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ABSTRACT

In order to study the long term behaviour of complex
systems, such as industrial enterprises, it is necessary to
use reduced models with a limited number of variables.

Here we investigate theoretically the relationship between
these "mesoscopic® models and more.detailed, "microscopic”
models of the same physical systems. When the relevant
variables evolve more slowly than the irrelevant degrees of
freedom, a powerful projection technique is presented
(Adiabatic Elimination Procedure). A pedagogical example is
discussed, dealing with a large company in the field of
computer science, which wants to--increase its presence in a
particular market segment by starting a cooperation with a
small but aggressive company,already in that market segment.

1. INTRODUCTION

Powerful digital computers have allowed the construction of

models of previously unthinkably complex leyels.‘ We will not
dwell on this rather trivial observation, nor on the obvious
adVantages of this approach. We prefer to stress the

problems of interpreting a vast amount of results of computer
experiments, which sometimes show very different behaviours,
Moreover, as is well known, when the number of variables
increases it becomes corresponsingly difficult to provide

meaningful sets of initial conditions.

In order to understand a system's behavidur, it is also
important to develop so~called reduced models, which give a
rough description of that behaviour in terms of a small number
of relevant vériables..The interplay between reduced models

.and detailed, "microscopic" models has proved to be very
fruitful in the physical sciences, especially in condensed

matter physics [lj - [5] .

We think that such an integrated approach would also
bear extremely useful instruments in socio-economic modelling.
In this paper we will discuss the relationship,between
microscopic and reduced, or mesoscopic, médels. The mesoscopic
approach will prove to be particularly powérful when we deal
with the lbng term behaviour of complex systems. In this caée,
the "relevant" variables (i.e.,, the more important ones) are
also usually the slerr ones. We are not interested in the

detaiied behaviour of a large se of “"fast" variables, but



rather in the general trends of a few sowcalled "order
parameters®, whose evolution takes place on a timescale much
slower thén the timescale of the evolution of the other
variables 1] [2] [4] . This allows a tremendous simpli-
fication of the model equations. The main purpose of this

paper is to illustrate such simplifications.

The need for long term models cannot be overemphasized,
especially in turbulent tiﬁes where decisional aids are
necessary. The techniques we discuss here were born in the
physical sciences, where similar problems afe encountered
when dealing with macroscopic systems far from thermodynamic
equilibrium, While avoiding a naive reductionist approach,
we think it important to exploit the contribution of sﬁch

techniques to socio-economic modelling.

We wiil also discuss an example, mainly of a demostrativé
nature., The example deals with a big company (E), operating
in computer science inside a large corporation, whose goal
is to improve its'presence in the external market (namely,
companies not belonging to thé same corporation). In order
to achieve this goal, a large reorganization must take place .
However, it is the management's convinction that such a goal
cannot be accomplished without cooperation with a smaller but
more aggressive company (T). Such cooperation may be * an
acquisition of T, a joint venture, or some other arrangement.
The main purpose is to achieve the commercial and éroduct

manageﬁent capabilities of T. Such an effort would involve:
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~ commercial reorganization (creation of a central marketing
organization and a large commercial network); above all,

creation of customer-oriented thinking;

- production reorganization (especially with regard to

-project management, budgeting, a.s.0.);

- R & D reorganization, with particular emphasis on innovation

and new product development.

The acquisition of T may or may not render ghe'trahsition
ﬁo a wider presence on the market segment of interest possible.
The oversimplified model we will discuss focuses its attention
on this transition, which is assumed to be analogous to the

transitions which are encountered in bistable systems,

Finally, in the conclusions, emphasis is again placed
on the need to use the microscopic and mesoscopic approaches

in a complementary way,



2, ADIABATIC ELIMINATION OF RAPIDLY RELAXING VARTABLES

Let us consider a dynamical system:~
(1} x = Gx

Where x is an N-dimensional vector and G is,in general,
a non linear differential operator. This is a deterministic
system, whose time evolution is completely determined by a

given set of initial conditions:
(2) x(0) = x,

However, our knowledge of a given physical or economic
system does not allow us, in principle, to use strictly
deterministic equations, There are two main reasons for this:
first, our system may interact with an environment which we
have decided not to describe in detail, but which affects
its evolution; Second, an “exact" or "microscopic”" model
of our system might need a huge number of variables, so we
always use some sort of reduced description 1! 4 ji6] .
We resort therefore to a statistical description of our system.
Let us define a probability density p(x,t) = p(xl,xz...xN,t),
1....de is the-probability that the
state variables lie,‘at time t, between xi and xj+dxj,

such that p(x,t) dx

j=l,....N,

If the time evolution of the state variables is described
by Eq.(1l), then the time evolution of the probability density

is described by:
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(3) jl—p(x,t) = Lp(x,t)
ot .
Where the operator L is the adjoint of the operator
G, provided that we suitably define a scalar product in the
function space of interest. Indeed, it can be proven that

6] :
(4) fx [_Lp(x,OiJ dx = ijx_] p(x,0)dx

The relationship between Eq.(1) and Eq.(3) is analogous
to the relationship between the so called Heisenberg and

Schrddinger pictures of quantum mechanics.

We will now suppose that the set of state variables of

our system (x) is divided in two subsets:

- the relevant variables,'which we will call "a" variables,

whose time evolution is slower than the others;

- the fast, or i;relevant variables, which will be called "b"
variables, whose time evolution is much faster then the time

scale of interest.

In the following we will use the same formalism to deal with
both the case of an open system, where the variables fluctuate
because of the coupling with their environment, and the case

of a closed system,

Before describing a systematic procedure for achievihg
the desired reduced description (Adiabatic Elimination Proce-
dure), we will discuss the fundamental concepts in a simple

example [1]. Let us consider the one-dimensional equation:

(5) % = -cx + F(t)



which can describe, for instanée, an overdamped oscillator
© or, in general, a system which would tend towards the
eqguilibrium value x=0 if not disturbed, but which is
perturbed by the external force F(t). The solution of
Eq.(5), with x(0) = O, is:

b clt-s)
(6) x(t) = /ec %) p(sras
[4]

The value of the variable x at time t then depends upon the

- past history of F. Now let us assume that
F(t) = ke

From Eq.(6) we then get (supposing also that the intrinsic
decay rate of x is much faster than F, i.e., ¢c>>d):

: K ’ - dt -ck _ F(t)
(1) x(t) = —— .’1 R e

We might have thaihed-the same result by formally
‘putting x=0 in Eq.(5). That is indeed the simplest way to
eliminate the fast variables, although sometimes it is too
simple. The time derivate of the fast variables is put equal
to zero, because their dynamic properties refer to a time
scale much faster than the time scale of interest. Since we
are interested only in the time evolutibn of the order
parameters, we suppose that the fast variables instantaneously
adjust themselves to the equilibrium valﬁes which corresponad
to a given setof values for the order parameters. This simple
prescription is usefulbwhen the separation between the time

scales of the relevant and irrelevant variables is very large.
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Let us now turn to a systematic method of reducing the
number of variables (Adiabatic Elimination Procedure, AEP)
(4] [6] . It is always possible to divide the dynamic

2
operator L as follows:

(8) L=1L, +1L

where La (Lb) acts only upon the a (b) variables, while
Lab is composed of the mixed interaction terms. We define
the probability density for the relevant variables _as

follows:
(10 s(a,t) = ‘[p(a,b,t)db

We also define the projection operator P for the set of

relevant variables as:

(11) P = peq(b)/db

where peq(b) is the asymptotic distribution of the b
variables in the case of no interaction with the relevant

variables, It is mathematically defined by:

(12) LbPeq(b) =0

It can then be shown that Eq.(3) can take the following

form E4][6]‘ : . B
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(13)3L PE(x,t) = PL_. (£)P Blx,t)+ PL (t)éip!;f;L (s)d% QE(X,0)+ The results we have obtained so far are exact, and no
ot . ab ~ab ' F ab approximation has yet been introduced. We now consider the
E t three terms onthe right hand side of Eq.(13). The first
* f PLab(t) é;b [IQLQb(S)dé} QLnb(z)P Blx, T) aT often vanishes identically, and this will also be the case
’ i . 7 » in our example, so it will no longer be considered.
The second term comes from the application of a dynamic
operator to the initial distribution p(x,0). It vanishes
. if p(x,0) = peq(b) iimes an arbitrary function of only
with the relevant variables. In our example we will consider such
an initiél condition, so that we can also forget this

(14} Q = 1-P
“preparation® term. It must be remembered, however, that,

t L t t ’ : . . Cisies e
(15) e?ﬁ jA(s)ds =lv+k/ Als)ds + j’dtl / dt2 A(tl) A(tz).... unless we are dealing with a suitable initial condition,
t t ’ 4 ) this term cannot be neglected.
° o o 0
We finally consider the third term on the r.h.s. of
Lt ’ . Eq.(13). It can be shown that the integrand depends only
(16) plx,t) = e plx,t) upon the time difference t- 7. So, recalling def. (10), we
. -l t L.t ' : obtain E ’
= L e )
(7 Lab(t) € ab 2 s(a k)= K(t-t’)S(Q,T]Ol'C‘
) . (18) !
ot o .
PR
: : 1 5 [ar, () L (2)Pp (b
Those familiar with quantum mechanics will easily identify (19) K(t-T) = A Pt‘gb( )&*P{ ab si Q ab ) Eﬂ )
the latter equations as the equations of the interaction . “

representatibn.
This form is well suited to a perturbative approach. We

see from Eq.(18) that the time derivative of s(a,t) depénds
not only upon the present'value of s, but also upon the

previous values. These are weighted by a memory kernel K,

and it is reasonable to assuﬁe that it is a decreasing

'function of its argument (the system gradually 'fqrgets the
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past®), We are therefore naturally led to expand S(a,‘rd
around the point T=t, and to appthimate Eq.(18) with

the following scheme:

(20) 2 S(a,t\:J k(c-t) [S(q,k')+—3-S(Q.t)(t-'fP"Jd?
ot L ot

o

Note that we have changed the upper integration limit. This
»does not cause any appreciable eftor if K is significantly
different from zero only in a small interval around Z=t.
Moreover, we see from the definition that K has a time-

ordered exponential
t
(—
(21) exp [IQLu (s)ds]
: 4

S1nce the interaction is supposed to small or, in other words,
to describe a slow process, we must also expand the exponent1a1
in power series., We thus have a double power series., Here

we Will only write the expression obtained for the lowest pertu

rbation order ( S(B,T) = s(a,t), exp I-]QL b(s)ds] = 1) :

| | ( b t) - P L b(t. )

(22) j e d t
2 fp‘ ab tLBPF&ﬁ.)

This formula will be used in the following example.
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3. AN EXAMPLE OF ADIABATIC ELIMINATION

We will now discuss an example of adiabatic e;imination
of fast variables. The example has a pedagogical character,

and we do not claim it to be a realistic one.

Let us consider a large company E which operates in
computer science, selling the time of its employees. We
suppose that this company wishes to increase its presence in

a particular market segment: we may think, for istance, that

-E belongs to a bxq industrial corporation, and that it desires

to increase its presence ‘in the external market. We try to
model this situation with a dynamic equation for a variable
x- which measures the strength of E in the market segment of
interest. Let us suppose that the tbtal number of man/hours
per year is fixed, and equal to N, and let M be the number
of man/hours per year in the market segment of interest. Let

us then define the dimensionless variable.
M -(N-[1)

—_—— N

M(N-1M)

(23) X =

where x is a growing function of H;‘x tends to +0Q if M=N,
and to -00 if M=0and is equal to O if M=N/2. We now suppose
that the structureof the company allodws the hypothesis that
there may exist two stable stationary states. The first ape,
which is also the initial condition, represents a limited
presencein the market of interest, while the second one.

corresponds to a desired goal, where that market segment is
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the most important one for the company. This situation can

be described by the following equation:
(24) x = -v'(x) + f(t)

where V is a double well potential, whose analytical expres
sion we assume to be:

(25) vix) = v,a d (x? - ah?

f(t) is a stochastic force, which mimics several environmental
fluctuations afﬁecting the behaviour of x. For the sake of

simplicity we will assume it to be a "whiter stochastic force,
whose statistical properties are (the brackets <(.... indicate

ensemple averages)

CE(t)>= O
(26)
: <E(t)E(s)>= 2D & (t-s)

D is the diffusion coefficient, and § is the well known
pirac delta "function". Standard techniques in the theory
of stochastic processes [1] [4] [ 7] allow us to write
the evolution equation for the probability density p(x,t),

the so-colled Fokker-Planck equation:
' 2
2 12 Vi) . D 22 p(x,t)
Its stationary solution is:

(28) P_, (x) = cost.exp(‘—v(x)/D)
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In Fig. 1 we have shown both the potential function
V(x) and the asymptotic distribuction PB_{(X). The two
stationary states (+a and -a) have the same probability as
t-» +00. This is a consequence of the detailed form . of
V{x), which shows two minima of egual depth. The physical
interpretation is that, sooner or later, the transition will
take place. This is.to be contrasted with a deterministic

analysis}[B] based on Eq.(29):

(29) % = V'(x)

According to such equations the final state is +a or -a
depending upon the fact that x(0)>0 or x{0) < 0.Although
the presence of fluctuations assures us that the transition
will take place, it might take an astronomically long time,
The mean first time of passage across the potential barrier
is indeed proportional to exp (-VO/D) . and it grows expone
ntially with the barrier height,‘vo. If Vv, D, then some
kind of intervéntion is necessary in order to achieve the

desired goal within a reasonable period of time,

We suppose that such an intervention consists of
cooperating with a smaller company T, via joint ventures,
or by directly acquiring control of T. T is already present
in the market segment of interest, and is.rather aggressive,
although much smuller than E, Let Y be the overall number
of hours which T can sell in a year (both of its employees
and consultants).Also let y_  be its average value, and let
y = Y-y, be the deviation from the reference value. We

suppose that, before joining E,y obeys the following equation:



ba 1833e-(auty paysep) (x) ®a
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(30) y =-Ay + £'(t)
Where f'(t) is a white stochastic force with diffusion

coefficient D'.

We describe the coupling with the smaller company by adding
an interaction term to the r.h.s. of Eq.(24), which we
assume to be of the type -AxY (Aéconstant). The rationale
behind. this hypothesis is that the impact of the cooperation
with T is proportional to the overall size of T as well as
to the previous position of E in the market segment of
interest, x. We do not claim that 'such an hypothesis is
realistic: other, more accurate, expreésions could be
obtained by a more detailed microscopic model of our system
{see conclusions). For the time being we simply want to

illustrate a simple case of the AEP.

The interaction will also deeply affect the behaviour
of T and there is no difficulty in introducing a term, on
the r.h.s. of Eq.(30), which represents such an effect.,
However, once more for the sake of simplicity, we will assume
that our managerial choice is to leave the dimensions of T

unchanged. Under such hypotheses, the model equations

become;
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-V'(x) —‘Axy + f(t) = dx- - bx3 + f£(t)

X
31 .
o {;

=-Ay + £'(t)
with
~ ~ 2 4
Vix) = -(d/2)x" + (b/4)x + Vv,
(32 9=9 - A
da = 4v°/a2
b = d/a2

A first possibility is to apply the direct adiabatic elimi-

nation, pukting §=O. We would then obtain

~

(33) % = dx - bx> - AXE'(t)/A + £(t)

However, there is an ambiguity in interpreting an eguation

like (33), where a white noise term is multiplied by a

function of the state variable x (the so-called multiplicative

noise) [10] . There exist in the literature two different
prescriptions for associating a Fokker-Planck equation to
Eq.(33), associated with the names of It® and Stratonovich.
In our case, we canh qpply a theorem by Wong and Zakai [11]
which states that the Stratonovich algorithm should be pre
ferred. We stress th&t in our case any ambiguity can be
avoided by using the AEP previouély described. There is
indeed no difficulty in writing a Fokker-Planck equation

for p(x,y,t), which takes the form of Eq.(3), and to project
it onto the subspace of the x variable [4] [6] [9] .

In so doing, we obtain the following equation {(at the lowest
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perturbation order)

any 2 ofxb)= 1o 2 (dx-bx?) . 242« Dl] &
(34) 5= p(x,t) { = ( | A el vl ax&‘JP(’ )

with

(35) Q = D'AZ/ ;\2

It does indeed coincide with the Stratonovich rule. We
briefly mention that recently the group of prof. Grigolini
at the University of Pisa has &suggested that the It8 -
Stratonovich problem should always‘be solved in this way,
namely by resorting to a wider description of the system,
and only later taking the white noise limit when applying
the AEP [9] . »

Let us consider the interesting limiting case D-= O
(the additive stoci..istic forces can be neglected). The

stationary solution of Eq.(34) then becomes:

~
(36) P (x) = const.(xz)%(d- @ e —bXZ/ZQ

The behaviour of p_(x) is shown in Fig. 2. There exists

a threshold value for the parameter Q, which measures the
effect -of the fluctuations in T on the behaviour of E. As
long as Q<;g, the stationary distribution resembles that
of Fig, 1. However , when Q:>g the distribution (36)peaks
at the origin, where it becomes singular. This singularity
would be removed if we had taken into account the small
additive fluctuations. A distribution peaking at the origin
represents, in our approximation, an activation effect,

i.e. a jump over the potential barrier, the desired goal,
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4. CONCLUSIONS

We have discussed the need for projection techniques,
in order to reduce the number of variables in socio-economic
models to a manageable level. We have also shown both a
"quick® way to achieve the elimination of the faster variables
and a .systematic procedure which allows one to deal with
cases where the separation between the time scales of the
relevant and irrelevant variables is not too great, We
have also discussed a demonstrative example,which shows
what kind of results are to be expected using such a

method.

A major ptoblém is the relationship between a reduced
description in terms of a limited number of order parameters
and a hore‘detailed "microscopic” model of the same system(
of the kind familiar to system dynamicists, We believe that
the two approaches are complementary. Microscopic modelling
provides the detailed analysis necessary to avoid an excess .
of arbitrariness in preparing the reduced models. On the
other hand, the use of mesoscopic models is of fundamental
importanée for éxtracting meaningful information on the
system behaviour, avoiding wild 'péper proliferation”. ‘The
situation may be interestingly compared with the present
situation in the theory of the liquid state, where molecular
dynamics provides the "microscopic models”, while reduced
‘models provide the interpretation guidelines. The interpla§
between these two, and also with 1aboté§ory experiment,

has been chosen by the European Molecular Liquids Group as
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their basic methodology [5]

We believe that adiabatic eiimination techniques will
. prove to be very useful in socio-economic modelling in

those cases where we can identifj a set of relevant variables
whose time evolution is slower than the time evolution of
another set of variables which are not interesting in
themselves, but which influence the evolution of the
relevant variables. A major field of application should
concern the long term behaviour of complex systems. Moreover
we suggest that such techniques should prove useful in market
and perhaps production modelling, rather than in modelling
financial subsystems where the interest lies in a

faithful and careful description of events which mainly

take place in other‘subsystems of the firm,
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