
716 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

GENERAL SYSTEM DYNAMICS SIMULATION
SOFTWARE SYSTEM -- ZU-DYNAMO

Wenhua Wu, Chingrui Xu, Shaozhong Jiang
Dept. of Industrial Engineering

Zhejiang University
Hangzhou, P. R. c.

ABSTRACT
System dynamics modeling has been applied in a wide variety of
areas. However, as a means of simulating models in computers, .
there is no any general DYNAMO compiler system that can be used
in various types of computer. The purpose of this paper is to
deal with a general compiler software system ZU-DYNAMO, which
is used to simulate models in various types of computer with
outputs in English or Chinese. Being different from traditional
method, a new idea suggested in this paper is the selection of
C language insteadof assemble language as objective code. The
aim of such selection is to make ZU~DYNAMO independent on a
particular computer. The overall structure and design principle
of the system are presented. The algorithms and techniques used
in the system, and the structure of objective code are designed
and analysed. The description of extensions of Arrays, FOR card,
etc. and the ways to implement are also given.

I. INTRODUCTION

With the further development of System Dynamics, it becomes
more and more important to develop a general DYNAMO software
system that is independent on a particular computer. The usual
DYNAMO compiler system being dependent on one type of computer,
has set a limit to wide applications of DYNAMO modeling. This

paper intends to introduce a General System Dynamics Simulation
Software System -- ZU-DYNAMO (ZU is abbreviated from 11 Zhejiang
University") developed by authors, which is a translator and

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 717

compiler for translating, compiling and running continuous
models with outputs in English, or Chinese.

In the development of DYNAMO system, traditional method is
constructing a compiler to translate DYNAMO cards into assemble
language code or machine instructions. Because these low-level
languages are dependent on one type of computer, this method
make it difficult or impossible to transfer DYNAMO system•from
one computer to other. Being different from this traditional
method, a new idea was suggested in the development of
ZU-DYNAMO system, which is developing a translator to translate
ZU-DYNAMO cards into an equivalent C language program, and then
referring the C compiler installed on the computer to compile
this C program, finally generating the running code to simulate
models. The illustration of this design idea is shown in Fig. 1.

ZU-DYNAMO was coded in structured language C that is called "
system design language " and possesses the features of short
but strong and capable. Consequently, the running code of the
system is very efficient and runs fast. In order to make the
ZU-DYNAMO useful and helpful in simulation of big models, the
system provides not only the fundamental functions of DYNAMO II,
but also the extensions of Arrays, FOR card, WHILE card,IF card
and Macros. The algorithms and techniques to implement these
functions will be describled in the following. But in the next
section, we will first introduce the overall structure and
design principle of the system

II. THE OVERALL STRUCTURE AND DESIGN PRINCIPLE OF THE SYSTEM

The whole system is constituted of five large parts :Syntax and
Semantic Checking Program, Equation Ordering Program,Automatical
Translating Program, Compiling & Linking Program and Running &
Output Producing Program. The whole system is controlled by
Master Control Routine• The overall structure of the system is
given in Figure 2.

ZU-Dynamo System

I I

Dynamo cards I Syntax Analys~ng ~ C langua5e pr96 ram c Compiling & running code ltunnine; & Ita: ular

{model) I Code Translatine; Linj{ing .Producing Uut.put tP.l...;tteC1
I I

L--~

Figure 1: The Illustration of Design Idea of the System

Lexical Local Tabular

Syntax Semantic
Anallfsis Analysis Analysis Ordering Ordering ueneratin~ Uut;;ut

Module Module Module· Module Module Module Module Module Module Module Module Mo-: :le

Figure 2: The Overall Structure of the ZU-DYNAMO System

output

output .

.i'lo. t tea

Output

Module

....., -cc

0
::r::
H
z
>

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 719

The Syntax and Semantic Ch~cking Program was developed to scan
the model and to check the syntax and semantic of DYNAMO cards
in the model. This program is constituted of Lexical A~alysis
Module, Local Syntax Analysis Module and Global Semantic
Analysis Module. The Lexical Analysis Module called the Lexical
Analyzer, or Scanner, separates characters of DYNAMO cards in
the model into groups that logically belong together; these
groups are called tokens. The usual tokens are key words, such
as PLOT or PRINT, variables, such L.K or R.KL, operator symbols,
such as + or *, and punctuation symbols such as commas or
parentheses. The functions of the Local Syntax Analysis Module
are to check the syntax in each card, including the checks for
the legality of variables, for the·correctness of expressions,
for the completion of function references and for the exactitude
of time subscripts. In the mean time, the variable name defined
in each equation was recorded to the table of variable names.
The Global Semantic Analysis Module, and then, checks whether
variables used in the right qf equation are defined, and whether
each level variable has initial value defined by N equation. If
the errors were detected, the error messages are displyed and
the locations where the erro'rs were detected are approximately
pointed out. Only when ~here is no any error in cards, can the
DYNAMO cards be sorted and reordered, and translated to the C
langUage programo

The Equation Ordering Program arranges in the proper order of
computation among equations. Unlike the level and rate equation,
the Auxiliary equations or Supplement equations, or Initial
equations cannot be computed in arbitrary order. Some A equa
tions could be components of others, and must be computed in
the proper order so that one can be used by the next. The
Priority Computation Variable Set is used to order these equa
tions. When this program discovers a group of equations in
which none can be computed without first knowing the value of
one or more others in the group, the simulataneous equations is
reported. In the matter of algorithm how to order equations, we
wiJ,l describle it in the next section. Only when the proper

720 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAHICS SOCITY. CHINA

order has been arranged by this program, can the correct object
code (C language code) be generated.

~he Automatical Translating Program is the kernel part of system.
It translate the correct DYNAMO arranged in order into an equi
valent C program. The Automatical Translating Program is con
stituted of Local Translating Module and Global Code Generating
Module. The Local Translating Module translates each equation
card into an equivalent C.statement in terms of the syntax of C
language. Because the equation in DYNAMO is similar to the
assignment in C language, the equation cards can be easily con
verted to the C statements with few modifications. On the base
of these C statements, the Global Code Generating Module gene
rates some global C statements such as the declarative statements
to specify allvariables, the repetitive statement "for" to
control the simulation cycle, the data store statement to store
the values of variables plotted or printted in data file, and
(be assignments to assign the values of K or KL variables to'J
or JK variables for the simulation of next time interval.

The Compiling& Linking Program is composed of Compiling Module
and Linking Module. The Compiling Module invokes the C compiler
installed on the computer io compile the C language program just
converted. And then, the Linking Module invokes the linker to

.link it with library of DYNAMO functions to implement in C and
the library of C language to generate the running code. The
Compiling Module uses the system calling statement provided in
C language : system("Compiling Command in the computer") to let
the computer ompile the C language program. Simularly, the
Linking Module also invokes this system calling : system("
Linking Command in the computer") to let c.omputer link them.
Because the compiling and linking commands are different in
various types of computer, the two system calling should be
modified in terms of the formats. of commands in the computer.

The Running & Output Producing Program is constituted of t~he

Running Module, the Tabular Output Module and the Plotted

THE 1987 INTERNATIONAL .CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 721

Output Module. The Running Module also ref-ers-the statement of
system calling : system("Running Command in the computer") to
let computer execute the running code and simulate the model.
The Tabular OUtput Module is very simple, here is not discussed.
The Plotted Output Module is very complicated. First, it cacu
lates the scales of variables. And then, for each time interval
, a set of values of variables are read from data file and are
sorted. Foliowing these, the Plotted Output Module begin to
plot from the left to the right, in terms of the ascending
values just sorted. This process is repeated until the results
of simulation in all time intervals have .been plotted.

According to the structure of the system and func.tion of each
program in the system presented above, we can give the design
principle of the system. The illustration of the design prin~
ciple of the system is given in Figure 3. First, the Syntax
and Semantic Checking Program parses the DYNAMO cards inputted.
If no error was detected in the cards, the Equation Ordering
Program begins to order the DYNAMO cards with no error. And
then, the Automatical Translating Program translates these
DYNAMO cards ordered with no error into an equivalent C
language program. The Compiling & Linking Program compiles
this C language program, and links it with the library of
DYNAMO functions and the library of C language to generate
the running code. Finally, the Running & Output Producing
Program executes the running code, simulates the model and
produce the tabular output or plotted output.

III. THE ALGORITHMS AND TECHNIQUES DESIGNED IN THE SYSTEM

In this section, we will describle the important algorithms
designed in the system. These algorithms have been programmed
in the ZU-DYNAMO and run very well.

Operator Precedence Parsing Algorithm

In a DYNAMO model, most of all cards are equations, and the
basic format of these equations is

722 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

DYNAMO cards inputted
1"----..;.. ________ _

I

IZU-DYNAMO
I

Master
Control

Syntax and Semantic Checking Program

DYNAMO cards inputted with
no error

Equation Ordering Program

DYNAMO cards orderd with
no error

Atomatical Translating Program

An equivalent C language
program

Compiling & Linking Program

Running code

Running & Output Producing Program

--------------- ---------------
Results(Tabular output or
plotted output)

Figure 3: The Design Principle of ZU-DYNAMO System

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 723

quantity-name : expression
So the key of syntax checking is to parse the expression. In
the ZU-DYNAMO system, Operator Precedence,,Parsing Algorithms
in the Syntax and Semantic .<'Th.Eleking Program has been designed
to parse the expression in the equation cards.

In the DYNAMO language, the expression may be anything. f~om
simply a number of quantity to a very complicated combination
of factors and terms involving functions , quantity names and
numerical values. The operations of addition,
multiplication, division and exponentiation

substraction,
are indicated

respectively by +, -, *, /, **• According to the definitions
of expression above and the rules of the notation:called BNF
(Backus Naur-Form), we can give the operator grammar which
have no two adjacent nonterminals :

E- E+E I E-E I E*E I E/E I E**E I -E I (E) I id (1)

where E is an abbreviation for expression called nonterminal
symbol, id represents variable or numerical value or function
reference called terminal symbol, the remaining symbol are
terminals.

In operator-precedence parsing, we use three disjoint
preceden·ce relations,~, zand ~' between certain pairs of
terminals. These precedence relations guide the selection of
handles. If a~ b, we say a "yields precedence to" b; if a.:::b,
a" has the same precedence relations as" b; if a::>b, a "takes
precedence over'' b. Although these relations may appear similar
to the arithemetic relation "less than", "equal to", and
"grater than", the precedence relations have quite different
properties. For example, a 'j>b does not imply b~ a ..

Now we show how to compute precedence relations of the grammar.
Let G be an £-free operator grammar. For each two terminals a
and b, we say : (P, Q, Rris nonterminal)

i) a.z b if ther is a production of the form P-+- ••• ,ab... or
P~ ••• aQb... where Q is .non terminal. Thlll.t is, a :!:b if a

724THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY, CHINA

appears immediately to the left of b in a right side, or if
they appear separated by one nonterminal. For example, the
production of E _.,. (E) implies that . (:::::::).

ii) a~· b if there is a production of the form p_,. ••• aR ••• and
R ~+b • .., or R ~ Qb... • That is, a<! b if a non terminal P
apperas immediately to the right of a and derives a string in
which b is the first terminal symbml. For example, .in grammar
(1), there is E--E+E and E=>(, so +<H.

iii) a ~I; if there is a production: of the form P- ••• Rb •••
+ + • .. .· .

and R ~ ••• a or R :::::> ••• aQ. That is, .a ~b if a non terminal
appeari:ng. 1ilmn!.edia'htly to the lef'.t •of ·1:)· derives a string where

· last terminal is a.

It the precedence relation~, :r and ~ constructed as above are
disjoint .in operator grammar G, that is, for any pair of
terminals a and b, never more than one of the relations a~ b,
a :cb, and a:> b is true, the operator grammar is called the
operator precedence grammar. It is evident that Grammar (1) is
not an operator precedence grammar because two precedence
relation + ;:.. + and + <E + hold between + and +.

In terms of traditional associativity and precedence of the
operators, grammar (1) can be transf.oi:med·into an equivalent
grammar that is both operator-precedence and unambiguous.It is

E-E+T IT (2)

E-·E-T IT (3)

11- T*F IF (4}

T-T/F IF (5)
F-P**F I P (6)
p---.. (E) I id (7)

(8)

According to the method of computing precedence relations and
the productions (2)--(8), the operator precedence relations
of above grammar can be g6Bstructed, and shown in ~igure 4.
(Blanks denote error entries, # is a special symbols which

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA725

marks the ends of string checked.)

+ - * I ** id ()

+ ~ 7 ~ ~ ~ ~ < ~

- 7 7 ~ ~ < ~ ~ ~

* ~ ~ ~ ~ < < < ~

I 7 ~ ~ ~ < < < ~

** 7 ~ ~ ~ ~ ~ ~ < ~

id ~ ~ ~ ~ ~ ~

(~ < < ~ 4 ~ <
) ~ ~ ~ ~ ~ ~

< < < ~ ~ ~ ~

Wigure 4. Operator Precedence Relations of
Grammar of Expression in DYNAMO

~

~

~

>
~

~

~

Now let us explore how a Operator Precedence parsing algorithm
is built from precedence relations that one constructed from an

Operator-Precedence Grammar((2)--(8) above) in DYNAMO
language. The stack is used to store the terminals and
nonterminals. The input of this algorithm is the precedence
relations and an input string of terminals (i.e. the expression
in an,DYNAMO equation). Let the input string be a,a 4 ••• a~#.
Initially, the stack contain #~ If only # is on the stack and
is on the input, the input string is correct and accepted.
The algorithm in detail is shown in Figure 50

The Equation Ordering Algorithm

Because the ordering algorithm among N equations or s· equations
is similar to the algorithm among A equations. Now we only
consider the Auxiliary equatiori. ordering algorithm among A
equations.

726THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

Repeat Forever
if only # is on the stack and only # is on the input

then

else
accept and break /* the string is correct */

let a be the topmost terminal symbol on the stack
and let b be the current input symbol;

if a ~ b or a z b then

else.

if a ·i' b then
Repeat

shift b onto the stack

/* reduce */

pop the stack
Until the- top stack terminal is

related by ~ to the terminal
most recently 'oped

else
call the error correcting routine

Figure 5. Operator Precedence Parsing Algorithm

We assume, there are m Auxiliary equations in DYNAMO cards in
the mo~el inputted by user.In order to deal with conveniently,
we may give a number to each Auxiliary variables from 1 to m
according to the order of .inpu1;a. Priority Computation Variable
Set PCVS S[iJ for some variable A; (1 'Hm) is introduced, which
is defined as the set of the numbers of variables, which are
in the right side -of ith Auxiliary equation. that is to say,
only ifall variables in Priority Computation Variable Set S[i]
for ith Auxiliary variable .have been computed, the ith Auxiliary
Variable then can be computed.

Foi example, we assume 5 Auxiliary equations appearing in the
model inputted are:

A DFR.K:±TABLE(. TDFR,IAR.K/RSR.K,4, 12,4)

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 727

A RSR.K=SMOOTH(RRR.JK,DRR
A IDR.K=A1R*RSR.K+DFR.K
A DDS .K=IDR .K* RRR .JK
A INSTP.K=STEP(20,1)

It is known that IAR.K is level variable. We give a number 1
to DFR.K, 2 to RSR.K, 3 to IDR.K, 4 to DDS.K, 5 to INSTP.K.
According to above definition, the Priority ~amputation
Variable sets for 5 Auxiliary variables are:

SL1 J:I2J;

SC2J=[J;

S[3J=[1 ,2];

SC4J=[3J;
S[5J=[J;

It is evident that variable whose PCVS is empty should be
arranged to be computed first, because this variable has not
refered any Auxiliary varirble. If there are· two or more
variables whose sets are empty, it may be arranged in arbitrary
order of these variables to be evaluated. These variables
.arranged don't be considered after. I~ the above-mentioned
example, S[2J and S[5J are empty. So 2th variable should be
arranged to be evaluated firstly and 5th variable secondly, or
5th variable firstly and 2th variable secondly.

Now, we try to find which variable should be computed thirdly
in the above-mentioned example. We delete the numbers of
variables that have be arranged to be computed from the left
sets which these numbers of variabies belong to. If there is a
variable whose sets is empty, this variable is arranged to be
computed and the above process isrepeated until the all
variables are arranged to be computed. If there is no any
variable whose PCVS is empty and no all variables are arranged
to be computed, the error occur and the error message "
SIMULTANEOUS ACTIVE EqU.I\TIONS IN INVOLVING" should be displayed

The Equation Ordering ~lgorithm has been given in Figure 6. It
is noted that the input of algorithm is the Priority

728THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

Computation Variable sets for all Auxiliary variables which
are given numbers from 1 to m. The output of the algorithm is
the sequence of computations for all variables. In the above-·
mentioned example, the proper order of com~utations is 2, 5,
1, 3, 4, or RSR.K, INSTP.K, DFR.K,IDR.K, DDS.K.

define FINISH
define NOFINISH 0
end=NOFINISH;
while (end==NOFINISH)

Find all empty sets, in the left sets;
if (there is no any empt~ set)

l
print the error message

}

else

11 SIMULTANEOU~.ACTIVE EQUATION IN' INVOLVING";

Arrange the variables whose PCVS sets are empty
to be computed first;

Count th~ number of the variables which have
been arranged;

Delete the Variable No.s whose sets are empty
from all left no empty sets, to which these
Variable Nb.s belong;

};
if (the number of the variables arranged are equal

to the number of all variables)

end=FINISH

Figure 6. The Equation Ordering Algorithm

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 729

The Translation Method and The Structure of Objective Code

The translations may be devided into two parts of local trans
lation, or called the preprocess of the translation and code
generation. The first work of. preprocessing is to delete all
type symbols N, c, T, L, A, R, S from each card, because these
symbols are no useful and can not be recognized in C language.
The next work is to delete all point "•" appearing in time
subscripts .J, .K, .JK and .KL in each c~rd, since the point
"•" can not accepted in the name of variable by C compiler.
After these deletions, the DYNAMO equation cards have been
changed to the legal assignments in C language, and the
variable .L.K L.J R.KL R.JK have been changed to LK LJ RKL RJK
respectively. So theother work is to concatenate "J" or "JK"
witk L, A, R variable in initial equations. In the base of
these, the system generates the declarative statement, initial
statements , repectitive statement, data store statement,etc.
These C statements are organized in the following format shown
in Figure 7. In other word, the structure of objective code
is .given in Figure 7.

the declarative statements;
the assignments for computing initial values;

(LJ= ••• ; AJ= ••• ; RJK= •••)
number=(int)(LENGTH/DT + 1;
for (i=1; i =number; i++)

{

J;

time= i*dt;
LK=f1(AJ,LJ,RJK); . . .

•
AlK=f2(RJK,A2K,LK);

• • •
RKL=f3(RJK,AK,LK);

• .
•

SK=f4(LK,AK,RJK,S2K); ••••••
the statements to store data;
LJ=LK; ••• AJ=AK; •• ,; ; RJK=RKL; • ••

the statements to print or plot;

Figure 7. The Structure of Objective Code

730 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

Following is a example of translation. The DYNAMO cards in

the model inputted by user shown in Fig. 7 are translated
into an equivalent C program shown in Fig. 8 by ZU-DYNAMO.

#include ''st~io.h''

double time,dt;
main()

double length,prtper,pltper;
double dur;
double drr.;
double air;
double dir;
double dud;
int i ,number~;
double idrj,idrk;
double isrJ,isrk;
doubl~. instpJ,instpk;
driubl~ ssrjk,ssrkl;
doubl~ pdrJk,pdrkl;
double srrjk,srrkl;
double rrrjk,rrrkl;
double uor- j ,uor k;
double iarJ,iark;
do1...1ble rsrJ,rsrk;
doubl~ uodj,uodk;
time=O.O;
dt=0.50;
length=ts.\5;
prtper=2.·5;
pltper=0.5;
.dur=1 .. 0;
drr=2.0;
air=3 .. 0;
dir=2.0;
dud=2.0;
uorj=dur*lQO .. O;
rsr· Jw::tOO .. 0;
uodj=dud*100.0;
iarj=air*lOO.Q;
idr j=air*rsr j;
isr j=idr j~iar j;
instpj=step<20.0,l.Ol;
ssr j J(=ucr j I dUr;
pdrjk=isrj/dir+rsrJ;
srrjk=uodj/dud;
rrrjk;1QO.O+lnstpj;
number=(intl (length/dtl+l;
for (i=1;i<=number;i++)
{

time=i*dt;
uo~k=uorj+dt•<rrrJk-ssrjkl;
i ark::::i ar j+dt* <srr jk-s_sr jk);
rsrk=rsrj+dt•(l/drr>•<rrrjk-rsrjl;
uodk=uodj+dt•<pdrJk-srrJkl;
idrk::::air*rsrk;
isrk=idrk-iark;
instpk=step(20.0,1.0l;
ssrkl=uork/dur;
pdrkl=isrk/dir+rsrk;
srrkl=uodk/dud;
rrrkl=lOO.O+instpk;
if (((time-dtl/.prtperl==Ol

storedata <fn 1 >;
if (((time-dtl/.pltperl==OI

stor·edata (fn2l;
idr- j=idrk;
isr j=isrk;
instpj=instpk;
ssrjk=ssrkl;
pdrjk=pdrkl;
srrjk=srrkl;
rr-rJ k=rrrkl;
uor j=uork;
ia.rj=iark;
rsrj=rsrk;
uod j =.uod k;

output<fn1,fn2>;

-'l .

f
tn
1l
r
1l
m
::0
II
0

tn

.....
c
0
::0
II

lXI

t:J
'-t-:1

* ---·
... c
UlO
::0::0

00

~ tV t\l
J>
::0

II * *
....
0
::0
II
-1

§
0
II c

0

-1>
0
0

* * ;~
0::0
::0::0

8.0
~~ ,

Fig. 8. An equivalent C program translated by ZU-DYNAMO

c.. c.. c.. c..
:>: 7\ r:r:

I "-'~

::0
ill
?'
C.·

THE 1987 INTERNATIONAL·CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA731

IV. THE EXTENSIONS OF BASIC DYNAMO

The ZU-DYNAMO was develope~ to process not only the basic
functions of DYNAMO, but also· the extensions of Arrays, FOR
card, WHILE card, IF card, Macro and many, other 'functions. The
users ~ay use these cards like other basic cards in basic
DYNAMO. It is suitable to simulate the big model.

Arrays A'nd·. FOR Card

The ZU-DYNAMO extensions· for arrays are in the ~tyle of DYNAMO
III. The array features offer convenient notational sche.me.
The FOR variable is used as the subscript of array. The format
of arrays and FOR card are similar to the ones in DYNAMO IlL

But in the ZU-DYNAMO, tbe FOREND is used in the end of body of
cycle. The format of FOR c1;1rd·is

FOR forl=lowl, upl/for2=low2, up2 •••
cards

FOREND

The system translate above FOR card into the following C
st;atement:

for (forl=lowl; forl<=upl; forl++)
r

1.

statement's; ~
};

While an array is used in the model, ZU-DYNAMO first generates
the declarative statements to sepcify the dimensions, sizes
.an·d ·data ty~e,;; o'£ ~rray. And then, the parentheses "(" and ")"
in the elem,ei21·t of' the array A.K(I) are replaced with "r" and
"1" res~ectively, because the element of array in C language

i • (

reprents AK(I], not AK(I).

WHILE .Card

ZU-DYNAMO also pro1J'ides the WHILE card that DYNAMO III has not

732THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

provided.- While a number of cards should be repeated to be
computed in a certain condition, the WHILE card may be used.
The format of the WHILE card is n·

WHILE condition
cards

WHILEEND

Where condition is the boolean expression that is composed by
boolean operator<, <=, >,>=,<>and==· A.K+B.K>=O is a
example of boolean expression. The above WHILE ca:r:d can be
translated by ZU-DYNAMO into;

while(condition)
{

sta:t~ments;

};

FOR example, the cards

WHILE
A

A.K+B.K>O
C.K=A.K/(A.K+B.K)
D.K=B.K/(A.K+B.K)
A.K=B.K-10

A

A

WHILEEND

are translated into the C statement ~Y zu .. DYNAMO as :toll.oWing:

while (ak +bk>O)

};

ck=ak/(ak+bk);
dk=bk/(ak+bk);
ak=bk-10;

The ways to implelent other extensions of cards are similar.
The other extensions of cards in detail will not be dealt with
here owing to the limitation of space.

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA733

V. CONCLUSIONS

According to the above-mentioned introduction, it may be seen
that general compiler system ZU-DYNAMO has an advantage over
usual DYNAMO compiler system. On the one hand, it take shorter
time to develop ZU-DYNAMO than to develop usual DYNAMO, because
the code generation is easier in ZU-DYNAMO than in usual DYNAMO.
In zu:DYNAMO, the objective code is C language code, and the
equation cards are simular to the assignments in. C language.
Therefor, the translations from DYNAMO equation cards to C
assignments, in fact, are few modificati.ons. This is easy. But,
in usual DYNAMO, objective code i.s assemble language, and DYNAMO
language i.s different from assemble language. One equation card
may be translated i.nto many instructions i.n assemble language.
As a result,.these translations are very difficult. On the other
hand, ZU-DYNAMO can be easily i.nstalled on vari.ous types of
computer, but usual DYNAMO can not. In a word, to develop a
gen.eral-DYNAMO compiler system has become a new important
research project i.n the field of System Dynami.cs. This paper
only deals with some aspects of'problems in the development of
general DYNAMO compiler system.

Although ZU-DYNAMO is running very well, some functions should
be extended i.n the future, such as the acceptance of diagram
input. We intend to provide this extension of di.agram input.
Finally, we thank Mr. Weiqiong Wang, Mr. Hao .Chen and Mr. Baoyi
Tong helpful ·comments andworks i!l the development of the system.

REFERENCES

1. Forrester, Jay W. (1961) Industrial Dynamics, MIT Press.
2. Ri.chardson, G.P. and A.L. Pugh III (1981) Introduction to

System Dynamics Modeling with Dynamo, MIT Press.
3 •. A.L. Pugh III E1976) Dynamo User's Manual. MIT Press.
4. Phili.p M. Lewis II (1978) Compiler Design Theory,

Addison-Wesley-Publishing Company.

