model structure, but for the comparison of the model with 

observed data. This paper is more in ·line with the latter 

approach. 

In this paper we concentrate on the validation of a model's 

ability to reproduce oscillatory behavior modes. Much of what 

will be said regarding the validation process in this special 

case does have more general applicability. We concentrate on the 

single behavior mode validation bec~use it helps in the 

motivation of the approach chosen. The aspects of the approach 

which generalize will be discussed in the conclusions. These 

generalizations are areas in which research is currently being 

done. 

This paper is organized as follows. We first discuss the 

yalue of considering the spectral density of a time series when 

evaluating the dynamic characteristics of that time series. We 

then motivate the use of model prediction residuals as the 

appropriate data for testing. The proposed testing technique is 

then sketched out. The situations in which the proposed test is 

and is not useful as a diagnostic tool are then considered. 

Finally, areas that warrant further research are indicated. 
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Oscillations and the Po~er Spectrum 

To facilitate discussion of oscillatory behavior modes we 

will consider a very simple model which has an oscillatory mode. 

This is the workforce/inventory oscillator [7,8]. The model was 

simplified to a second-order model and written in linear f~rm. 

The model is of interest because of the importance of 

inventory/workforce interact.ions in the business cycle [8]. The 

model equations written in DYNAMO are given in Figure 1. A noise 

term is introduced into the workforce level and is meant to 

represent the randomness. of the results of advertising that jobs 

are available, and unpredictable variations which occur in the 

number of quits. 

When subjected to a 10% step increase in orders the model 

yields a production rate that displays damped oscillatory 

behavior as can be seen in Figure 2. However, when the model is 

subject to a noise input, as in Figure 3, the oscillations are 

not as easy to analyze. The reason for this is the ability of 

the noise to generate cycles of different frequencies when viewed 

in the time domain. 

An alternative way to view an oscillatory pattern is in the 

frequency domain. This is done by taking the Fourier transform 

of the model output [9]. What the Fourier transform contains is 

information on the frequencies that dominate the model behavior. 

Using the fourier transform the power spectrum for a time series 

can be obtained. The power spectrum for the workforce inventory 
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Equations 

- Production (output units per month) 

-Workforce (workers) 

- Change in workforce (workers per 

- Desired workforce (workers) 

- Desired production (output units per 

- Inventory correction (output units per 

month) 

- Desired inventory (output units) 

- Inventory (output units) 

C PROD=l - Productivity (output units per month per 

C TAWF=l2 

C TAI=6.5 

C DIC=l 

worker) 

- Time to adjust workforce (months) 

- Time to adjust inventory (mo~ths) 

- Desire iventory coverage (months) 

Exogenous inputs 

A NOIS.K=NORMRN(O,l) -Noise (dimensionless) 

A OR.K=lOO*(l+STEP(SS,ST)) -Orders (units per month) 

Figure 1. Simple Workforce/Inventory Equations 
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model output of Figure 3 is shown in Figure 4. The horizontal 

axis in Figure 4 represents the frequency (per month) at which 

the tendency of the model to oscillate is being evaluated. The 

vertical axis represents the power, or the tendency of the model 

to show oscillations at that period •. The peak in the power 

spectrum corresponds to the period for which the system is most 

oscillatory. 

.3 0~--------~------r-------r-----~-------.-------,-------, I 

1 

:....1. 

Figure 4 

Log of power spectrum for production 

.02 .04 .06 .08 .10 .12 .14 
Frequency (per month) 

Power spectrum for inventory/workforce output shown in 
Figure 3. 

The peak in the power spectrum of the model output occurs at 

a pe~iod of approximately 50 months. The spectrum gives 

info~mation about oscillatory tendencies in a clear form not 
j 

available from the observation of the noise run shown in Figure 
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3. For a real_system the only time-series available will be 

those corresponding to noisy runs. The analysis and comparison 

of the oscillatory tendencies of actual data and model output is 

much easier in the frequency domain. 

Senge [10] used this technique of translating time-series 

into the frequency domain in the comparison of model generated 

output with available data on investment. The comparison of two 

time-series in the frequency domain is much easier than is the 

comparison in the time domain. The reason for this is simple. 

Different noise inputs generate different outputs, but when 

translated to the freque.ncy domain the similarities of the 

dynamics are preserved. This can be clearly seen in Figure ··S and. 

6. Figure 5 represents the simple inventory model run under two 

different noise seeds. The noise for the two runs has the same 

statistical characteristics, but different actual valu~s after 
J 

time t
1 

. The two series are clearly different in the time 

domain after the noise seed changes. Figure 6 represents the 

power spectrum of the model output for each noise input. Unlike 

the model output, the spectra are almost the same. 

There are, however, shortcomings to this approach. Two 

models with different parameters can produce similar spectra. 

Consider for example the choi·ce of model parameters which will 

generate oscillations of the same period, but with different 

degrees of damping. This can be accomplished with the inventory 

oscillator by changing the time to adjust inventory from 12.0 to 
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Figure 5 Inventory/workforce model output with two different 
noise seeds. 
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Figure 6 Power spectra for inventory/workforce model output 
shown in figure 5 
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·8.0 months and the time to adjust workforce from 6.5 to 8.4 

months. This changes the damping ratio from .73 to .97. The 

power spectra for the two models are, however, quite similar as 

can be seen in Figure 7. 

2.0· 

TAWF=8.4 

Log of power spectrum for production 
I 

TAI=6.5 

Figure 7 Inventory/workforce power spectra for two values of 
adjustment times 

There are two ways to get around the problem of different 

models generating very similar output. The first is to perform a 

more quantitative analysis of the spectrum. It is possible to 

construct statistical tests for the equivilance of two power 

spectra over limited frequency ranges [11). The alternative 

approach is"to evaluate the model in terms of its ability to 

explain the actual data. The major disadvantage of the first 
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appro~ch is that it requires the specification of a selection 

criterion at an early stage in model evaluation. The second is 

somewhat more fifficult to implement, but has the advantage of 

being useful in a number of different contexts. It is the second 

which we will pursue. 

Model Prediction Residuals 

In Industrial Dynamic [7] Forrester points out that two 

models with identical structure can, when subjected to different 

noise inputs, display substantially ·different time paths. We 

have seen above that in the frequency domain these differences 

are lessened. But we have also seen that in the freq~ency domain 

the differences that actually exist in a model can also be 

hidden. In order to get around this problem it is useful to 

consider the output in the time domain and consider the question: 

Is there a time interval over which the point by point comparison 

of model output is informative? The answer to this question is 

yes and the reason for this is simple. it' two models are doing 

~he same thing up to time t, then the models will probably be 

very close right after time t. This is true because any noise 

entering in must be integrated before it will have any effect on 

the system. In the noise runs of Figure 5 the noise entering was 

identical to the point t 1 • Close inspection will show that 

shortly after t
1 

the two model output paths are quite close. It 

is only later that the divergence occurs. 

Thus while it is true that System Dynamics models are not 

12 

good point predictors, they can do quite well for a short 

interval of time. This is generally true, and forms the basis 

for generating many useful statistics on model performance. We 

need to consider the ability of a model to predict conditions in 

the very near future. The closer we are to the last point of 

model/system coincidence the greater the model's ability to match 

the actual system state. 

The problem of determining the short term prediction error 

can be stated as follows: If we have a set of predicted system 

states which are the best possible at time t , and if we have an 

observation at t+d of a number of the states, then what is our 

best prediction at t+d of all of the states? The obvious·· 

solution is to integrate the model of the system from t to t+d 

and look at the output. If the predicted outputs are the same as 

the observed then the model states at time t+d are probably 

correct. If, however, the two series diverge, then it is likely 

that the model at time t+d has incorre.ct estimates of some of 

the states. 

We can use the difference between the predicted and observed 

output to tell us which way the states are off. If, for example 

we observe that inventory is 10 and the model predicted 9 then 

the inventory level should probably be adjusted upward. In 

addition the disparity between predicted and actual inventory 

levels might' indicate that the workforce level was predicted 

incorrectly. The question of how much to adjust which level was 
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answered by Kalman in the now famous Kalman filter [12]. 

The above outlines the technique used for generating the 

prediction errors. The errors thus generated can be used for 

other purposes and form the basis for .the estimation techniques 

as discussed by Peterson [5]. This approach of generating 

prediction errors is necessary for any rigorous statistical 

treatment of model behavior. Unless the state is updated in such 

a manner comparison of model and system output is of limited use. 

As Richardson [1] and Forrester [7] ·have pointed out, a constant 

will often, if not always, do better than a simulated model in 

predicting exact states. 

The SAR Test 

We have seen that different models can generate similar 

spectra. The purpose of the filtering of the data to get 

prediction residuals is to bring out more fully the differences 

between models or between a model and a system. If the wrong 

model parameters are used to explain the data then how do the 

res~duals reveal these errors in the model parameters? As in the 

case of the model output the best way to analyze error 

characteristics is in terms of their spectral density. This 

technique will hereafter be referred to as the spectral analysis 

of residuals or SAR test. 

The SAR test can be performed to judge the ability of a 

model to explain a data series. In Figure 7 we saw the power 
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.spectra for two workforce/inventory models under different 

adjustment time choices. Calling the model with TAWF=l2 and 

TAI=6.5 the "true model" we can consider the ability of the 

incorrect model to explain the true model. Using the model with 

the wrong parameters to explain the data series generated by the 

correct parameters we have used the Kalman filter to generate 

prediction residuals. The power spectrum of the residuals is 

shown in Figure B. The residuals using the correct model to 

explain model output also have their spectrum plotted in figure 

B·. The two spectra show the difference between the two models. 

Using the incorrect model to explain the data yields residuals 

which show strength near the frequency of interest. This is an 

indication that the model has failed to explain some component of 

this behavior mode. 

Log of power spectrum for residua·1s 

-2~L-----~------~-------L------~------~~--~~----~ 
.10 .12 .14 .002 .02 .04 .06 .08 Frequency (per month) 

Figure 8 Power spectra for residuals when the inventory/ 
workforce model is used to explain output 
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To summarize, implementating the SAR test requires 

1) The existence of a model. 

2) Using the model to get the best one observation ahead 

predictions for observed time ser.ies. 

3) Creating residuals by comparing the predicted time series 

with the observed time series. 

4) Considering the power spectrum of the residuals. 

Evaluation of the SAR Test 

We have developed a method for looking at a model's ability 

to reproduce an oscillatory behavior mode. The method is simple; 

and is informative in situations which might naturally be 

expected to be encountered. In addition, the technique has 

avoided the obvious problems that simpler techniques might 

encounter. When is this model evaluation technique capable of 

yie·lding information about model performance? The 

characteristics of the SAR test were evaluated primarily through 

synthetic data experiments using variants of the workforce 

inventory model. For details on the types of tests performed the 

interested reader is referred to [13]. The results of this 

evaluation are summarized below. 

There are four situations in which a model is likely to fail 

to reproduce the observed dynamics, or to mislead the modeler 

with .regard to what the system is actually doing. These 

situations are certainly related and the distinctions are drawn 
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essentially for convenience of discussion. 

1) Though the model is accurately reflecting the processes 

of concern, the noise process effecting the. system is 

different from the noise process modeled. 

2) The model has the wrong set of parameters. 

3) The model and the processes of concern are of two 

different orders. 

4) The model may be representing processes which are not in 

fact active in the real world. 

Tnese four cases will be taken up in order. 

Ideally models should explain behavior with noise acting 

only to excite or add energy to models. Unfortunately thiS is 

not always the case. The noise entering a system often has 

dynamic characteristics of its own ·and these dynamic 

characteristics can be transferred to the system output yielding 

substantially more complicated dynamics than the system of 

interest would generate. This situation arises because it is 

necessary to limit model boundaries in order to say something 

interesting. Treating certain processes as noise for the purpose 

of a model is a valid modeling technique. It does not, however, 

guarantee that the system and model dynamics will match in every 

respect. 

The SAR test is insensitive to the characteristics of the 

noise entering the system in the following sense. If the dynamic 

characteristics of.the noise are different from those of the 
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system, then the SAR te~t will not indicate the presence of 

system dynamics in the residuals. To make this clear suppose 

that the noise entering a system has an annual cycle. Then the 

residuals will contain this annual cycle. As long as the model 

does not have an annual cycle as a reference mode, the SAR test 

will favor the model. 

The case in which the system and noise do have similar 

characteristics (an annual cycle in the above example), is more 

dificult. There is an essential sense in which the noise and 

system cannot be separated or identified. The SAR test cannot 

tell that this is the problem, but combining the SAR test with 

other tests might yield more information. 

Models may have wrong parameters, but be. correct in other 

respects. This is the situation in the plots of Figures 6 and 7. 

The· two models are the same except for the choice of parameters. 

The spectra of the residuals are distinct.· The technique is able 

to distinguish models with wrong parameters from those with 

correct parameters. This is true of both the special case 

considered above in which the model has the same natural 

frequency as the data and the cases in which the two frequencies 

differ. 

Models of processes are normally of a lower order than the 

processes themselves. Lower order models fill the need to have 

relatively simple and understandable models. On the other hand, 

18 

the effect of this approach to modeling is to have models with 

substantially simpler dynamics than the processes they represent. 

The problem in model validation becomes one of showing that the 

model reproduces the dynamics of interest. This problem is 

intensified because it is desirable to show ~hat the dynamics can 

be produced not only by· a simple model, but by a simple model 

with a counterpart in reality. The reproduction of dynamics by 

simple models can always be accomplished by the modal 

decomposition of a system [14]. However this decomposition will 

not necessarily yield a .model which .has an interpretable state 

space representation. 

The application of the SAR test to models attempting to 

explain higher order behavior is quite informative. The 

residuals tend to be lacking power in the frequencies which the 

model is designed to explain. There can, of course, be some 

problems if there are two mechanisms generating similar dynamics. 

Under these circumstances unless both mechanisms are incorporated 

into the model the SAR test will always indicate that something 

is wrong. Such a situation is very similar to the case in which 

the system is being driven by noise which is dynamically similar 

to the system output. The separation of the two processes may 

not be possible. 

The final case which needs to be considered is a situation 

in which a model. is attempting to explain the behavior of a 

system on the basis of the wrong relationship between variables. 
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An example of this would be the use of the multiplier/accelerator 

model to explain inventory/workforce dynamics. Under the 

appropriate parameter choice the two models can be constructed to 

have the same inherent dynamics. The two models are using 

different transmission mechanisms and different state variables 

to explain the same process. 

It is not possible to distinguish between two such models 

using a SAR test or any other simple analysis of model fit. It 

is necessary to look much more closely at the interactions 

between the states in this situation. The reason for this is 

that there are an infinite number of state space representations· 

of the same process. All are capable of generating the dynamics, 

but normally only a few have any meaningful interpretation. The 

discrimination between these few will require either more data or 

a closer look at the available data. Such things as the implied 
I 

pha£e relationships between state variables can potentially yield 

information about the validity of a model.· 

Extensions of and Alternatives to the SAR Test 

This last problem helps to point the way for future research 

in the area of statistical validation of dynamic models. It is 

clear that the use of a single time series can yield only a 

limited amount of information. Normally models have a number of 

observable variables associated with a given behavior mode, and 

the simultaneous. analysis of all of these seems appropriate. The 

procedures developed in this paper do have some applicability to 
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the higher dimension cases. 

The most obvious extension of the SAR test is to conduct the 

same test in higher dimensions. The consideration of phase 

relationships can be equally well accomplished in the frequency 

domain by considering cross spectra. Cross spectra yield 

information about the phase shift and the strengh of coupling of 

two time series at different frequencies. The cross spectra for 

different model outputs can be compared to the observed cross 

spectra of the data. As with the single spectrum it is probably 

misleading to look at only model generated output. The use of 

the prediction residuals can again be helpful in the . 

determination of model validity. The spectral analysis of 

prediction residuals gets at the notions of period, damping and 

phase relationships. These are all important elements in the 

model validation process. 

A related but distinct way [15] of analyzing the dynamic 

relationships between different variable is in terms of their 

Granger causality [16]. The techniques developed by Sims [17] 

for determining causalit~ are easy to implement. A test of 

Granger causality of variable A on variable B essentially 

tests whether variable A contains information not in variable 

B which will help to predict future values of variable B. If 

variable A does contain such information then variable A is 

said to Granger cause variable B. This type of test could be 

run on model output when the model is excited by noise inputs. 
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The notion of predictio~ residuals is probably not appropriate 

for this test. 

There are a wealth of techniques for dealing with time 

series [18]. However, when used in isolation many of the 

techniques in the literature on time series seem to lack the 

ability to inform us about reality • But these techniques, when 

used in the context of understanding how a model relates to the 

system of interest they can be quite useful. ARIMA and vector 

autoregressive models constitute the natural reduced form models 

against which a dynamic structural model can be tested [19]. In 

addition such "black box" models can potentially form the basis 

for judging structural models in terms of their dynamic 

characteristics. One possible technique would be the 

consideration of the ability of the structural model to account 

for the modes of interest in the reduced form model. 

Conclusion 

In this paper we have outlined and evaluated a simple 

technique for analyzing the ability of a model to reproduce an 

oscillatory behavior mode. This technique appears to yield a 

substantial amount of information about the performance of a 

model. However the technique breaks down if the observed 

behavior is a result of the system being subjected to shocks with 

similar dynamic characteristics to the system output or if the 

system has more than one set of mechanisms generating the 

behavior. The SAR test is not capable of distinguishing between 
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models that can explain the behavior equally well using different 

state space representations. 

The SAR test should be considered as one in a series for 

eva·luating mdel performance. Failure of the model when the SAR 

test is applied is a strong indication of problems. Good 

performance under the SAR test is yet another forward step in the 

long validation process. 
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