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Abstract

Integrated risk-capability analysis methodologies for dealing with increasing de-
grees of complexity and deep uncertainty are urgently needed in an ever more
complex and uncertain world. Although scenario approaches, risk assessment
methods, and capability analysis methods are used, few organizations and na-
tions use truly integrated risk-capability approaches, and almost none use inte-
grated risk-capability approaches that take dynamic complexity and deep un-
certainty seriously into account. This paper presents and illustrates a novel
integrated risk-capability analysis approach for dealing with deeply uncertain
dynamically complex risks, and discusses near future developments related to
integrated risk-capability analysis for such issues. This approach combines Sys-
tem Dynamics Modeling for dealing with dynamic complexity and Exploratory
Modeling and Analysis for dealing with deep uncertainty. This multi-method
approach is illustrated here using an acute and a chronic public health risk: a
new flu and Lyme disease.

Keywords: Integrated Risk-Capability Analysis, National Risk Assessment,
Capability Analysis, Exploratory Modeling and Analysis, System Dynamics

1. Introduction

1.1. Integrated Risk-Capability Analysis

Many governments use national risk assessment (NRA) methods as well as
capability-based planning or capability analysis (CA) approaches to be prepared
for major threats. Many recently developed NRAs are all-hazard, scenario-
based, and multi-dimensional: scenarios of accidental, natural, and man-made
risks are developed by experts, and made comparable in terms of their multi-
dimensional impact and likelihood by means of multi-criteria (MCDA) ap-
proaches and a common set of criteria. All-hazard CA methods subsequently
help –in some cases– to identify the most important capabilities, both generic
(applicable to all or most risks) and specific (only for a particular risk or very few

1Corresponding Author – E-mail: E.Pruyt@tudelft.nl – Telephone: + 31 15 2787468

Proceedings of the Int. Conference of the System Dynamics Society August 16, 2012



specific risks), that need to be reinforced to be able to prevent, protect against,
respond to, and/or recover from major events (see http://cdn-cbp.org or
https://www.rkb.us/hspd8.cfm for lists and detailed examples of such ca-
pabilities). A multi-method consistently combining risk assessment (RA) and
CA in an integrated way is called here an Integrated Risk Capability Analysis
(IRCA).

Figure 1: Iterative process of the state of the art Integrated Risk Assessment and Capability
Analysis not under deep uncertainty

The Netherlands, for example, developed an IRCA consisting of an all-hazard
NRA MCDA approach embedded in a recurring process to develop, assess, plot
and compare all-hazard risk scenarios, and an expert-based CA approach to
identify and select capabilities requiring further improvement or investments
(see Figure 1 and (Pruyt and Wijnmalen, 2010; Bergmans et al., 2009a; Pruyt
and Kwakkel, accepted)). All kinds of risks are scored and assessed in the NRA
on the following 10 criteria:

C1.1 Infringement of the Dutch territorial integrity

C1.2 Infringement of the integrity of the Dutch international position

C2.1 Number of fatalities

C2.2 Number of seriously injured and chronically ill

C2.3 Physical suffering (lack of fulfilment of basic needs)

C3.1 Economic costs (repair costs regarding sustained damage, loss of income)

2



C4.1 Long-term damage to the environment

C5.1 Disruption of everyday life (schools, work public transport, etc.)

C5.2 Violation of the democratic system (political, financial, etc.)

C5.3 Psychological impact (public outrage and anxiety/fear)

The same qualitative labels are used to score all criteria according to criterion-
specific scales: E stands for ‘catastrophic’, D for ‘very serious’, C for ‘serious’,
B for ‘substantial’, A for ‘limited’, and ‘–’ for ‘not applicable’. These quali-
tative labels are the same for all criteria, but have criterion-specific underly-
ing scales (e.g. C2.2() = number of injured and chronically ill: C2.2(risk) <
10 ⇒ A; 10 ≤ C2.2(risk) < 100 ⇒ B; 100 ≤ C2.2(risk) < 1000 ⇒ C;
1000 ≤ C2.2(risk) < 10000 ⇒ D; C2.2(risk) ≥ 10000 ⇒ E). The likelihood is
expressed with A-E labels too: E stands for ‘very likely’, D for ‘likely’, C for
‘possible’, B for ‘unlikely’, and A for ‘very unlikely’. Table 1 displays the scores
of some of the scenarios published in the 2010 NRA Report (MinVenJ, 2010).

Scenario LH 1.1 1.2 2.1 2.2 2.3 3.1 4.1 5.1 5.2 5.3
Flu pandemic mild D - - D C A D - B - E
Flu pandemic serious D - - E D E D - E C E
Right-wing extremism D - A A A - A - B B C
Left-wing extremism C - A A A - B - A A A
Animal rights activism C - A A A - A - A - D
Animal rights extremism C - A A A - A - D B E
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1: A-E scores of some 2010 NRA risks – Source: MinVenJ (2010)

These criteria and qualitative labels are assumed to be commensurable and
comparable. A 3rd order exponential scale is used –for the basic calculations and
standard risk diagram– to transform the qualitative label scores into numbers
which are multiplied by the corresponding weights of the criteria. The sums of
these products are the total multi-criteria scores –more specifically the MAVT
scores (Belton and Stewart, 2002)– which are plotted on the logarithmic Y-axis
of the risk diagram (see Figure 2). All scenarios with an aggregated impact score
between 0.33 and 1 are –given the 3rd order exponential scale– catastrophic; all
scenarios with an aggregated impact score between 0.11 and 0.33 are very se-
rious; et cetera. Risks are then selected, based among else on the mapping of
risks in this risk diagram, as inputs of a capability-based planning process.

It should be clear from the above that the Dutch IRCA –like most IRCAs–
was first and foremost developed for relatively well-known and relatively sim-
ple incident-type risks – not for deeply uncertain and/or dynamically complex
risks. The Dutch approach was complemented several years after its initial de-
velopment with two approaches for developing and assessing slumbering/latent
process-type risks since these risks may be at least as important as incident risks.
Risks of the latter type are characterized particularly by dynamic complexity
and/or deep uncertainty.
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Figure 2: Expected values of risks mapped in the logarithmic risk diagram (source: (Bergmans
et al., 2009b, p63))

1.2. IRCA for Deeply Uncertain Dynamically Complex Risks

A risk is dynamically complex if it is characterized by subtle cause and effect
relations, if its time evolutionary behavior matters, and/or if the mediating
effects of interventions on its dynamics are subtle too. System Dynamics2 (SD)
is a modeling and simulation method for dealing with dynamically complex
issues. One of the approaches added to the Dutch IRCA for developing and
assessing slumbering/latent process-type risks is based on System Dynamics
modeling and simulation. The other approach developed for the Dutch IRCA
is somewhat similar to a morphological analysis3 and allows dealing with risks
of –at most– medium uncertainty and some dynamic complexity.

Risks are deeply uncertain if (i) it is uncertain which of many plausible
underlying mechanisms will generate the real-world dynamics, (ii) it is uncertain
which probabilities may be attached to plausible outcomes, and (iii) different

2See for a start (Forrester, 1961; Richardson and Pugh III, 1981; Ford, 1999; Sterman,
2000).

3Morphological analysis could be used as a systemic scenario development method for
dealing with a limited degree of combinatorial complexity. It allows to combine more driving
forces and uncertainties than in traditional scenario development methods. These driving
forces and uncertainties do not need to be quantifiable. The driving forces and uncertainties
are then set out as axes of a box/grid. The cells of the grid contain all combinations of driving
forces and uncertainties.
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experts may disagree about the acceptability of the outcomes (Lempert et al.,
2003). Deeply uncertain risks are thus risks that could be modeled, although
the models, structures, and parameter values used are at most plausible, and
so are their outcomes. But the occurrence of these plausible scenarios cannot
be captured by means of just one or very few scenarios with ordinal or cardinal
likelihoods, nor by means of probability distributions.

Exploratory Modeling and Analysis (EMA) is a model-based methodology
for dealing with deep uncertainty. EMA is in fact a computational methodology
for systematically exploring issues under deep uncertainty, and for testing and
comparing the robustness of policies under deep uncertainty (Agusdinata, 2008;
Bankes, 1993; Lempert et al., 2003; Kwakkel and Pruyt, 2012a). It consists of
using exploratory models to generate tens of thousands of scenarios –called an
‘ensemble of scenarios’– in view of exploring and analyzing this ensemble of plau-
sible futures, and testing the robustness of policy options across the ensemble
of scenarios, in other words, testing whether the outcomes are acceptable for all
scenarios generated by sweeping the entire multi-dimensional uncertainty space.
However, in order to perform the EMA methodology, computational models are
required. If risks are dynamically complex and deeply uncertain then models
for dealing with dynamic complexity are required.

The combination of SD and EMA –which we call Exploratory System Dy-
namics Modeling and Analysis (ESDMA)– could indeed be used for dealing with
deep uncertainty and dynamic complexity. Since SD models are very useful for
simulating dynamically complex issues, they are used in ESDMA as EMA sce-
nario generators. Or stated differently, since EMA allows to extend the use of
SD models to deep uncertainty, EMA is used to make and use SD modeling
for deeply uncertain issues. Risks (e.g. societal aging, acute and chronic pan-
demics, radicalization, et cetera) could then be captured by means of different
exploratory SD models which are subsequently used to generate tens of thou-
sands of plausible scenarios for each risk. Scenario discovery techniques could
then be applied to each of the risks to select a small representative set of sce-
narios for each of these risks. These representative scenarios could subsequently
be used in a CA under deep uncertainty, based on a separate generic CA model
in order to assess the overall all-hazard effectiveness and robustness of differ-
ent capability policies. Finally, different capability investment and activation
policies could be assessed and compared, and one may try to improve the most
promising policies even further using robust optimization techniques.

1.3. Goal and Organization of the Paper

The main goal of this paper is to explain and illustrate a new IRCA approach
based on EMA and SD modeling and simulation for dealing with all sorts of
risks, including deeply uncertain dynamically complex risks. The methodology
is introduced in section 2: the phases of the approach are briefly explained in
subsection 2.1, followed by a general discussion of SD-based NRA in subsection
2.2, and a more in-depth discussion of the SD-based CA in subsection 2.3.
The approach is illustrated in section 3. Concluding remarks are formulated in
section 4.
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This paper overlaps to a large extent with (Pruyt, 2012). The reason for
this overlap is due to a lack of progress between the state of this line of work
at the time of presenting (Pruyt, 2012) and the state of our work at the time of
presenting the current paper. We planned on extending the former paper with
robust optimization over multiple risks in the current paper, but were unable to
do so due to (i) several technical problems related to robust optimization in our
EMA workbench, (ii) methodological and computational problems related to
multi-hazard / multi-model robust optimization, and (iii) lack of time. Hence,
the main differences between the current paper and (Pruyt, 2012) are the em-
phasis, less versus more emphasis on System Dynamics modeling, and the size
of the paper. This paper also overlaps to a lesser extent with two other papers:

• One of the two illustrations, Lyme Disease, is elaborated in more detail in
(Pruyt and Coumou, 2012), hence the overlap in diagrams and graphs.

• The other illustration is used in (Pruyt and Kwakkel, accepted). Some
figures used in this paper therefore also overlap with figures used there.

2. Methodology

2.1. Overview: Phases of the IRCA

Figure 3: Integrated All-hazard Risk-Capability under deep uncertainty

The computational IRCA approach presented here is an integrated quanti-
tative model-based approach for dealing with all sorts of risks, from well-known
to uncertain, and from simple to dynamically complex. It consists of the six
phases displayed in Figure 3:

1. SD Modeling: The first step in multidimensional risk assessment under
deep uncertainty is the development and/or use of one or more simulation
models to generate an ensemble of scenarios for each risk, e.g. an ensemble
of plausible flu scenarios. Certainties and uncertainties about the risk need
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to be identified in order to build plausible simulation models for generating
the widest variety of plausible risk scenarios.

2. EMA Scenario Generation phase: These models and the widest possible
uncertainty ranges are combined using EMA in order to generate tens of
thousands of plausible time-evolutionary scenarios for each of the risks.

3. Scenario Discovery and Set Selection phase: Then, a much smaller set of
scenarios that are representative (in terms of impacts, time-evolutionary
behavior, and origin in the multi-dimensional uncertainty space) for the
full ensemble of scenarios of a particular risk needs to be identified, for
example using scenario discovery methods. In this paper, scenarios are
clustered and selected based on their time-evolutionary behavior, overall
impact, and –to some extent– the origin in the multi-dimensional uncer-
tainty space; the exemplars of these clusters are then used in the ensuing
CA. Envelope diagrams are useful at this stage to verify the represen-
tativeness of the selected ensemble with the large ensemble in terms of
overall impact.

4. Single-hazard Capability Analysis phase: The deeply uncertain mediating
effects of different capability policies on scenarios are then calculated for
all representative scenarios of all risks using risk-specific versions of a CA
model under deep uncertainty (CAuDU), i.e. a rather generic and open
SD model, resulting in thousands of simulations per representative risk
scenario per risk, or tens of thousands of runs per risk. Each risk requires
different settings of the CAuDU model, which is why risks need to be
treated separately until after the CAuDU.

5. Integration of CAs over all representative scenarios of all risks: The deeply
uncertain mediating effects of different capability policies are then cal-
culated for, and compared over, all risks. A countable set of potential
all-hazard capability policy mixes could then be designed, tested, and
compared, e.g. with MCDA methods, in order to provide insight into the
appropriateness of different sets of capabilities over all risks. Robust opti-
mization for particular risks may also be useful at this stage to search for
policy mixes increase the robustness of these.

6. Automated All-Hazard CA: Robust optimization could also be used to
obtain the most robust capability set given a particular investment level,
starting from promising sets, for all representative scenarios of all risks si-
multaneously. Ideally, an all-hazard capability analysis consists of loading
all representative sets of scenarios for all risks as cases for an all-hazard
CA, followed by automated robustness testing (varying all combinations of
capabilities, maximizing the robustness at particular costs or minimizing
costs for a particular acceptability level). The most robust capabilities
policy mix over all deeply uncertain risks could then be identified and
chosen.

2.2. In Depth: SD-based Risk Assessment and Scenario Discovery and Selection

Dealing with risks is dealing with uncertainties. In the model-based Risk As-
sessment discussed and illustrated in this paper, uncertainties could be paramet-

7



ric (continuous or integer) but also categorical (e.g. for switches), and could re-
late to uncertain parameters, functions, exogenous time series, scenarios, model
structures, models, and even methods. Some of these uncertainties may require
additional model structures. Additional structures are also needed to translate
values on continuous key performance indicators in these SD models to the dis-
crete NRA classes underlying the NRA criteria (see the C11. . . C53 structures
in Figures 5 and 14 (in orange)).

A sampling plan generated in our Python workbench combining uncertainties
and model(s) and executed by Vensim DSS then generates the ensemble of
scenarios. Key performance indicators for each run are saved to a data file,
which could be used and handled at a later stage, e.g. to visualize and analyze
the artificial data, or to discover and select exemplars representative for many
scenarios.

Applying scenario discovery and selection algorithms is particularly useful
at this point (i) if a very small number of interesting scenarios is needed as is
the case in the traditional Dutch IRCA, or (ii) if a subset of scenarios represen-
tative for the larger set is desirable as is the case here for computational reasons
(hundred uncertain CA runs are generated for each of the 100 NRA scenario
entering the CAuDU). Depending on the goal and the issue, different exemplars
are desirable: ideally, exemplars are representative for many other scenarios in
terms of multi-dimensional impacts, time-evolutionary behavior (i.e. the dy-
namics), and the origins in the multi-dimensional uncertainty space. Although
selecting exemplars based on all three of these aspects is rather complicated,
selecting exemplars based on one of these aspects is straightforward and could
be supported by:

• data set splitting to select exemplars that are representative in terms of
multi-dimensional impacts.

• using a time-series clusterer algorithm –in our case a more advanced ver-
sion of the one proposed by Yucel and Barlas (2011) with a metric pro-
posed by Yucel (2012)– with dendrogram and cluster plots to cluster time
series data based on attributes and select the similarity level at which to
classify/plot clusters. Using this clusterer and visualizing exemplars for
selected clusters is a powerful scenario discovery and selection approach if
time-evolutionary behavior (i.e. the dynamics) is important.

• using a new version of PRIM or Patient Rule Induction Method (Fried-
man and Fisher, 1999) –one that can deal with categorical and contin-
uous uncertainties– with a binary classification function and PRIM box
plotting, to identify uncertainty space boxes with high concentrations of
runs that perform below/above a particular threshold, and hence, to iden-
tify exemplars that represent regions in the multi-dimensional uncertainty
space with high concentrations of highly undesirable or desirable outcomes
(e.g. catastrophic subspaces) or of outcomes with particular characteris-
tics.
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2.3. In Depth: SD-based Capability Analysis

A CA on the outcomes of the model-based NRA phase could be performed
in at least two ways: either CA structures are built into each NRA model, or
all risks are pushed through the same CA model. The major disadvantages of
the former approach are the additional modeling required in simulation models
related to each risk, and the inability to perform multi-risk CA on these rather
different models with very different sets of uncertainties. Hence, we chose the
latter approach.

The current state of the art of CAuDU corresponds to manual, repetitive,
single-hazard CA under deep uncertainty. For doing so, one needs to identify
first of all the certainties and uncertainties related to plausible mediating effects
of capabilities on risks. In other words, one or more plausible capability model(s)
are required, as well as an assessment of plausible occurrence and strength of
mediating effects of capabilities on particular risks.

Figure 4 shows structures of the SD-based CA model used here: it consists
of (a) structures to simulate multiple evolutions over time, (b) structures re-
lated to different types of capabilities (prevention, protection, sensing, response,
recovering), (dis)investment in capabilities, and the (maximum) plausible medi-
ating effects of capabilities on impact criteria (e.g. lkp1 C4, lkp2 C4, and lkp3
C4 are different lookup functions of plausible mediating effects of the recovering
capability C4), and (c) structures to calculate the successive mediating effects
under deep uncertainty of those capabilities on the risks at hand and their pos-
sible interaction effects. In this CA model, many choices could –but do not have
to– be made: uncertainty rules unless it is replaced by less uncertain or more
certain information.

The input of the model-based CA consist of (i) a set of terminal scenario
values ranges, i.e. ranges for the possible impact of a risk scenario on each of
the 10 NRA criteria, (ii) a set of maximum reducible NRA impact scores, (iii)
a selection of possible evolutions over time4, and (iv) information regarding the
mediating effects of capabilities on the different impact dimensions for a partic-
ular risk. A sampling plan is then generated and executed. Robust optimization
could be used, starting from a promising capability policy to further improve
the capability policy over a large ensemble of plausible scenarios.

Ongoing work will soon result in automatic robust optimization over all
risks using robust optimization of of capability mixes. The most appropriate
capability strategy under uncertainty could then be selected. Currently, follow-
ing lighter form of full-hazard capability analysis under deep uncertainty could
already be performed:

1. Identification of promising sets of measures to improve capabilities for all
scenarios;

4The time evolutionary scenarios generated with the SD-based NRA models could be used
as well. The reason for combining impacts and a selection of evolutions over time instead of
directly using the time evolutionary scenarios, is that this approach also allows using impact
scores not generated with dynamic models.
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(a) structures to simulate multiple evolutions over time

(b) structures related to capabilities, (dis)investment in capabilities, and plausible mediating effects
on impact criteria

(c) structures for each criterion to calculate mediating effects under deep
uncertainty of capabilities on risks

Figure 4: Structures of the Risk-Capabilities model used in this paper
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2. Application of these promising sets of measures to improve capabilities for
all scenarios to each of the risks;

3. Comparison of the outcomes of promising sets of measures to improve
capabilities for each of the risks;

4. Use of a (multi-criteria) method to select the most appropriate promising
set of measures to improve capabilities for all scenarios of all risks.

2.4. In Practice – The Process, People, and Programs

Risk-specific experts are required to provide insights in plausible underlying
mechanisms and uncertainties, for example in a risk-related GMB workshop.
Based on these insights, modelers build for each risk a simulation model or a
set of simulation models.

We currently build our exploratory SD models in Vensim DSS, then use a
shell written in Python to generate experimental designs and force Vensim DSS
to execute tens of thousands of experiments (i.e. combinations of uncertainties
and models) to generate tens of thousands of transient scenarios (simulation
runs). Python stores the data when generated. We then use a library of algo-
rithms coded in Python, C, and C++ to analyze the ensemble of scenarios, and
(interactively) visualize the most interesting findings, select specific scenarios,
etc.

Risk-capability experts are required to provide insights in plausible mediat-
ing effects, and policy makers or their representatives are required to provide
insights in politically acceptable sets of capabilities in risk-capability workshops
in which the consequences of hypotheses and capability sets can be simulated
on the spot.

Again, using Python and Vensim DSS, an experimental design combining all
remaining uncertainties is forced upon the input (a particular risk scenario or a
set of risk scenarios), the CAuDU model, and a capabilities strategy contained in
or enforced upon the model, in order to generate the widest variety of plausible
risk-capability scenarios.

The condition sine qua non for real-world implementation of this integrated
risk capability analysis under deep uncertainty is the existence of software to
generate large ensembles of scenarios, of software to select representative en-
sembles of scenarios, risk-specific models, generic risk-capabilities models that
can be adapted to different risks, and software to perform robust optimization
robustness of capability sets simultaneously over many risks – all of which are
indeed available or under development. Hence, all ingredients will soon be there
to turn the current state of science into a new state of art.

3. Illustration: IRCA under Deep Uncertainty for The Netherlands

3.1. RA and Partial CA for a Plethora of Risks

3.1.1. Flu Pandemic

The SD model displayed in Figure 5 was used to generate plausible flu scenar-
ios. The model was developed and used in 2009 by Pruyt and Hamarat (2010)
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Figure 5: Exploratory System Dynamics model for simulating flu scenarios

during the H1N1 pandemic. For this paper, the model was slightly adapted
(populations and initial numbers of infected individuals) in order to make it
useful for generating plausible scenarios of a new type of flu in the Netherlands.
Figure 6 shows a lines plot of the infected fraction for 1000 plausible outbreaks
in the Netherlands of a new flu virus over a period of 48 months. Note in the
bottommost graph of Figure 6 that catastrophic –in NRA terms, i.e. above
0.33– are almost all extremely infectious and happen fast, and that most new
flu outbreaks are ‘very serious’ but not catastrophic in NRA terms and happen
slightly slower.

Figure 7 shows a selection of 100 representative scenarios selected from the
larger ensemble of 1000 runs. This set of representative scenarios is composed
of 2 exemplars from each of 16 different time-series clusters displayed in Figure
8(a), supplemented with 68 hand-picked exemplars from the largest clusters
(proportional to the size of the clusters). Figure 8(b) displays a ‘risk envelope
diagram’, which could be used to plot deeply uncertain risks as well as other
risks without any knowledge about real probabilities. A risk envelope diagram
is in fact a risk diagram in which the cumulative relative number of runs in each
of the total impact classes starting with the highest impact class are plotted.
In other words, 20% of the 1000 risk analysis runs have a catastrophic NRA
impact, about 83% of these 1000 runs have at least a very serious impact, and
98% have at least a limited impact. This risk envelope diagram also shows
that the small ‘representative ensemble’ (blue line) is largely –but not entirely–
representative of the larger ensemble (red line) – the total impact of the smaller
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Figure 6: Top: Infected fraction of the Dutch population for 1000 plausible flu scenarios;
Bottom: Total NRA scores of the 1000 plausible flu scenarios

Figure 7: Small representative ensemble of 100 flu scenarios

ensemble is slightly worse in NRA terms than the larger ensemble.
Figure 8(b) also shows the overall impact of an arbitrary capabilities policy

with uncertain mediating effects on the small ensemble: first, all NRA criterion
scores of the small ensemble are combined under uncertainty with selected evo-
lutions resulting in the ‘IRCAuDU ini’ ensemble of 10000 runs, i.e. without any
capabilities policy, which are also subjected to the capabilities policy, resulting
in the ‘IRCAuDU end’ ensemble of 10000 runs. These two envelopes summarize
the information displayed in Figure 9 which shows the simulated evolutions in
the CA model in terms of NRA scores and NRA classification with and without
capabilities policy.

Figure 9 displays in other words the reduction of the impact range of the
two national risk analysis flu scenarios by a particular capabilities strategy with
uncertain mediating effects. The cumulative evolutions over time of these flu
pandemic scenarios are different from the ones simulated with the flu model:
a selected set of plausible evolutions and ranges of total impact scores on the
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(a) Time series clusterer dendrogram (flu) (b) Risk envelopes diagram (flu)

Figure 8: Dendrogram (left) and Risk Envelopes Diagram (right) for the flu case

criteria are combined in the CA model instead of directly importing the evo-
lutions of the flu scenarios from the flu model. This choice was made in order
to treat all scenarios –also those NRA scenarios which were not generated with
simulation models– entering the CA model the same.

3.1.2. Lyme disease

Lyme disease poses an uncertain dynamic threat to the Dutch population
and the Dutch health care system. On the total Dutch population of over 16
million, 800000 are chronically ill. The extent of Lyme disease, chronic Lyme
disease, and post lyme syndrome, their contribution to the large number of
chronically ill, and their future development are unknown. The SD simulation
models displayed in Figure 14 on page 19 was therefore developed and used by
Pruyt and Coumou (2012) to generate thousands of plausible evolutions of lyme
disease in order to assess the future risk posed by it.

The topmost graph in Figure 10 displays 1000 strongly smoothed (3rd order
smoothing with a 24 month smoothing time) evolutions of the number of known
and unknown sick caused by lyme disease in the Netherlands, i.e. all those
that were diagnosed and are treated, and all those that were not diagnosed
and remain untreated. The unit of time is months. The bottommost graph in
Figure 10 shows the risk posed by lyme disease using the Dutch NRA framework
adapted to deeply uncertain dynamically complex risks. Note that none of these
scenarios is catastrophic (>0.33).

Figure 11 displays an ensemble of 100 scenarios discovered in, and selected
from, the larger ensemble using time series clustering (see dendrogram in Figure
12(a)). Figure 12(b) shows that this small ensemble represents the larger ensem-
ble well in terms of the total NRA score (compare the red and blue envelopes).
The green and pink envelopes in Figure 12(b) summarize the information con-
tained in Figure 13 regarding the 10000 scenarios without capabilities policy
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(a) NRA scores without capability policy

(b) NRA scores with capability policy

(c) with capability policy in NRA classes (5 = catastrophic; 4 = very serious; 3 = serious; 2
= substantial; 1 = limited; 0 = not)

(d) with capability policy in NRA classes (5 = catastrophic; 4 = very serious; 3 = serious; 2
= substantial; 1 = limited; 0 = not)

Figure 9: Flu: CA without a capabilities policy and with a capabilities policy, expressed in
terms of NRA scores (1 ≤ catastrophic ≤ 0.33 > . . . ) and NRA classes (5 = catastrophic; 4
= very serious;. . . )
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Figure 10: Top: smoothed number of known and unknown sick due to lyme disease; Bottom:
Total NRA scores of the 1000 plausible lyme scenarios

and the 10000 scenarios with the same (arbitrary) capabilities policy with the
same settings as in the flu case, assuming for the sake of illustration that the
same capabilities policy impacts flu and lyme disease similarly.

3.2. Comparison of CA Policies over Multiple Risks

Risk envelopes diagrams could also be used to visualize the overall mediating
effect of a policy on multiple risks or to visualize the overall mediating effect
of different policies on one or more risks as in Figure 15. Figure 15 shows the
mediating effects of two policies on the flu ensemble (in red) and the lyme disease
ensemble (in blue). The ‘no policy’ cases are displayed with full lines, the policy
1 envelopes with dashed lines, and the policy 2 envelopes with dotted lines.
Policy 1, a hypothetical capabilities mix with the same mediating effects on flu
and lyme disease, results in a significant improvement of both envelopes. Policy
2, another hypothetical capabilities mix with the same mediating effects on flu
and lyme disease, results in a less significant improvement of both envelopes.

Risk envelopes diagrams with multiple policies for multiple risks, quickly
become hard to read, unless very few risks and very few policies with clear
and unambiguous effects are plotted. Else, multi-criteria analysis or robust
optimization may be required.

4. Conclusions

In spite of the fact that most IRCAs attempt to be fully and all-hazard inte-
grated, few really are in practice, because they were not designed as such, and
because they are appropriate only for a subset of risks, i.e. not for dynamically
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Figure 11: Small representative ensemble of 100 lyme disease scenarios

(a) Time series clusterer dendrogram Lyme (b) Risk Envelopes Diagram Lyme

Figure 12: Lyme: Dendrogram (left) and Risk Envelopes Diagram (right)

complex and/or deeply uncertain risks. Truly all-hazard and fully integrated
IRCAs that would allow dealing with increasing degrees of complexity and deep
uncertainty are nevertheless needed more than ever: being able to deal with
such risks is ever more important, because most grand challenges and major
risks in our ever more complex and ever more uncertain world are dynamically
complex and deeply uncertain (Kwakkel and Pruyt, 2012b).

Quantitative as well as qualitative risk assessments, capability analyses, and
IRCA approaches are currently used and should be used in the future. We
nevertheless argue that the current approaches are not sufficiently integrated
and do not appropriately deal with deep uncertainty. The latter critique is
addressed in the current paper.

When confronted with deeply uncertain risks, and if scenario variants could
be generated easily and cheaply, then it makes more sense to treat these risks
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(a) NRA scores Lyme without capability policy

(b) NRA scores Lyme with capability policy

(c) Lyme with capability policy in NRA classes (5 = catastrophic; 4 = very serious; 3 =
serious; 2 = substantial; 1 = limited; 0 = not)

(d) Lyme with capability policy in NRA classes (5 = catastrophic; 4 = very serious; 3 =
serious; 2 = substantial; 1 = limited; 0 = not)

Figure 13: Lyme: CA without a capabilities policy and with a capabilities policy, expressed
in terms of NRA scores (1 ≤ catastrophic ≤ 0.33 > . . . ) and NRA classes (5 = catastrophic;
4 = very serious;. . . )
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Figure 14: SD simulation model used to generate plausible scenarios wrt lyme disease
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Figure 15: Multi-risk multi-policy risk envelopes diagram: No policy, policy mix 1, and policy
mix 2 for flu and lyme disease

as deeply uncertain risks, i.e. to generate the largest plausible set of scenarios
and test policies related to investments in capabilities over all these scenarios,
or over the smallest set of different scenarios that are genuinely representative of
the entire ensemble. The same is true for the mediating effects of investments
in capabilities on risks: if these mediating effects are deeply uncertain, then,
instead of treating them as unknowable or known, they should be exploited and
explored. In this paper, both risks and the mediating effects of capabilities on
risks are treated as deeply uncertain. In the near future will it be possible to
test and optimize capability sets with uncertain impacts across multiple deeply
uncertain risks.

Compared to qualitative approaches, this purely quantitative approach al-
lows dealing with deep uncertainty as well as with dynamic complexity, and
allows distilling the most robust sets of capabilities over a plethora of risks. As
such, it is complementary to innovative qualitative approaches.

The main difference between the state of science and the state of science
as discussed in this paper is thus the explicit versus the lack of consideration
of deep uncertainty in scenario development, risk assessment, and capability
analysis.

One of the major critiques to be expected against this approach is that it is
more time consuming. That is not necessarily true. It is true though that this
approach requires EMA software, algorithms, models and modelers. Preferably
excellent System Dynamics modelers.
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problems related to robust optimization in our workbench, and multi-hazard /
multi-model robust optimization. This paper also overlaps to a much smaller
extent with two other papers:
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(Pruyt and Coumou, 2012), hence the overlap in diagrams and graphs.
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