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Abstract 

This article argues that the tools of system dynamics and urn theory 

can be used to model self-organizing markets. A fundamental 

characteristic of self-organizing markets is that size of firms by rank 

order follows the Zipf distributions. While complex industrial 

structures of this kind are hard to describe with conventional 

theories, system dynamics and urn theory are equipped with 

adequate tools to deal with this kind of evolutionary phenomena.  

  

mailto:fernando.buendia@up.edu.mx


 
2 

1. Introduction 

It has been shown that the distribution of sizes of many enormously complex physical, 

biological, and socioeconomic phenomena can be well described by a very simple power 

law: the number of objects whose size exceeds S is proportional to s
-a
, where the integer a 

usually is a round number, like 1 or 2. Among the most spectacular examples of a power 

law is one that involves economics: the size distribution of firms. I this paper, I argue that 

the tools of system dynamics and urn theory can provide a more complete picture of the 

economics of the growth of the firm and stronger and more general conclusions about the 

evolution of self-organizing market structures. This paper has three additional sections. In 

section two, I discuss the self-organizing nature of firms‘ size. In section three I analyze 

how the tools of system dynamics can be used to better understand the sources of 

increasing returns to the growth of the firm. In the last section, I develop some ideas about 

the convenience of using urn theory to formalize mathematically self-organizing complex 

systems. 

2. Self-Organization of Industries 

Self-organizing systems, systems that start from an almost homogeneous or almost random 

state, spontaneously form large-scale patterns. Initially, these systems show imperceptible 

differences, but over time those small differences become magnified through a process of 

self-reinforcement. One of the most evident attributes of firms is that their size distribution 

exhibits properties of self-organizing systems. This implies that firm sizes in modern 

industrial countries are highly skew, such that a very small number of large firms coexist 

with a very large number of smaller firms. The interest in the distribution of company sizes 

started with Zipf (1949), who established that USA corporation assets approximately follow 

the law 

r
sr

1                                                                 (1) 

where rs is the size of the company ranked r in a list of firms ordered by asset size, 

beginning with the largest. The same law has been found to describe the distribution of 

words in a variety of languages, rs being then the number of occurrences of the rth word in 

a list ordered by number, beginning with the most frequent (Zipf, 1932). Empirical studies 

have found that Zipf‘s law describes phenomena in various fields, including cities (Gabaix 

and Ioannides, 2003), immune system response (Burgos and Moreno-Tovar 1996; Li 2001), 

and aspects of Internet traffic (Breslau et al. 2000).  

To visualize how the distribution of firm sizes follows Zipf‘s law, we take the firms 

of a country and order them by size
1
. We then draw a graph; on the y-axis we place the log 

of the rank, r, and on the x-axis the log of the size of the corresponding firms

                                                
1 Size can be measured in number of ways, and these arguments have variously applied to measure of 

annual sales, current employment, and total assets. Though we might in principle expect systematic 

differences between the several measures, such differences have not been a focus of interest in the literature. 

An interesting property of firm size distributions noted in the studies of large firms is that qualitative character 

of such distributions is independent of how size is defined.  
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)...( 21 Nsss  ). When we draw log-rank against log-size, we get a straight line, with a 

slope that is very close to -1. Furthermore, if we run the regression 

121 lnln   rsr                                                   (2), 

an expression of Zipf‘s law is that the slope of this regression line ( 2 ) is very close to -1. 

In terms of the distribution, this means that the probability that the size of a firm is greater 

than some S is proportional to
S

1 : 

2

1)( 
S

SSizeP                                                       (3), 

with 12  . However, Mandelbrot (1954, 1954) established that Zipf‘s law was a special 

case of a more general relation, the so-called simplified canonical law (scl)
2
:  

2

1

)(




 rPsr
                                                          (4) 

when 0 and 12  .  

Recently, Ramsden and Kiss-Haypál (2000) found that the equation (4) fits the data 

for the different countries they studied. Specifically, their analysis of the data on the largest 

500 U.S. firms gives a 2 close to 1.25. For other countries, 2 ranges from 0.44 for South 

Africa and 0.65 for Netherlands to 1.4 for Hungary and 1.2 for China. In contrast with what 

Ramsden and Kiss-Haypál (2000) found, Axtell (2001), using data on the entire population 

of tax-paying firms in the United States, shows that the Zipf distribution characterized firm 

size: the probability a firm is larger than size s is inversely proportional to s. These results 

hold for data from multiple years and for various definitions of firm size. Specifically, 

Axtell (2001) proves that data from USA Census including firms with 1 employee are 

approximately Zipf-distributed ( 059.12  ), as determined by ordinary least squares 

(OLS) regression in log-log coordinates. But firms having a single employee are not the 

smallest economic entity in the United States economy. Although there were approximately 

5.5 million firms that had at least one employee during 1977, there were another 15.4 

million entities in that year with no employees. These are predominately individuals and 

partnerships, and are called ―nonemployees‖ firms by USA Census. These firms account 

for nearly $600 billion in receipts in 1977. If these firms are included in the overall firm 

size distribution, the Zipf distribution still fits the data well. Here, OLS yields an estimate 

of 098.12  (SE = 0.064) and the adjusted R
2
 = 0.977. Furthermore, Riemer et al (2002), 

using data from 70 markets, found that the market shares by rank order follow the Zipf 

distribution.  

These empirical studies, therefore, have shown that there is no reason to expect the 

size distribution of firms to take any particular form for the general run of countries. 

Empirical investigations from the 1960s onward have also thrown doubt on whether any 

single form of size distribution can be regarded as ―usual‖ or ―typical‖ for the general 

                                                
2 P,  and 2 are parameters of the distribution. 
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spectrum of industries
3
. Independently of the fact that market structure varied in systematic 

way from one country to another and from one industry to another, an interesting property 

of the distribution of firm sizes is its high level of skewness, which constitutes a clear-cut 

target that any accurate theory of the firm must try to hit. The following section addresses  

3. System Dynamics, Increasing Returns, and the Growth of the Firm 

System dynamics was originally developed to help corporate managers better understand 

and control industrial systems (cf. Sterman, 2000). Later, system dynamics is used to 

address problems related to systems that change over time, be they physical, biological, or 

socioeconomic systems. More recently, Radzicki (2003) argue that system dynamics 

computer simulation modeling can be useful to describe evolutionary economic processes. 

An example of a system dynamics model that exhibits evolutionary behavior is the 

competition for market share between firms which are subject to a significant learning 

curve. Figure 1 shows the system dynamics stock-flow diagram for the learning curve 

model.   

 

Figura 1. Learning Curve Model 
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3 See Schmalensee (1989).  
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However, the growth of the firm and the emergence and evolution of industrial 

dominance is not the result of a simple cause-effect relationship between two or three 

variables, no matter how important these variables may be. There is abundant evidence 

suggesting that the firm‘s growth and industrial concentration take place from the complex 

network of relations that result from the mutual causality between numerous variables. As 

with other dynamic systems, both the growth of the firm and the evolution of its industrial 

structure are subject to both negative and positive feedbacks. Negative feedbacks stem from 

decreasing returns to the growth of the firm. These diseconomies —reductions of benefits 

due to scale diseconomies— may occur because the firm becomes ―bureaucratically‖ 

congested or administratively limited. Decreasing returns to the growth of the firm are 

stabilization forces that hinder the growth of the firm and prevent the eventual emergence 

of an infinite-size firm. The growth of the firm and the concentration of the industry where 

it competes depend to a great extent on positive feedbacks; that is, from increasing returns 

to the growth of the firm. Concerning firm size and market structure, many interactions 

between variables may cause this form of increasing returns, but from consistent findings in 

the literature, we can identify the following as the most important: 

Scale economies. With his seminal article The Economies of Scale, Stigler (1958) 

laid the foundations of an increasing-returns based theory of how the firm grows. His 

argument is that the more rapid the rate to which a firm loses its share of the industry‘s 

output (or capacity) the higher is its private cost of production relative to the cost of 

production of firms of the most efficient size. 

Scope and integration economies. Chandler‘s (1966, 1977, and 1990) historical 

approach. Chandler‘s main intellectual contribution was to recognize that, in order to 

achieve the lower unit costs, firms had to do a lot more than simply build large plants. They 

had to be able to maintain a high rate of throughput through their factories —that is, to keep 

their plants operating consistently at high levels of capacity utilization. In order to maintain 

a high rate of throughput, firms had to insure that shortfalls in supply did not disrupt their 

production processes and that output did not pile up in their warehouses unsold. The 

solution, as Chandler saw it, was for firms to bring these activities under their direct control 

by integrating backward into raw-material production and forward into distribution, and by 

building a managerial hierarchy capable of coordinating smoothly the flow of inputs and 

outputs from raw material to final sale. Therefore, through his historical theory of large 

business, Chandler has provided empirical evidence of the existence of what theoretically 

can be called economies of integration. Nevertheless, large firms could exploit not only 

economies of scale and economies of integration, but also economies of scope. According 

to Chandler, large firms can reap economies of scope by investing large quantities of 

financial resources in research and development, which allows them diversify their 

operations into other industries. Chandler claimed that firms that reaped scale economies, 

integration economies and scope economies improved upon the workings of the market, 

captured the resulting efficiency gains, obtained enormous competitive advantages, and 

over time brought under their managerial authority larger and larger portions of the 

economy. The only firms that could compete with them head to head, he argued, were those 

that completely duplicated their vertically integrated structures and managerial hierarchies. 

Because relatively few firms could raise the enormous amounts of capital required, these 

kinds of industries quickly took on oligopolistic structures. 
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Expansion economies. Buendía (2006) develops a model that shows how and under 

what circumstances firms can realize expansion economies. In order to exploit economies 

of expansion while augmenting benefits, manufacturing firms tend to expand their 

economic activities to different locations, regions and countries. The level to which firms 

spread out in a region depends on the local demand. When such local demand is completely 

satisfied by the firm, it may decide to star business activities in other region. Firms‘ 

expansion process is limited by the size of the market and the world demand. The growth of 

the firm through expansion economies depends on the scale of the different elements that 

form the basic business unit. Expansion economies are a special case of increasing returns 

that cause dominant firm highly concentrated industrial structures. 

Schumpeterian learning. The most widely accepted theory of technological change 

among neoclassical economists is Schumpeter‘s (1949). In a Schumpeterian world, scale 

economies are present as well, but technology is not a constant. Here the creative role of the 

entrepreneurs allows for the introduction of new technologies capable to displacing the 

establish ones. Most of Schumpeter‘s discussion stresses the advantages of concentrated 

market structures involving large firms with considerable market share. According to this 

economist, it is more probable that the necessary scale economies in R&D to develop new 

technologies be achieved by a monopolist or by the few large firms of a concentrated 

industry. Large size firms, besides, may increase their rate of innovation by reducing the 

speed at which their transient rents and entrepreneurial advantage are eroded away by 

imitators. In the absence of patent protection large firms may exploit their innovations on a 

large scale over relatively short periods of time —and in this way avoid rapid imitation by 

competitors— by deploying their productive, marketing and financial capabilities. Large 

firms may also expand their rate of innovation by imitating and commercializing other 

firms‘ technologies.  

Costs Reducing Learning. An important aspect of technological change is costs 

reducing in nature. Henderson (1975), in the strategic field, pioneered the notion of 

experience curve as a source of costs reductions. In economics, Hirsch (1956) has 

underlined the importance of repetitive manufacturing operations as a way of reducing 

direct labor requirements, while Arrow (1962) has explored the consequences of learning-

by-doing (measured by the cumulative gross investment, which produces a steady rate of 

growth in productivity) on profits, investment, and economic growth. However, the 

historical study on the pattern of growth and competitiveness of large corporations of 

Alfred D. Chandler (1990) is a major and detailed contribution to our understanding of the 

way firm grow by diminishing costs.  

4. System Dynamics, the Growth of the Firm, and Urn Theory
4
 

Urn theory or Polya processes (Arthur 1994, Arthur et al. 1987, Dosi and Kaniovski 1993) 

have been considered an important analytical tool to model dynamic economic systems. To 

understand the relevance of this analytical tool, we can start with the simple model, where a 

new technology is adopted in each period of time and randomly chosen from two different 

formats. This technological adoption process can take two different paths depending on 

whether there are increasing returns or not.  If decreasing returns are present then the 

                                                
4 This section draws heavily from Buendia and Eccius (2010) 
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process of adopting a technology depends on the probability i. We can start by assuming 

that both technologies have a probability of 0.5 to be adopted per period of time. The long-

term behavior of a model with decreasing returns is clear: As random adoptions at each 

period are independent from one another, the law of large numbers applies, so each 

technology‘s share of adoptions has to converge toward a constant assignment probability 

for this technology; that is to say, I = 0.5. If the random process is repeated an infinite 

number of times, the process will fluctuate in its early phase, but it will always converge 

toward the long-term share of I = 0.5. The fluctuations in the early part of the process result 

from the fact that the addition of one adoption has a larger impact on the share with a small 

total number of adoptions than in a technology with a greater number of adoptions. 

However these fluctuations disappear over time. This corresponds to the typical growth 

process of the traditional neoclassical growth theory. 

When there are increasing returns, random assignments at each period are 

dependent both on one another and on the accumulated numbers of adoptions, so that 

technology‘s share converges, toward a different value in the long-term. From a 

mathematical point of view this process can be described by assuming that the assignment 

probability at a certain point in time is equal to the shares at that time, which is known as a 

Polya process. Under this condition the process of adopting a new technology converges to 

a stable set of proportions in the long run. But although this proportion settles down and 

eventually becomes constant, it does so to a constant vector that is selected randomly from 

a uniform distribution over all possible shares that sum to 1.0. As the process will settle 

down to a certain distribution and then remain constant over time, each possible outcome is 

equally likely. In other words, we know that this process will produce a stable spatial 

structure but we do not know a priori what this structure will be. As in the model without 

increasing returns, there are strong fluctuations early on. A technology that is more adopted 

early on in the process because of luck will end up with a higher market share in the long 

run, while the technology that is less adopted on will end with a lower market share. 

In this paper we analyze Arthur (1994), Arthur et al. (1987) and we show that the 

condition that they establish to obtain a monopoly outcome is artificial and ad hoc. Parting 

from this fact we determine the conditions that are necessary to introduce into the 

conventional Pólya scheme, to produce tipping results. Specifically we establish the 

condition of strong network externalities that have to be fulfilled to obtain strict monopoly.   

Many social and economic phenomena have the fundamental feature of self-

organizing systems. This kind of systems has positive and negative feedbacks and their 

outcomes follow a skewed distribution. The specific conditions and results of dynamic 

systems stem from positive feedback, which generates multiple equilibria and the 

equilibrium when is reached depends on initial conditions as well as transitory incidents 

and small historical happenings. In the economy and the society there are many kinds of 

positive feedbacks that have different kinds of consequences. Network externalities are a 

well known reason for positive feedback, which may make the inferior standard emerge as 

the dominant technology. One of the most often cited account of tipping and lock-in in the 

inefficient technology dominating the market is the battle between QWERTY and 

DVORAK keyboard format. Another classical example is the rivalry between VHS and 

Betamax among video-recorder formats. 
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Arthur (1994), Arthur et al. (1987) developed a model of technology adoption 

where consumers choose among many incompatible technologies. A consumer picks up a 

technology according to the benefits they obtain from the technology that have been chosen 

by previous adopters. Arthur‘s model is based on a Polya-process and explains lock-in and 

tipping in terms of non-linear feedback driving technology adoption. Under these 

conditions, some threshold market share and future adoption rate due to interdependencies 

between consumer preferences, the system will be stable only with monopoly; that is to say, 

one of the shares will converge to 100% market share and the other to 0%.  

Polya‘s original urn process provides a simple explanation of reinforced random 

processes, which has the sufficient structure to support outcomes other than monopoly. 

Stable patterns of market sharing with one dominant firm with a large market share and a 

number of small firms with small market share are most common outcome than strict 

monopoly even among markets characterized by network externalities. In fact the original 

Polya scheme explains a range of equilibrium outcomes other than monopoly. 

Consequently, this original scheme can describe a variety of increasing returns situations, 

where feedbacks can be positive but the different levels of strength. While very strong 

positive feedback leads to market dominance by one of the competing technologies, in 

other cases, competitors may share the market. There is thus a trade-off between market 

share and feedback strength. Evidently, the conventional Polya scheme supports this kind 

of results. This process is based on an urn with balls of two colors (white and black), with a 

sampling and replacement policy which obeys the following rule: draw a ball from the urn, 

observe its color, return it to the urn (sampling with replacement) along with S > 0 balls of 

the same color. History dependence of the process is an inherent characteristic of the 

evolution of the distribution of the proportion of balls of different colors. For instance, 

consider an urn containing balls of two colors, say white and black, which represent, for 

example, two firms competing for market share. The initial number of balls of different 

color represents the initial sizes of market share of each firm. The sampling and 

replacement process may be as follows: from an urn containing n1 white balls and n2 black 

balls, a ball is drawn, and its color noted and the ball is returned to the urn along with 

additional ball(s) depending on the label of the color of the ball drawn. If a ball labeled i (i 

= 1,2) is drawn, aij balls labeled j (j= 1,2) are added. We can generalize an addition of balls 

with a matrix of integers  
      
      

  , where the rows are indexed by the color selected 

and its columns are indexed by the balls added. In its simplest form this matrix of integers 

may take the following values:                                     and one 

white and one black ball in the urn: n1 = n2 = 1. Under these conditions the random variable 

xt converge almost surely to a limit X. When n1 = n2 = S = 1, the limit variable X is uniform 

on the interval [0,1].  

Arthur (1994) models the patterns of evolution for the adoption of two competing 

technologies in a market
5
, using a basic urn scheme with white and black balls, with each 

color corresponding to a competing product. At its initial state, the urn contains    white 

balls and    black balls, and a ball is added at subsequent time instances t = 1, 2, 3, …. The 

probability of this ball being white is given by         and the probability for a black ball is    

                                                
5 Obviously, the model can be applied to the assignment of firms to two different regions, the allocation 

of innovation to two firms, and other processes.  
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          with the random variable    standing for the proportion of white balls in the urn 

at time t. The dynamics followed by the number of white balls    depends on a random 

binary variable )(X tt , which is independent of time and takes on values from the sub-set of 

integer numbers: {1 with probability      , 0 with probability 1 -      }. This dynamics is 

modeled by 

)(1 Xww tttt                                                      (5) 

where it is established that the number of white balls at each state remains the same (with 

probability 1-        or it is incremented by one (with probability       ): ww tt 1 or

11  ww tt . The dynamics that rules the total number of balls  t
in the urn at time t is given 

by 

tnn bwt  1
,                                                   (6) 

and it is incremented by one at each time. 

The proportion of white balls X t 1  in the urn at time t+1 is obtained by dividing the 

number of white balls wt+1 by the total number of balls γt+1, 

)1)((

)()1()(

)1)((

)1))((()(
1




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bw

ttt
t


.        (7) 

In order to have the current value of X t 1  expressed in terms of its previous value 

X t  plus an increment X t , some algebraic manipulations are performed, 

)1)((

)()1(

)1)((

)(
1
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                                 (8), 
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                                     (9). 

Since
1


tnn

w
X

bw

t
t

, then
)(

)(
1

tnn
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XX

bw

ttt
tt






 . The expected value for the increment 

in X t  is given by the relation 

)(

)(
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                           (10). 

Eventually the fluctuations in X t diminish to zero, and X t  reaches a steady state, so 

that 0)(  XXf ttt
. It is said that X t  converges to the roots of 0)(  XXf ttt

 as t → ∞ with 

zero or positive probability; and for an isolated root Φ, the fastness of the convergence of 

0)(  XXf ttt
 in a neighborhood around Φ, depends on the smoothness of )(Xf tt

 at Φ. Other 

useful way of describing the previous properties of this urn scheme is by defining a 

function )(Xf t  such, that )()()( XXfXf ttttt   and in the limit t → ∞, )(X tt approaches 0, 

and )(Xf tt
approaches )(Xf t . This simple urn scheme displays positive feedback and, two 

patterns of evolution reaching a steady state. The behavior of X t  over time describes 
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trajectories with random walks, approaching a limit that can take on any value from the 

sub-set of real numbers [0, 1].  

Let us consider a market with two competing technologies A (with nA ≥ 1 units) and 

B (with 1Bn units) such that a new consumer enters the market at time t = 1, 2, …, n. The 

pattern of the evolution of adoption of both technologies in the market is clearly modeled 

by the previous urn scheme, where the function )(Xf t  is constructed according to the 

decision rule that the new consumer uses to make his choice. As an example, Arthur et al. 

(1987) considered the following basic rule: 

A new consumer asks an odd number p of users which technology they bought, and 

if at least 
2

1p
 of them use A, he will choose A, otherwise B. The function )(Xf t  that 

represents the probability of the new consumer choosing A, depends on the current 

proportion X t  of product A in the market, 

        
  

          
  

        
     

   
   

 

                                     (11) 

We are interested in the solution of 0)(  XXf tt  on ]1,0[tx . There are three roots 

on the sub-set of real numbers [0, 1]: 0,
2

1 , and 1; however, there is no possible market 

structure corresponding to the root
2

1
X t , i. e., X t  converges to this root with zero 

probability as t →  . In the other hand, roots 0 and 1 correspond to possible market 

structures, i.e. X t  converges to each of them with positive probability. X t → 1 corresponds 

to the proportion for A to dominate if the initial number of units nA of the technology A is 

greater than the initial number of units of technology B. If we run a simulation with these 

conditions and applying formula 11, we can find out that different outcomes will result, 

depending on   ,     and p. Let us start by considering a situation which     ,      

and p = 21. Then the results of the simulations are as shown in Figure 2. 
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As we can see in this figure, dominance by technology A (      takes place with 

high probability. Therefore there are few chances that technology B monopolizes the 

market.  

This means that in Arthurs configuration there is an alarming bias towards 

technology A to dominate the market. In fact, the occurrence of dominance by technology 

B has very low probability. Figure 3 shows a simulation of 10 realizations, in which B 

dominates the market. But this result occurs very few times in many simulations. 

 

This result is due to the fact, that when    ,      and p = 21, the       
      , and there is a low probability (but it exists), that the result is 0/100, with technology 

B tipping the market. 
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Figure. 2 Arthur’s scheme     ,      and p = 21 

Figure. 3 Atypical Arthur’s scheme    ,      and p = 21 
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                                 (12) 

We run 500 iterations, and we get 16 out of these 500 iterations, which confirm 

what we said above concerning the fact that with      ,      and p = 21, it is 

practically impossible for technology B to tip the market. Obviously, there exist the   

possibility for technology B to monopolize the market, but the probability is very low. In 

fact, in our exercise of running 500 simulations, the probability of this to happen is about 

3%. 

If p is increased, for example, p = 101, 

        
  

          
  

        
     

   
   

 

                            (13) 

Obviously this process is very restrictive because there is a tendency within the 

process to choose always technology A. Here there is no possibility for technology B to tip 

the market. 

 

Now let us consider the case where    ,      and p = 3. In this situation the 

results are as shown in Figure 5. As we can see in this figure, with a low value of p, then 

what Arthur would foresee cannot take place, and the process becomes a kind of 

conventional Polya-process, so the roots     could be of the sub-set of the real numbers 

[0,1]. 

In this case, therefore, when p = 3, then:  

100 200 300 400 500
0

0.2

0.4

0.6

0.8

xt 2

xt 1

xt 3

xt 4

xt 5

xt 6

xt 7

xt 8

xt 9

xt 10

t

Figure. 4 Arthur’s Scheme      ,      and p = 101 
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 What we just said, can be visualized by relating     to      , where    is the 

proportion of technology A and       is the probability of adding a white ball, which 

represents a new adoption of technology A by a new consumer. If we establish a 

relationship between      , with different values of p (1, 3, 21, and 101), we obtain what 

Figure 6 shows. Specifically, with larger values of p, such as 21 and 101, we obtain 

probability functions      , which tend rapidly to radical results such as 100/0. When p = 

101, and       , then the probability of adding a new black ball (technology B) is 

practically cero. By the contrary, when p = 1, the process becomes a conventional Polya-
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Figure. 5 Arthur’s Scheme      ,      and p = 3 

Figure. 6 Relationship between f(xt) and xt in Arthur’s Scheme 
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process. This confirms in some way what we stated before. 

Here the problem then is to try to assure that the Polya process will end up with a 

complete dominance of one of the technologies. Usually tipping markets are associated to 

strong network externalities. In order to model network externalities, suitable for a Polya 

process, we consider the following function.  

      
   

       
        (15) 

Function 15 describes the kind of situation where a consumer who has to choose 

between two technologies (A and B), and has to decide based on what he has observed 

previous consumers have done. This is very important, because the benefits of his decision 

depend on the size of the network he is going to be connected to. Let us assume that tree 

consumers have already adopted technology A. This implies that in that network there are 6 

potential connections. If a new consumer joins this network, then the number of potential 

connections will be 24. So we can express this process as a factorial: n! Fluctuations in X t

diminish to zero, and X t  reaches a steady state, so that 0)(  XXf ttt
 

With this we obtain Figure. 7, when      and      , the steady state could be a market 

share of 100/0 or 0/100. This depends on the early random movements. We have to 

underline, though, that function 8 does not correspond to the proportion of individuals, but 

to the number of connections.  

 

The plot of the relationship of    and      , when we apply equation 8, is as shown 

in Figure. 8. As we can see the process takes up high values of      , when          By 

the contrary, when       , then       tends to cero. 
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Figure. 7  Network externalities    ,      
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