
Multi-Period Portfolio Assesment 

Çaðlar Güven, Cem Tangil  
Middle East Technical University  

Industrial Engineering Department. 06531 Ankara -TURKEY 
phone:+90 312 210 2266; fax: +90 312 210 1268 

cguven@ie.metu.edu.tr 

 

 

 

Abstract 

This study explores the prospects of implementing a multi-period mathematical portfolio 

planning model for security trading in the Istanbul Stock Exchange(ISE), and compares the 

performance of different models for this purpose. 

 

1. Introduction 

 

Investment decisions involve questions about how to select the securities to invest in, how 

extensive the investment should be and when the investment is to be made; which is the core 

of portfolio planning. Most analytical approaches to portfolio management fall into two 

categories; (i) the mean-variance approach and (ii) scenario based approaches. The mean-

variance approach uses return and risk as input parameters and tries to determine ‘optimal 

portfolios’. In this process, an optimal portfolio is defined either to be the portfolio with the 

minimal risk for a given level of return, or the portfolio showing maximal average return for a 

given level of risk. A common but unrealistic assumption in most portfolio management 

models is that we have a single period problem. Scenario models on the other hand, are multi 

period models that consider the long-term in order to improve investment performance. These 

are return-based, expected utility optimization models since they maximize an expected utility 

computed over a set of future scenarios that can be expected during the planning horizon. 

Sequential risk arises as part of the portfolio risk as time goes on and the models consider 

portfolio revision as part of the problem. Such problems are usually constructed as stochastic 

programming models. Scenarios may be generated for key economic parameters for a 

portfolio investor, such as future interest rates, foreign exchange rates or stock prices. They 

must depict the investor’s expectations about the future and also be realistic. Rather than 

resolving the stochasticity of future returns in two dimensions only – return and risk –  



scenario models take many representative points on the probability distributions with the help 

of scenario generation equations. Stochastic programming provides a general purpose-

modelling framework: it can address real-world features such as turnover constraints, 

transaction costs, risk aversion, limits on groups of assets and other considerations. 

   

In this study we solve a multi-period portfolio model utilizing a set of  scenario generation 

equations  and compare the results of the base run of this model obtained for different 

planning horizons. We also solve this multi-period model using different objective functions 

representing risk preferences of the investor, and compare expected performance under 

different scenario paths.  

The models used in this study are stochastic models with recourse. For such models, 

scenario trees for possible future outcomes of stochastic variables must first be constructed. A 

scenario can be defined as a single deterministic realization of future uncertainties of 

stochastic variables. It is therefore necessary first to determine the stochastic variables on 

which scenarios will be based. In our analysis interest rates payed for monthly bank deposits 

and the real security returns are chosen as the stochastic variables, since for a portfolio 

planning problem these are the most usual variables that affect decisions. 

 

2. Scenario Tree generation 

 

We first define our scenarios using a stochastic equation for only one economic factor. 

Possible security returns for each scenario are then calculated employing a general 

relationship equation between the interest rate and each security return. The utilization of 

stochastic equations helps us define relationships between security returns and the economic 

factor and generate scenarios in a  structured manner, and prevents any bias that could be 

caused by the personal anticipations of the scenario generator. 

The analysis is carried out by considering just a few outcomes for these random variables 

to exhibit the features of the model rather than enumerating all possible outcomes since the 

actual process of determining all possible outcomes would require consideration of social, 

political and other economical factors.  

The stochastic equation defining monthly interest rates is as follows: 

dZrdtrdr ttt σβα ++= )(   

where  



tr  denotes the observed real rate of monthly bank deposits interest rates  

dZ is a standard Brownian motion (Normal(0,1)), and 

),,( σβαθ =  is a vector of unknown parameters. 

This equation was used by Mulvey et al.(1999) for defining short-term interest rate 

scenarios, where returns of fixed-income assets, such as treasury bonds, were assumed to 

depend on short-term interests. For our study, it implies that the change in the monthly 

interest rate at any time depends on the level of interest rate at that specific time, some 

parameters and a variance term.  

In order to estimate the unknown parameters of this equation we apply the generalized 

method of moments (GMM), using the observed monthly bank deposit  rate data between 

September 1990- September 2000. A discrete time approximation of the stochastic equation, 

is applied to this sample in order to estimate the unknown parameter vector,θ . Thus the 

stochastic differential equation becomes; 

dZrrr ttt σβα +++=+ )1(1         

Denoting the random error, σrtdZ as εt for simplicity, the stochastic equation becomes; 

11 ++ ++=− tttt rrr εβα         

This equation now implies that, the interest rate of the next period depends linearly on the 

level of the present interest rate plus some random error term. In order to get good estimates 

for the unknown parameters, we use the normality assumption for dZ and solve the system of 

nonlinear equations obtained from the generalized method of moments; 

0)()()( =′ θθθ TT GMMWJ         

where, 

)(θTW  is a positive symmetric weighting matrix; 

θ = (α,β,σ), and 

)(θJ  is the Jacobian Matrix of GMM 

We solve this system of equations, using real world data taken from the Istanbul Stock 

Exchange and the mothly interest rates between 1990-2000 under different assumptions and 

obtaine several different estimates of the parameter vector, θ. We take additional steps such 

as: 

• In one of the solutions the interest rate values during the 1994 crisis are considered to be 

outliers and are excluded from the data set. 



• In order to obtain a model that generates a meaningful series of interest rates, we restrict 

the values of unknown parameters (α,β,σ), using lower and upper bounds and solve the 

system several times with different bounds. For each set of bounds we obtain different 

optimal values for the parameters. 

The model that best fits the interest rate data is then selected by testing for normality of 

each model’s random element,dZ. This is achieved by applying the models to forecast interest 

rates for the previous 120 periods, and then obtaining the random error element between the 

forecast and the actual values. As a result the stochastic equation for real interest rates can be 

written as: 

dZrrr ttt 599.1)533.01(803.01 +−+=+        

Now we want to construct a scenario tree for the next T periods. We use the stochastic 

equation for generating the scenarios for periods t in the planning horizon starting from t = 0 

(October 2000). At the beginning of October 2000 although we know the exact value of the 

nominal interest rate, the real rate of interest for the period is not known, since the inflation 

rate is unknown at the beginning. Thus the available data of nominal interest rate for the 

initial period cannot be used. Instead, the real rates of interest for every period including the 

initial one are determined for every scenario using the stochastic equation above. Our 

scenarios for October –December 2000 are assumed to evolve on a tri-nomial lattice of 

interest rates as shown in the scenario tree of  Figure 1.   

At instance t0 (beginning of October 2000) three scenarios are anticipated, and by 

instance t1 (beginning of November 2000) this uncertainty is resolved. We denote the three 

scenarios by s0
O,s0

N,and s0
P, where O stands for optimistic, N stands for normal and P stands 

for pessimistic; although scenarios do not represent any optimistic or pessimistic anticipation 

of the future, we use such notation for convenience. At time t1 three more scenarios are 

anticipated, s1
O, s1

N and s1
P and so on. A complete path is denoted by a tuple of scenarios. For 

example there are nine paths from t0 to t2 denoted by the pairs  (s0
O,s1

O), (s0
O,s1

N), (s0
O,s1

P), 

(s0
N,s1

O) (s0
N,s1

N),  (s0
N,s1

P), (s0
P,s1

O),  (s0
P,s1

N),  (s0
P,s1

P). It should be noted that for each node 

on the scenario tree there is a different interest rate value. In order to generate these interest 

rates we first define the scenarios and scenario paths formally as follows; 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Scenario Tree Representation for October-December 2000 

 

If St is the set of scenarios anticipated at time t, for t=0.1....T, we use st to index scenarios 

from the set St. Let lt denote paths of scenarios that are resolved until period t, where 

t=1,2,...T. Paths are denoted by lt=(s0,s1,...., sτ,....st-1) where sn∈Sn. With each path we 

associate a probability πlt, and let Pt denote all paths that can be constructed by combining 

scenarios from the scenario sets S0,S1, ...St-1.  
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The interest rate in any node of the scenario tree in Figure 3.2 depends on the path of the 

scenarios followed from 0 to t. Thus we denote the anticipated real interest rate for monthly 

bank deposits for time period t as INTSCENt(lt,st) if lt is the resolved scenario path from 

period 0 to t and  st is the anticipated scenario for period t. Since we know the interest rate for 

September 2000, the interest rates for the first period are reduced to INTSCEN0(s0
O), 

INTSCEN0(s0
N) and INTSCEN0(s0

P) and are computed replacing the interest rate term for the 

previous period in the equation, INTSCEN(l-1,s-1), with the  known value of interest rate for 

September 2000. 

Once this model is initialized the only difference between the scenarios that have the 

same scenario path tl , is generated by assigning random values to dZs. Since our model 

employs a tree form with each node splitting into three branches every period, three different 

dZ values must be specified over the probability distribution of the random variable dZ which 

is distributed normally. These points are chosen so that the probability masses falling on these 

three points are equal as explained in Pflug (2000). 

 

3. Estimation of scenario dependent parameters 

 

The second set of stochastic variables of our model is the expected real return of each 

security. Having generated scenarios based on interest rates, the second step is to compute the 

security returns corresponding to each scenario. Rather than computing the security returns 

directly we assume that they are related to a basic economic factor, the interest rates. It should 

be noted here that there are also factors that affect security prices, such as inflation and 

foreign exchange rates among others. Instead of considering other factors, we take into 

account only the interest rates, assuming that interest rates directly influence the security 

returns. Interest rate or the monthly bank deposit rate is an investment alternative for most of 

the investors who do not want to undertake more risk by investing in stocks. Thus when the 

interest rate increases, more investments are shifted to bank deposits, which causes a decrease 

in the demand for securities and a fall in the prices of the securities and vice versa. Although 

this relationship is reasonable, a model that generates scenarios considering other factors 

would probably perform better in representing the reality. 

We assume that the real return rsjt of an asset j at period t is related with the real interest 

rate rt according to a model proposed by Grinold (1999);   

tjjjttj zrrs ,, σµ ++=         



where, 

rsj,t denotes the real rate of return for stock j in period t, 

rt  denotes the real rate of monthly bank deposits for period t,  

jµ is the unconditional expected excess return for asset j, 

jσ  is the standard deviation for security j, and, 

Zj,t  is the standardized random element of the return that represents  the uncertainty in returns 

and is assumed to be normally distributed. 

This model implies that the return on a security at a given time can be divided into three 

parts when compared to interest rates; interest rate dependent part of the security return, 

unconditional expected excess return of the security which is independent of the interest rate 

and a standardized random element. The parameters of the above equation are derived from 

historical data on security returns between periods September1990 and September 2000. 

Accordingly the estimated return on each security under any scenario is computed using; 

),(),(),( ,, tttjjjttttttj sLzsLINTSCENslSCENRETS σµ ++=   

where, SCENRETSj,t(lt, st)  is the expected percent real return on security j at time period t if 

lt is the resolved scenario path between periods 0 to t and  st is the anticipated scenario for 

period t. 

 

4. The Model 

 

We build an SPR model which will optimize portfolio decisions for an investor whose 

investment alternatives are a set of securities and monthly interest rates. Thus generation of 

scenarios is required at the first step of the analysis. The interest rate and rate of return 

scenarios for the planning horizons October-December 2000 and October 2000 and March 

2001 are generated. These interest rates (INTSCENt(lt,st)) and security returns 

(SCENRETSj,t(lt,st)) are used in the SPR model.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The Decision Tree for SPR 

 

It is assumed that real interest rates unfold on a tri-nomial lattice, thus our scenario tree is 

similar to that given in Figure 2. in which every node  denotes a different level of discretized 

interest rate in that period. Note also that each node  in every period has one link with only 

one node of the previous period and  three links with three different nodes of the next period, 

meaning that every realized scenario is assumed to unfold into three different anticipated 

scenarios in the next period.  
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The tree represented in Figure 2 is the same as the one given in Figure 1 except we now 

show the vectors of conditional decision variables of investments Yt at each node. As can be 

seen from this representation decisions at any node depends on the scenario path from t=0 to 

that node. Thus for example for t=2 there are nine sets of decision variables whereas we 

assume a total of 27 scenarios at the same time interval. Thus the general frame of decision 

making assumes that scenarios at a period are realized after the investment decision is made 

for that period on the basis of information available at that time. Using the same notation 

given in Figure1, decision variables at any node t will depend on only the scenario path lt 

between t = 0 and that specific node. We assume that the investment alternatives for the 

investor, are the 45 representative securities of ISE, and cash that is to be deposited at the 

monthly interest rate in TL (Turkish Lira) accounts. Our model does not allow any lending or 

borrowing. The securities used in the analysis are selected from those with sufficient 

historical data in the period September 1990-September 2000. In this model nominal monthly  

bank deposit rate is known and fixed at the beginning of the planning horizon( t = 0), but, 

since the inflation rate is unknown for the subsequent periods, real interest rates as well as the 

deflated stock returns are stochastic. Possible outcomes of the stochastic variables (namely the 

real interest rate and security returns) are determined by examining the monthly returns data 

of each security and monthly nominal bank deposit interest rates between September 1990 

and September 2000. All the data used for estimating the parameters for our model are 

deflated accordingly, thus the model uses real interest rates, and expected scenario returns. 

Now we formulate the SPR model. 

i) Objective Function: The objective of the SPR basically is to maximize  expected terminal 

wealth. Although this represents, by itself, an admissible objective, other specifications that 

allow for more specific risk perception are also possible. In this study three different 

specifications are considered. We first explain the model specification that maximizes 

expected terminal wealth minus a weighted penalty cost of downside and upside deviations 

from expected terminal wealth computed over each path starting from t = 0 and terminating at 

t = T. In order to be able to write the objective function explicitly we first must define 

expected terminal wealth and deviations. 

 ii) Computation of  Expected Terminal Wealth: After the last portfolio decisions are made at 

time instance T-1 and the anticipated scenarios sT-1 are observed,  the terminal wealth at the 

beginning of T is computed. W(lT) is actually the value of the portfolio at the end of the 

planning horizon computed for each scenario path lT between 0-T. This value depends on the 

path lT-1
 and every last period scenario sT-1, on the composition of the portfolio and the value 



of the securities at T. In our scenario tree for three periods( Figure 2) we will have 27.  W(lT) 

values since there are 27 terminating paths, lTs. Then an expected terminal wealth computed 

over all lTs can be computed using the equation: 

)()( TT lWlEXPW π=  

where, π(lT) is the probability for the path lT defined between t = 0 to t = T  

Deviations from the Expected Terminal Wealth 

In order to incorporate risk aversion in our model we first introduce a risk measure by 

writing: 

where, NEGDEVS(lT), POSDEVS(lT) are deviations from the expected terminal wealth and 

the terminal wealth of each lT. When the terminal wealth of one path is below the overall 

expected terminal wealth then this scenario path will produce a downside deviation, 

NEGDEVS. On the other hand if the terminal wealth of one path is above the expected 

terminal wealth this scenario path will produce an upside deviation, POSDEVS. According to 

the risk perception of the investor these deviations can be given weights and be inserted into 

the objective function to penalize investment plans that generate deviations from expected 

returns over the planning horizon. Having defined the terminal wealth and deviations we now 

define the objective function as:  

max [ ]
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 where, FI and F2 are the risk aversion constants which can be set to different levels by 

different investors. For an investor, who considers both downside and upside deviations from 

expected terminal return or wealth as a risk, F1 and F2 can be given positive values. On the 

other hand if an investor only considers downside deviation as risk, we can employ a positive 

F1 value while setting F2 to zero. Finally if the investor is risk neutral we set F1=F2=0. 

Having defined the objective function we formulate the constraints.  

iii) Budget Constraints: These constraints equate the value of portfolio holdings at the end of 

each period minus the transaction cost due to sale of securities to the value of portfolio 

holdings at the beginning of the following period. At the first stage (t=0), the initial capital 

equals the amount invested in securities plus the amount invested in stochastic monthly cash 

account interest rate 

EXPWlPOSDEVSlNEGDEVSlW TTT =−+ )()()(



CAPITALFREINTY
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j =+∑ 00 )(  

Decisions made at any period t, after t = 0 depend on the path lt meaning that they are 

conditioned on the realized scenarios until t, (s0, s1.., st-1). Hence at each time instance t there 

is one constraint for each path lt ; 
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iv) Inventory Balance Constraints: Inventory balance for each security is assured at each 

decision making point, for every resolved path and every anticipated scenario. According to 

the inventory balance constraints the stock of each security sold or remaining in the portfolio 

should be equal to the stock of the same security at the end of previous period, plus any 

amount purchased at the beginning of the current period.  
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v)Cash Flow Constraints: Cash flow constraints equate the amount invested in the purchase of 

new securities and in monthly bank deposits plus total transaction costs paid, to cash 

generated from the sale of securities plus income generated from the maturity of previous 

month’s bank deposits. There is one constraint for each lt, st and t. 
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vi) Arbitrage Constraints: The model should not allow arbitrage, that is simultaneous purchase 

and sale of a security at any time over the planning horizon. We satisfy this condition with the 

help of the following constraint; 

0)()( ,, =× ttjttj lSELLlBUY    ∀ j, t and lt 

vii)Non-negativity Constraint: Since we assume that no short sales and no borrowings are 

allowed all of our decision variables should be non-negative. 

All variables  ≥ 0. 

 



5.Solutions of the model 

 

In an SPR model choice of the planning horizon makes a difference. In this study, the 

model is solved for two planning horizons; first over three months and then over six months 

starting in October 2000. The interest rate scenarios were generated in section 2 for the 

horizon October-December 2000. This scenario tree is unfolded into three further periods in 

order to obtain the interest rate scenarios for the six month planning horizon model solution. 

Then security returns are computed in section 3 for each scenario based upon the interest 

rates.  

We solve the SPR model for three different objective functions as explained above. In the 

first function we utilize risk aversion coefficients of FI=F2=10 for both horizons. This 

objective function corresponds to an investor who wants to obtain robust terminal wealth 

values that do not fluctuate too much under different scenario paths. Thus this investor can be 

assumed to be both downside and upside risk averse. For the second set of solutions of the 

model we set F1=10 and F2=0. This case corresponds to an investor who does not like returns 

below expected terminal wealth and penalizes only downside deviations. Finally the third 

objective function utilizes F1=F2=0 which is the objective function of a risk neutral investor, 

who only maximizes her expected terminal wealth regardless of the sign of the deviations 

under different scenarios. Thus we solve the SPR model for the three objective functions 

given below; 
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Altogether, the SPR model is solved for six specifications, using combinations of three 

different objective functions and two different planning horizons. 

 

 

Solving the model for each of the six cases we obtain the results given in Appendices 

1,2,3 and 4. Our conclusion regarding these results are; 



• Choice of objective function and length of the planning horizon is crucial in portfolio 

optimization with SPR models. A model penalizing both downside and upside deviation 

will perform better when a longer planning horizon is used.  

• On the other hand for the short planning horizon choices,  a model with only downside 

deviation is more robust and does not result in any losses for the whole horizon.  

• Although a risk neutral model does not provide diversified portfolios for the initial period 

of the planning horizon, it results in the highest returns for most of the terminal scenarios. 

• Finally we suggest that SPR models should be solved for longer planning horizons than 6 

months which might be more promising for the ISE market, since such a model will 

consider more information about future realizations of the stochastic variables. 

 

5. Future Research 

 

These results should not be generalized without caution since we solve the model only for 

the initial period and do not roll over the model throughout the planning horizon. Also our 

scenario generation is very simple and does not consider many random variables of the 

economy such as inflation rates and exchange rates. Thus the scenarios employed by our 

model may not be entirely realistic. 

When ISE data is considered, for multi-period model, based on calculations of rolling over 

an initial investment of 1 T.L. over 21 months, it appears that utilization of downside risks in 

the objective function mostly resulted in better performances, thus implementation of 

downside risk models are more promising in the ISE market. However more work is needed 

to test different downside risk measures. 

Models employing more detailed and realistic scenario generation can be developed. 

These models may consider movements of more economic variables and their correlation. 

Also other constraints such as minimum transaction lots can be included. Other methods such 

as scenarios other than those generated can be used for measuring the performance of multi-

period portfolio models. 

 

 

 

 

 

 



Appendix 1 

Table 4.9 Scenarios and Actual Values of Security Returns for October 2000 (% return) 

 Scenarios for October 00 Actual Returns 
Stocks S0P S0N S0O  
AEFES -18.747 11.975 5.331 -2.253 
AKBNK -9.651 6.296 -24.052 -23.480 
AKCNS 12.598 13.404 -14.637 20.438 
AKGRT -20.686 -6.282 -19.989 16.984 
AKSA -21.740 20.892 -0.627 10.625 
ALARK 4.640 -15.042 2.789 17.778 
ALCTL -20.805 -7.574 2.893 -72.634 
ARCLK -10.330 -14.085 -2.244 -9.737 
ASELS -16.383 -9.268 14.787 16.496 
AYGAZ -10.900 -8.163 11.085 27.734 
DISBA -17.772 -2.691 -4.000 -46.867 
DOHOL -38.276 -1.732 -15.101 28.500 
DYHOL 1.285 6.599 -7.757 14.005 
ECILC -31.882 7.260 -8.838 24.807 
ECZYT -28.426 -6.475 -7.975 21.259 
EFES -0.55 -11.670 -14.433 43.959 
ENKA 2.936 -11.785 -4.000 24.729 
EREGL -10.827 -12.632 42.359 10.058 
FROTO 1.887 -8.451 -5.425 -44.052 
GARAN -35.628 -3.095 -16.659 -60.521 
GIMA -12.636 9.188 -17.802 10.108 
GLMDE -33.883 0.627 25.195 -23.498 
HURGZ -27.754 -3.200 -7.351 -25.625 
IHLAS -14.227 -2.681 -15.739 10.536 
ISCTR -17.516 14.998 12.052 -23.550 
ISGYO -1.999 -1.473 -2.525 -9.231 
KCHOL -24.125 -5.282 -10.845 9.196 
KIPA 17.529 1.512 0.022 20.269 
KRDMD 4.125 -0.152 4.054 -7.698 
MIGRS -21.070 -13.975 22.148 15.071 
NETAS -7.882 9.522 -22.984 31.606 
NTHOL -16.628 -21.431 4.215 -6.167 
OTKAR -17.985 17.769 -24.393 -23.264 
PETKM -19.613 10.859 25.600 34.109 
PRKTE -0.55 -13.685 -18.602 -40.137 
PTOFS -22.930 -2.878 29.333 10.108 
SAHOL -9.467 14.505 -3.748 -6.699 
SISE -6.261 3.868 -7.992 19.481 
THYAO -7.178 -35.144 13.457 47.187 
TNSAS 17.384 -17.705 1.592 31.630 
TOASO -32.663 1.207 14.883 42.978 
TRKCM -14.596 -12.719 -6.913 -19.243 
TUPRS -21.095 -2.978 31.459 3.025 
VESTEL -7.260 8.795 -2.485 11.206 
YKBNK -13.693 12.186 7.926 -21.156 
INTEREST 1.535 1.009 0.482 0.358 

 

 

 



Appendix 2: Portfolio Compositions of the Models for October 2000 

  OBJ. FUNCTION=(1) OBJ. FUNCTION=(2) OBJ. FUNCTION=(3) 
 % for  % for  % for  % for  % for  % for 

STOCK 3-m P.H. 6-m P.H. 3-m P.H. 6-m P.H. 3-m P.H. 6-m P.H. 
AEFES 0 0,071 0 0 0 0 
AKBNK 0 0 0 0 0 0 
AKCNS 0 0 0 0 0 0 
AKGRT 0,73312 0 0 2.373 0 0 
AKSA 0 0,393 0 0 0 0 
ALARK 0 0,017 0 0 0 0 
ALCTL 0 0 0 0 0 0 
ARCLK 0 0 0 0 0 0 
ASELS 0 0 0 0 0 0 
AYGAZ 0 0 0 0 0 0 
DISBA 0 0,198 0 0 0 0 
DOHOL 27,67563 92.842 0 0,219 0 0 
DYHOL 0 1.529 0 0 0 0 
ECILC 0 0 0 0 0 0 
ECZYT 5,59609 0 0 0 0 0 
EFES 0 1.946 0 0 0 0 
ENKA 0 0 0 0,242 0 0 
EREGL 0 0 7.922 0 0 0 
FROTO 0 0 0 0 0 0 
GARAN 6,54585 0 0 0 0 0 
GIMA 0 0 0 0 0 100 
GLMDE 0 0,432 0 0,939 0 0 
HURGZ 0 0,294 0 0 0 0 
IHLAS 0 0 0 0 0 0 
ISCTR 0 0 0 0 0 0 
ISGYO 0 0 0 92.971 0 0 
KCHOL 1,27822 0 0 0 0 0 
KIPA 0 0 19.725 0 0 0 
KRDMD 0 0 0 3.016 0 0 
MIGRS 0 0,126 0 0 0 0 
NETAS 0 0 0 0 0 0 
NTHOL 9,59073 0 0 0 0 0 
OTKAR 0 0,438 0 0,108 0 0 
PETKM 0 0 0 0 0 0 
PRKTE 35,00974 1.208 0 0 0 0 
PTOFS 0 0 0 0 0 0 
SAHOL 0 0,292 0 0 0 0 
SISE 0 0 0 0 0 0 
THYAO 8,97306 0,214 0 0 0 0 
TNSAS 0 0 0 0 0 0 
TOASO 0 0 0 0 0 0 
TRKCM 4,59757 0 0 0 0 0 
TUPRS 0 0 0 0,132 0 0 
VESTEL 0 0 0 0 0 0 
YKBNK 0 0 0 0 0 0 
INTEREST 0 0 72.353 0 100 0 

 

 



Appendix 3: Expected and Realized Portfolio Values at the End of October 2000 

  OBJ. FUNCTION=(1) OBJ. FUNCTION=(2) OBJ. FUNCTION=(3) 
3-m P.H. 6-m P.H. 3-m P.H. 6-m P.H. 3-m P.H. 6-m P.H. Scenario  
Portfolio 
value 

portfolio 
value 

portfolio 
value 

portfolio 
value 

portfolio 
value 

portfolio 
value 

S0P 81,92 62,61 103,33 97,33 101,01 87,36
S0N 88,25 98,10 100,40 98,47 101,54 109,19
S0O 88,78 85,03 103,71 97,51 100,48 82,20
Overall 86,31 81,92 102,48 97,77 101,01 92,91
Realized 94,06 128,64 105,05 91,47 100,36 110,11
 

Appendix 4: Terminal Wealth(W(l3)) of the Models for Each Scenario Path 
 

Scenario Path OBJ. FUNCTION (1) OBJ. FUNCTION (2) OBJ. FUNCTION (3) 
l3 3-M. P.H. 3-M. P.H. 3-M. P.H. 
s0

P.s1
P.s2

P 50.450 109.440 88.391

s0
P.s1

P.s2
N 63.206 109.182 103.990

s0
P.s1

P.s2
O 52.899 109.510 131.494

s0
P.s1

N.s2
P 52.507 109.418 156.686

s0
P.s1

N.s2
N 58.577 108.243 118.778

s0
P.s1

N.s2
O 57.377 105.251 135.528

s0
P.s1

O.s2
P 51.133 136.733 167.170

s0
P.s1

O.s2
N 51.499 118.914 116.061

s0
P.s1

O.s2
O 36.771 139.718 153.565

s0
N.s1

P.s2
P 48.959 109.446 117.201

s0
N.s1

P.s2
N 44.523 109.044 116.772

s0
N.s1

P.s2
O 65.705 108.654 116.344

s0
N.s1

N.s2
P 66.090 109.490 126.662

s0
N.s1

N.s2
N 86.319 109.418 113.749

s0
N.s1

N.s2
O 88.502 114.713 144.560

s0
N.s1

O.s2
P 86.896 109.197 114.989

s0
N.s1

O.s2
N 82.738 109.235 165.670

s0
N.s1

O.s2
O 63.773 109.507 169.563

s0
O.s1

P.s2
P 51.733 109.134 82.479

s0
O.s1

P.s2
N 44.353 108.566 82.628

s0
O.s1

P.s2
O 59.896 109.450 73.269

s0
O.s1

N.s2
P 61.538 109.450 91.242

s0
O.s1

N.s2
N 55.502 108.633 111.533

s0
O.s1

N.s2
O 53.122 118.625 97.142

s0
O.s1

O.s2
P 95.335 117.432 194.447

s0
O.s1

O.s2
N 75.180 123.611 201.919

s0
O.s1

O.s2
O 70.795 105.587 131.850

 
 
 

 
 

 

 



References: 

 

Birge, J.R., Louveaux, F., 1997. Introduction to Stochastic Programming, Springer-Verlag 

Inc., New York. 

Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An Empirical Comparison 

of Alternative Models of the Short-Term Interest Rate, The Journal of Finance, Vol. 47, 

pp.1209-1227. 

Chow, G.C., 1997. Dynamic Economics: Optimization by the Lagrange Method, Oxford 

University Press, Oxford. 

Cocks, K.D., 1968. Discrete Stochastic Programming, Management Science, Vol. 15, pp.72-

79. 

Grinold, R.C., 1999. Mean-Variance and Scenario-Based Approaches to Portfolio Selection, 

Journal of Portfolio Management, Vol.25, Issue 2, pp10-22. 

Grootveld H., Hallerbach W., 1999. Variance vs. Downside Risk: Is There Really That Much 

Difference?, European Journal of Operational Research, Vol. 114, pp.304-319. 

Mulvey, J.M., Vladimirou, H., 1992. Stochastic Network Programming for Financial Planning 

Problems, Management Science,Vol.38, pp.1642–1664. 

Mulvey, J.M., Rosenbaum, D.P., Shetty, B., 1997. Srategic Financial Risk Management and 

Operations Research, European  Journal of Operations Research,  Vol.97, pp.1–16. 

Mulvey, J.M., Rosenbaum, D.P., Shetty, B., 1999, Parameter Estimation in Stochastic 

Sceneario Generation Systems, European Journal of Operational Research, Vol. 118, pp. 

563-577.  

Pflug, G.Ch., 2000, Scenario Tree Generation for Multi-period Financial Optimization by 

Optimal Discretization, Mathematical Programming, Vol. 89, pp.251-271.  

Sengupta, J.K., 1982. Decision Models in Stochastic Programming, Elseiver Science 

Publishing Co., Inc., New York. 

Zenios, S. A.; Holmer, M.R. McKendall, R., Vassiadou-Zeniou, C., 1998. Dynamic Models 

for Fixed-Income Portfolio Management Under Uncertainty, Journal of Economic Dynamics 

and Control, Vol.22 , pp.1517-1541. 

 

 


	Abstracts: 
	Table of Contents: 
	back to the top: 


