
A Parameter Estimation Method to Minimize Instabilities in 
System Dynamic Models 

 
 

Alfonso T. Sarmiento1, Luis Rabelo1, Reinaldo Moraga 2, Albert Jones3

 
1Department of Industrial Engineering & Management Systems 

University of Central Florida, Orlando, Florida 32816 
sarmient@mail.ucf.edu , lrabelo@mail.ucf.edu 

 
2Department of Industrial & Systems Engineering 

Northern Illinois University, De Kalb, Illinois 60115 
moraga@ceet.niu.edu 

 
3National Institute of Standards & Technology 

Gaithersburg, Maryland 20899 
albert.jones@nist.gov 

 
 

Abstract 
This paper introduces a new method that facilitates the stability analysis of system dynamics 
models. The method is based on the concepts of asymptotic stability and Accumulated 
Deviations from Equilibrium (ADE) convergence. We prove several theorems that show that 
ADE convergence of a state variable will make its trajectory approach asymptotic stability.  
Achieving ADE convergence requires the solution of a policy optimization problem.  We use an 
approach called Behavior Decomposition Weights (BDW) to reduce the search space associated 
with that optimization problem. We also demonstrate this method on two examples: a linear 
“inventory-workforce” model and a non-linear “mass business cycle model”.  These examples 
illustrate the features of this method and the potential for the development of efficient tools to 
improve the quality of the optimization policies. 
 
Keywords: model analysis, stability, equilibrium point, behavior decomposition weights, 
optimization 
 
Introduction 
Since Forrester’s pioneering work in 1961, the use of Systems Dynamic (SD) to evaluate the 
influence of policies on complex systems has increased dramatically. Applications of SD models 
can be found in numerous domains including manufacturing, energy, healthcare, management, 
economics, and sociology. In those models, decisions are represented by a set of parameters, 
referred to as “policy parameters” (Grossmann 2002). Policy optimization finds policies that 
optimize a given objective function to modify the system behavior by changing the parameter 
values. SD models coupled with policy optimization techniques have proven to be a very 
powerful means for improving the behavior of such systems (Mohapatra and Sharma 1985).  In 
general, once a SD model is validated, behavior can be predicted, and current system policies 
revised or changed until the desired system behavior is achieved. In the case of stability analysis 



the goal is the minimization of the ripple effects that have a huge, negative impact on the 
behavior of the system. 
 
The policy design process consists of systematic evaluation of behavior while (1) changing 
policy parameters at different values, (2) changing connections within causal loops, and/or (3) 
inserting new elements into a model (Starr 1980). The evaluation is performed using the 
validated SD model.  Changes are based on two approaches: analytic and synthetic (Porter 1969).  
In the analytic approach, changes are based on an analyst’s prior experience. In the synthetic 
approach, changes are based on either modal control theory or optimization theory (policy 
optimization). 
 
Modal control methods build the desired policy by using the eigenvalues of the motion equations 
(Macedo 1989). Some excellent articles within this area are those of: Talavage (1980); 
Mohapatra and Sharma (1985); and Ozveren and Sterman (1989); among others. While these 
methods are very powerful, the complexity of the associated mathematics makes them difficult to 
use for managers and practitioners. 
 
Optimization theory methods include mathematical programming, genetic algorithms, neural 
networks, response surface methodology, and algorithmic search. Some excellent articles include 
Grossman (2002); Bailey et al. (1998); Chen and Jeng (2004); Higuchi (1996); Macedo (1989); 
Keloharju and Wolstenholme (1989); and Burns and Malone (1974). Chen and Jeng’s (2004) 
work is of particular interest because they combine several of the aforementioned methods. First, 
they transform the SD model into a recurrent neural network; then, they use a genetic algorithm 
to generate policies by fitting the desired system behavior to patterns established in the neural 
network. Chen and Jeng claim their approach is flexible in the sense that it can find policies for a 
variety of behavior patterns including stable trajectories. However, the transformation stage 
might become difficult when SD models reach real-world sizes. 
 
In addition to the previous methods, in the literature is possible to find works related to the 
structural analysis of the model. They can be used to identify relevant parameters of the model 
that affect certain behavior modes. Very good articles are those of Saleh et al. (2007); Gonçalves 
(2006); and Guneralp (2005). These methods require the linearization of the model. 
  
In this paper, we present a promising method for policy optimization based on the concept of 
Accumulated Deviations from Equilibrium (ADE).  Our method relies upon a theorem that states 
ADE convergence of a particular state variable implies asymptotic stability for that variable. 
Asymptotic stability for all state variables means asymptotic stability for the entire system. The 
ADE method does not need the linearization of the model and can be implemented easily in any 
SD modeling language.  Its simplicity makes it an effective tool for practitioners in the analysis 
of highly nonlinear dynamic systems, especially those with oscillatory behavior.  
 
These systems are represented by models which are described by their structure and parameters. 
Although in a practical environment managers have not control over all parameters of the model, 
for large-scale complex models the number of parameters they manipulate can still affect the 
performance of the searching algorithm used for policy optimization. This is not the case for the 
small and mid-size examples provided in this paper and due to the quick convergence of the local 



search algorithm used; nonetheless we still consider important to demonstrate how the ADE 
method can be complemented with the behavior decomposition weights (BDW) approach (Saleh 
et al. 2007) to reduce the search space in the policy optimization problem. 
 
In the following section, we describe our approach to stability analysis and include some 
important definitions and theorems. In the subsequent section, we introduce the ADE method 
and show its application to both linear and nonlinear cases. In the appendices, we provide proofs 
of the theorems. 
 
Stability Analysis 
Related Definitions and Theorems 
Conceptually, stability in a dynamic system means that once the system reaches an equilibrium 
point (EP), it will stay near that equilibrium point for all future time. Formal definitions follow. 
 
Definition 1 The point neq R∈x  is said to be an equilibrium point of the differential equation 

(t))((t) xfx =& * if it has the property that once the corresponding system reaches  at time teqx eq it 
will remain at  for all future time; in other words, eqx 0xf =)(t)(  for all t ≥ teq.  
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condition holds for all state variables then the system is said to be stable. 
 
For our purpose, we would like to augment this notion of stability to include the reduction or 
minimization of oscillatory behavior around the EP.  Therefore, we introduce the notion of 
asymptotic stability. Conceptually, a system is to be said asymptotically stable if the system 
trajectory converges to the EP as time increases indefinitely. The formal definition is 
 
Definition 3 Consider the system defined by 0(0)(t));((t) xx  xfx ==& ; where 

. The state variable  is defined to be asymptotically stable 
(around the EP ) if it is both stable (satisfies Definition 2), and additionally, we have 
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be asymptotically stable. 
 
The following definition provides the concept of ADE, which is the main element of our method. 
Theorem 1 states that the ADE convergence of a state variable of interest will make the 
trajectory of this variable to converge to the EP, and therefore achieving asymptotic stability. If 

                                                 
* t)t((t) ∂∂= xx&  
† Given a n-vector x(t), its components are represented by the symbol [xs(t)]=[x1(t), x2(t),..., xn(t)]T. In state model 
representation x(t) is called the state vector and xs(t) is the s-th state variable. 
‡ The symbol |c| represents the absolute value of c. 



all state variables converge to the EP then the system is asymptotically stable, as stated in 
Definition 3. 
 
Definition 4 Consider the system defined by 0(0)(t));((t) xx  xfx ==& ; where  

. For the state variable the accumulated deviations from 

its EP  is defined as  
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Theorem 1 Consider the system defined by 0(0)(t));((t) xx  xfx ==& ; where  
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Parameter Estimation Method 
The SD model can be described by an equation of the form ) ),t(((t) pxfx =& , where  is the 
vector of state variables (dimension n) and 

)t(x
p is a vector of adjustable parameters (dimension q) 

with lower and upper bounds and respectively. Lp Up
 
Using the results of Theorem 1 we can formulate an optimization problem that will find the 
parameter vector  that causes the state variable  to become asymptotically stable around the 
equilibrium point . We will find this optimal parameter vector by minimizing the ADE for 
predetermined time horizon T and making use of Theorem 1.  That is, we will find the vector that 
makes ADE converge

*p sx
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The use of weights, ws, means that J(p) will support the simultaneous stabilization of any subset 
of m state variables .  Positive weights can be assigned to these variables in any way, )nm( ≤

                                                 
§ One way to check the convergence of ADE is by adding a new state variable to the model, called “ADE” (see 
Figure 1), and graphically verify that its graph becomes a flat line when time goes to T. If necessary the time horizon 
T should be increased to obtain similar effects of convergence that when time goes to infinity. 



provided the normalization constraint ( ) is met. This allows higher weights to be 

assigned to the variables that are considered more important.  
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If we do not know the equilibrium point  in advance, we can modify J(p) to include it as a 
variable ( ) and change to optimization of the problem

eq
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This amounts to including (s=1,..,m) as part of the solution vector p. The following theorem 
guarantees that the values of  obtained from the optimization will, in fact, coincide with the 
equilibrium points (s=1,..,m). 

sa
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Theorem 2 Consider the system defined by 0(0);))t(((t) xx  xfx ==& ; where  

. If 

;(t) nR∈x

[ ] n1,..,s , )t(x(t) ;: s
nn ==→ xf RR ∫

∞

−
0

ss dt a)t(x  converges then . eq
ss xa =

The objective function defined in (2) can be incorporated very easily into any SD formulation by 
adding a “stock and flow” piece to the model that is linked to the state variables of interest as 
illustrated in Figure 1. Then we define the variables DE and ADE as 
 
DE=w1*ABS(State Var. 1-a1)+w2*ABS(State Var. 2-a2)+....+wm*ABS(State Var. m-am) 
 
ADE=INTEG(DE,0) 
 

ADE
DE

....

a1 a2 am....

<State Var. 1> <State Var. 2> <State Var. m>
 

Figure 1 Stock and flow diagram for the objective function 
 
We now illustrate the application of the proposed method using two examples†† taken from Saleh 
et al. (2007). We will show that their results can be used to reduce the search space in our 
optimization problem.  
                                                 
** For example, for an inventory variable, the interval of variation of its EP in the optimization problem would be 
based on the minimum and maximum levels of inventory determined by the production plan. 



Example 1: The Inventory-Workforce model 
Our first example is a manufacturing supply chain that includes labor as an explicit factor of 
production.  Saleh et al. (2007) developed a linear SD model for this supply chain by modifying 
Sterman’s original model (2000). The interactions between inventory management policies and 
the labor adjustment policies are the main cause for the oscillatory behavior of the supply chain. 
To capture the impact of these policies, Saleh et al. (2007) created four state variables: inventory, 
work in process (WIP) inventory (see Figure 2‡‡), vacancies, and labor (see Figure 3). 
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Figure 2 Structure of inventory management sector 
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Figure 3 Structure of labor sector 

 
The set of parameters in Table 1 define the base policy for this supply chain, called “policy I-0”.  
 

Parameter Value Unit 
Manufacturing Cycle Time 8 Weeks 
Inventory Adjustment Time 12 Weeks 
Average Duration of Employment 100 Weeks 
Average Time to Fill Vacancies 8 Weeks 
Labor Adjustment Time 19 Weeks 

                                                                                                                                                             
†† The files with the models are provided as supporting material. They are a copy of the models used by Saleh et al. 
(2007) but with slight modifications basically in formatting. 
‡‡ Customer Order Rate is considered an exogenous variable. Productivity and Standard Workweek are assumed to 
be constants with values 0.25 widgets/person-hour and 40 hours/week respectively. 



Vacancy Adjustment Time 4 Weeks 
WIP Adjustment Time 6 Weeks 
Minimum Order Processing Time 2 Weeks 
Safety Stock Coverage 2 Widgets 

Table 1 Parameter values for the base policy 
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Figure 4 Behavior of state variables for the base policy I-0 

 
At time 0, the system starts at the equilibrium points: 80000, 40000, 80, and 1000 for the 
variables WIP Inventory, Inventory, Vacancies and Labor respectively. Figure 4 shows the 
system’s response to an unanticipated 2% increase in customer orders in week five. The figure 
shows sharp increases in all variables follow by several oscillatory fluctuations.  These 
fluctuations are caused by delays in production. Can we determine new parameter settings that 
can damp these fluctuations quickly? 
 
Policy optimization to improve the behavior of the system 
To answer this question, we will apply our proposed formulation. In our initial investigation, we 
assign equal weights (ws=0.25, s=1,..,4) to previously mentioned four state variables.  So our 
optimization problem becomes  
 
Let x1=Work in Process Inventory, x2=Inventory, x3=Vacancies, x4=Labor 
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§§ See the supporting material for the model equations.  



1 ≤ Manufacturing Cycle Time ≤ 50 
1 ≤ Inventory Adjustment Time ≤ 50 
50 ≤ Average Duration of Employment ≤ 150 
1 ≤ Average Time to Fill Vacancies ≤ 50 
1 ≤ Labor Adjustment Time ≤ 50 
1 ≤ Vacancy Adjustment Time ≤ 50 

  1 ≤ WIP Adjustment Time ≤ 50 
1 ≤ Minimum Order Processing Time ≤ 50 
1 ≤ Safety Stock Coverage ≤ 50 
10000 ≤ a1 ≤ 150000 
10000 ≤ a2 ≤ 150000 
10 ≤ a3 ≤ 1000 
100 ≤ a4 ≤ 10000 
 

To solve this optimization problem, we used the implementation of the Powell hill-climbing 
algorithm*** included in our SD modeling program.  The program yielded the parameter results, 
which we call “policy I-1”, shown in Table 2.  Table 2 also includes parameters a1, a3 and a4 
which are the new equilibrium points for state variables. The time to modify the 13 parameters of 
“policy I-1” (after 1757 iterations of the algorithm) was 17 seconds. 
 
Figure 5 shows the behavior of the state variables when this revised policy is applied at the fifth 
week. While there are, indeed, changes to these variables, their fluctuations have all but 
disappeared.  These results point out some interesting tradeoffs.  Because production and labor 
are directly proportional, decreasing the time to adjust labor and vacancies will help production 
to track to the desired rates more closely. Increasing the inventory adjustment time, moreover, 
means fewer inventory corrections will be needed in response to the demand change. On the 
other hand, decreasing the time to adjust WIP inventory reduces the likelihood that the actual 
inventory will fall to unacceptable levels. This, in turn, means that increasing the production rate 
to ensure inventory levels sufficient to meet the increased demand will not be necessary.   
Changes in other parameters like manufacturing cycle time and average duration of employment 
were not very significant. 
 
 

Parameter Value Unit 
Manufacturing Cycle Time 7.71 Weeks 
Inventory Adjustment Time 50 Weeks 
Average Duration of Employment 109.66 Weeks 
Average Time to Fill Vacancies 5.25 Weeks 
Labor Adjustment Time 7.83 Weeks 
Vacancy Adjustment Time 1 Weeks 
WIP Adjustment Time 3.75 Weeks 
Minimum Order Processing Time 1.93 Weeks 
Safety Stock Coverage 1.99 Weeks 
a1 (EP for WIP) 78646.9 Widgets 

                                                 
*** All the runs of the algorithm were executed on a 1.86 GHz Pentium PC with 1GB of memory. 



a2 (EP for Inventory) 40000 Widgets 
a3 (EP for Vacancies) 48.78 People 
a4 (EP for Labor) 1020 People 

Table 2 Parameters values for policy I-1 
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Figure 5 Behavior of state variables for policy I-1 

 
Reducing the search space using BDW 
This example has 9 parameters, not including the four equilibrium points, that can be included in 
the stabilization policy. We now show how to reduce the search space by using the results from 
the BDW analysis performed by Saleh et al. (2007).  Using the common concept of elasticity, the 
authors found three parameters with high impact on the oscillatory behavior of the inventory 
variable and three variables with low impact.  The high-impact variables were manufacturing 
cycle time, inventory adjustment time, and labor adjustment time. The low-impact variables were 
average duration of employment, safety stock coverage, and minimum processing time. We 
decided to eliminate these low-impact variables and resolve the optimization problem. Table 3 
shows the results and, called “policy I-2”, and Figure 6 shows the behavior of the state variables 
when this policy is applied at the fifth week. The time to modify the 10 parameters of “policy I-
2” (after 1404 iterations of the algorithm) was 14 seconds. 
 

Parameter††† Value Unit 
Manufacturing Cycle Time 7.93 Weeks 
Inventory Adjustment Time 22.25 Weeks 
[Average Duration of Employment] 100 Weeks 
Average Time to Fill Vacancies 1 Weeks 
Labor Adjustment Time 3.31 Weeks 

                                                 
††† The parameters in brackets were considered constants in this optimization problem, keeping their values from the 
base policy. 



Vacancy Adjustment Time 50 Weeks 
WIP Adjustment Time 9.09 Weeks 
[Minimum Order Processing Time] 2 Weeks 
[Safety Stock Coverage] 2 Widgets 
a1 (EP for WIP) 80880.4 Widgets 
a2 (EP for Inventory) 40799.3 Widgets 
a3 (EP for Vacancies) 10.20 People 
a4 (EP for Labor) 1020.14 People 

Table 3 Parameters values for policy I-2 
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Figure 6 Behavior of state variables for policy I-2 

 
The qualitative behavior of the state variables under this policy is same as under I-1.  There are, 
however, some notable quantitative differences. Two high-impact leverage parameters, inventory 
adjustment time and labor adjustment time, show more than 50% change under this new policy. 
And, two equilibrium points, WIP inventory and inventory, are a little bit higher under this 
policy.  
 
Example 2: The Mass business cycle model 
Mass (Mass 1975) developed a non-linear SD model to explore the economic processes 
underlying business-cycle behavior. Business cycles are recurring fluctuations in the macro-
economy that affect total production, prices, employment, inventories and capital investment. In 
this example, we are using the simplified version of the Mass’ model designed by Kampmann 
and Oliva (2006). This version contains a production sector that includes the inventory sector 
(Figure 7‡‡‡) plus two factors of production: labor sector (Figure 8) and capital sector (Figure 9). 

 
‡‡‡ Man-Hours per year Normal is assumed to be constant with value 2080 hours/man-year, reflecting a normal 
forty-hour work week for fifty-two weeks per year. 



We will focus our analysis on the three main state variables of the model: Capital, Inventory and 
Labor.  
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Figure 7 Structure of inventory management sector 
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Figure 8 Structure of labor sector 
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Figure 9 Structure of capital sector 

 
The parameters of the base policy, called “policy M-0”, are shown in the next table. 
 

Parameter Value Unit 
Normal Production Rate (NProd) 3E06 Units/year 
Initial Capital (IK) 7.5E06 Capital Units 
Initial Labor (IL) 1500 People 
Time to Average Production Rate (tAPR) 1 Years 
Normal Inventory Coverage (NIC) 0.5 Years 
Time to Correct Inventory and Backlog 
(tCIB) 

0.8 Years 

Normal Backlog Coverage (NBC) 0.2 Years 
Delay in Filling Vacancies (dFV) 0.25 Years 
Time to Average New Vacancy Creation 
(tANVC) 

0.5 Years 

Time to Adjust Labor (TAL) 0.5 Years 
Normal Duration of Employment (NDE) 2 Years 
Time to Average Orders for Capital 
(tAOK) 

4 Years 

Delivery Delay for Capital (dDK) 2 Years 
Time to Adjust Capital (tAK) 4 Years 
Normal Life of Capital (NLK) 15 Years 

Table 4 Parameter values for the base policy M-0 
 
Figure 10 shows the behavior of the system that was started slightly out of equilibrium. Since 
there are no additional perturbations, the model, after some initial fluctuations, settles to 
equilibrium within approximately 26 to 30 years. 
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Figure 10 Behavior of state variables for the base policy M-0 

 
Policy optimization to improve the behavior of the system 
Similarly to what we did in Example 1, we will apply the formulation proposed in the parameter 
estimation problem to obtain a stabilization policy for the state variables. To do this, we again 
use equal weights for those variables. With this assumption, we get the following formulation 
 
Let x1=Capital, x2=Inventory, x3=Labor 

∑ ∫
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1E06 ≤ Normal Production Rate ≤ 1E07 
1E06 ≤ Initial Capital ≤ 1E07 
1E02 ≤ Initial Labor ≤ 1E04 
0.1 ≤ Time to Average Product Rate ≤ 5 
0.1 ≤ Normal Inventory Coverage ≤ 5 
0.1 ≤ Time to Correct Inventory and Backlog ≤ 5 

  0.1 ≤ Normal Backlog Coverage ≤ 5 
0.1 ≤ Delay in Filling Vacancies ≤ 5 
0.1 ≤ Time to Average New Vacancy Creation ≤ 5 
0.1 ≤ Time to Adjust Labor ≤ 5 
0.1 ≤ Normal Duration of Employment ≤ 5 
1 ≤ Time to Average Order for Capital ≤ 10 
1 ≤ Delivery Delay Capital ≤ 10 

                                                 
§§§ See the supporting material for the model equations. 



1 ≤ Time to Adjust Capital ≤ 10 
1 ≤ Normal Lifetime of Capital ≤ 20 
1E06 ≤ a1 ≤ 1E07 
5E05 ≤ a2 ≤ 5E06 
1E02 ≤ a3 ≤ 1E04 

 
The optimal parameters yield the improved policy, called “policy M-1”, shown in Table 5. 
Figure 11 shows the behavior of the main state variables for this revised policy. The time to 
modify the 18 parameters of “policy M-1” (after 1643 iterations of the algorithm) was 25 
seconds. 
 

Parameter Value Unit 
Normal Production Rate (NProd) 3.012E06 Units/year 
Initial Capital (IK) 7.5E06 Capital Units 
Initial Labor (IL) 1240.76 People 
Time to Average Production Rate (tAPR) 0.89 Years 
Normal Inventory Coverage (NIC) 0.5 Years 
Time to Correct Inventory and Backlog 
(tCIB) 

0.1 Years 

Normal Backlog Coverage (NBC) 0.2 Years 
Delay in Filling Vacancies (dFV) 0.36 Years 
Time to Average New Vacancy Creation 
(tANVC) 

3.5 Years 

Time to Adjust Labor (TAL) 1.80 Years 
Normal Duration of Employment (NDE) 1.89 Years 
Time to Average Orders for Capital 
(tAOK) 

8.62 Years 

Delivery Delay for Capital (dDK) 1 Years 
Time to Adjust Capital (tAK) 1 Years 
Normal Life of Capital (NLK) 15.04 Years 
a1 (EP for Capital) 8.611E06 Capital Units 
a2 (EP for Inventory) 1.727E06 Units 
a3 (EP for Labor) 1434.37 People 

Table 5 Parameters values for policy M-1 
 
Figure 11 shows that the system has reached equilibrium points and remains stable after only 6 
years. Moreover, the system has no significant fluctuations in capital and inventory, although 
their equilibrium points have increased. This was achieved by increasing several parameter 
values including time to average orders for capital, time to average new vacancy creation and 
time to adjust labor, and decreasing several other parameter values including delivery delay for 
capital, time to correct inventory and backlog, time to adjust capital, and initial labor.  
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Figure 11 Behavior of state variables for policy M-1 

 
Reducing the search space using BDW 
The stabilization policy comprises 15 parameters, not including the equilibrium points. Saleh et 
al. (2007) used weight elasticities to identify four key parameters that impact the behavior of 
Capital significantly: time to average orders for capital, delivery delay for capital, time to adjust 
capital, and normal life of capital. They also identified five parameters that impact the 
interactions between Capital and Inventory significantly: normal inventory coverage, initial 
labor, normal production rate, time to adjust capital, and time to average orders for capital. The 
total number of distinct parameters in the optimization can be reduced to seven; a significant 
reduction in the size of the search space.  
 
Table 6 shows the resulting policy, “policy M-2”, and Figure 12 shows the behavior of the state 
variables when this policy is applied. The time to modify the 10 parameters of “policy M-2” 
(after 617 iterations of the algorithm) was 9 seconds. 
 

Parameter**** Value Unit 
Normal Production Rate (NProd) 3E06 Units/year 
[Initial Capital (IK)] 7.5E06 Capital Units 
Initial Labor (IL) 1459.69 People 
[Time to Average Production Rate (tAPR)] 1 Years 
Normal Inventory Coverage (NIC) 0.50 Years 
[Time to Correct Inventory and Backlog 
(tCIB)] 

0.8 Years 

[Normal Backlog Coverage (NBC)] 0.2 Years 
[Delay in Filling Vacancies (dFV)] 0.25 Years 

                                                 
**** The parameters in brackets were considered constants in this optimization problem, keeping their values from 
the base policy. 



[Time to Average New Vacancy Creation 
(tANVC)] 

0.5 Years 

[Time to Adjust Labor (TAL)] 0.5 Years 
[Normal Duration of Employment (NDE)] 2 Years 
Time to Average Orders for Capital 
(tAOK) 

10 Years 

Delivery Delay for Capital (dDK) 1 Years 
Time to Adjust Capital (tAK) 2.72 Years 
Normal Life of Capital (NLK) 14.89 Years 
a1 (EP for Capital) 8.628E06 Capital Units 
a2 (EP for Inventory) 1.735E06 Units 
a3 (EP for Labor) 1679.26 People 

Table 6 Parameters values for policy M-2 
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Figure 12 Behavior of state variables for policy M-2 

 
This policy improves stability mainly by increasing the parameter time to average orders for 
capital and decreasing the parameters delivery delay for capital, and time to adjust capital. This 
policy shows some amplification before reaching the steady state for the variables capital, 
inventory and labor. Moreover, the equilibrium points are higher for these three variables than 
the ones with the base policy. 
 
Conclusions 
We proposed a new approach to modeling and solving policy optimization problems in system 
dynamics models. This approach provides a direct connection between the parameters of the 
model and the underlying mechanisms that govern its behavioral changes. Moreover, the solution 
approach, which uses ADE, does not require direct knowledge of the internal structure of the 
model.  It also does not require linearization of the system or eigenvalue calculations.  



 
We noted that other authors have shown how to use weight elasticities to identify a subset of the 
parameters that have the most impact on system stability. We showed how to use those 
parameters to reduce the search space for the optimization.  Moreover, our method can be used 
with other approaches like LEEA (Kampmann and Oliva 2006) that also identify important 
parameters of the model.  
 
We demonstrated the potential benefits of this approach on two example models. We argued that 
the simplicity of our approach makes it an effective tool for practitioners – especially when 
dealing with systems that exhibit highly non-linear, oscillatory behavior.  
 
The Powell hill-climbing algorithm performed well for the examples presented in this paper, 
taken just few seconds to generate the different policies. We see from the results of the 
experiments that performance is related to the number of parameters, linearity/nonlinearity of the 
model, and number of iterations required to solve the problem.  
 
Future Work 
The Powell hill-climbing algorithm belongs to a family of local search techniques that work well 
when the initial solution is close to the equilibrium point. However, stabilization policies 
obtained using this algorithm, are constrained to equilibrium states near the initial solution, 
which may not be the global optimum. Although, it is not required to find the global optimum to 
obtain a satisfactory reduction in instability, more efficient searching algorithms that escape local 
convergence may produce better solutions that may lead to fewer oscillations and faster stability. 
Therefore, we will experiment with other types of techniques that avoid premature convergence 
to a local optimum such as Particle Swarm Optimization (Kennedy and Eberhart 1995). 
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APPENDIX A: ADDITIONAL DEFINITIONS AND THEOREMS 
 
Definition A.1 Linearization around an Operating Point 
The linearization of the nonlinear system equations at an operating point is done by using the 
Taylor series expansion, as it is shown next. 
 
Consider the nonlinear system defined by (t));((t) xfx =& 0(0) xx = ; where  
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Definition A.2 Linearized Model of a Nonlinear System 
Consider the nonlinear system defined by 

(t));((t) xfx =& 0(0) xx = ; where nnn : ;(t) RRR →∈ fx  
 
The linearized model  of system  around m operating points {z(t(t)z& (t)x& p-1), p=1,..,m; 
t0<t1<...<tm} is represented by the following equations 
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This definition implies that we are approximating trajectory x(t) by trajectories z(t) of p linear 
systems. Note that z(t) is a continuous piecewise function. This is because z(t) is differentiable 
and therefore continuous in m1,..,p ),t,t[ p1p =− , and condition (3). 
 
Lemma A.1†††† (Convergence of Infinite Series) 

If the series ∑ converges, then 
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Ψ
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†††† Refer to Spivak (1967) to see the proof of this lemma. 



Theorem A.1 Consider the system defined by 0(0);(t)(t) xx  bAxx =+=& ; where  
. If matrix A has distinct nonzero eigenvalues, then the solution to this system 

can be expressed as 
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H1 is a set of indexes j such that Im(λj) = 0 
H2 is a set of indexes k such that Im(λk) ≠ 0, where k denotes the conjugate pair of 
eigenvalues λk and λk+1, i.e. one index k represents two eigenvalues. Therefore, Re(λk) = 
Re(λk+1) and Im(λk) = Im(λk+1) 
 
The constants are defined as follows skskjj  and ,v , , θβα

[ ] [ 0
1

n21
T

n21 xrrr −=ααα LL ]
]

 

[ ] [ brrr 1
n21

T
n21

−=βββ LL  

sk
k

k
skksk rr v

λ
β

+α=  , where z  is the modulus‡‡‡‡ of C  z∈  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
β

+α−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
β

+α=θ sk
k

k
skksk

k

k
skksk rrImrrReantarc , expressed in radians 

 
 
 
 
 

                                                 
‡‡‡‡ Given z=a+bi then 22 baz +=  



APPENDIX B: PROOF OF THEOREMS 
 
B.1 Proof of Theorem 1 
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But this is a contradiction to the statement in (9). Therefore, the assumption that the equilibrium 
point is not stable is false. eq
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In order to do that, we will linearize the nonlinear system around m operating points. It is 
important to note that the equilibrium points of these linear systems do not have to coincide with 
the equilibrium point of the nonlinear system. However, we will show that when the system is 
asymptotically stable the equilibrium points of the linear systems tend to converge to the 
equilibrium point of the nonlinear system when t goes to infinity. 
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Note that all the parameters on the right-hand side of the equality have also a subindex m, 
denoting that they are dependant of the m-th linear model. In other words, each linear model p 
(p=1,..,m) has its own parameters (constants, eigenvalues and eigenvectors). 
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Integrating both terms of the inequality (18) from tm-1 to tm-1+h 
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Applying different properties of absolute value and the integral we obtain 
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Replacing (20-22) in (19) 
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Let’s define the following constants 
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Replacing these constants in (23) 
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Taking the limit when m goes to infinity, and knowing that:  
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to infinity: zero or infinity. The requirement for this term to be zero is that the real part of all the 
eigenvalues of  has to be negative.  (26) mA
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Taking limits to both sides of equation (17) and rearranging terms we have 
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The calculation of the second limit in (27) requires the use of the sandwich theorem. The 
function of the second limit in can be bounded as follows:  
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Replacing the results of (28) and (29) in (27) then ( ) 0z)t(zLim eq
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B.2 Proof of Theorem 2 
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B.3 Proof of Theorem A.1 
 
We will no provide a detailed proof of this theorem but just very general steps that lead to its 
demonstration. 
 
Step 1: The solution of the linear system 0(0);(t)(t) xx  bAxx =+=&  is given by 
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Step 2: If matrix A has distinct eigenvalues, then it is possible to find the following 
transformation:  (DeCarlo 1989), where  1tt ee −= TT DA

nn x   C∈T  is a matrix that has the eigenvector rj as its j-th column, that is,   [ ]n21 rrrT L=



D is a diagonal matrix whose diagonal entries are the eigenvalues of A 
 
Step 3: If matrix A has distinct nonzero eigenvalues, then the solution to the system 

 can be expressed as 0(0);(t)(t) xx  bAxx =+=&
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where H1 is a set of indexes j such that Im(λj) = 0, and H is the set of indexes that represent all 
the eigenvalues of matrix A 
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Step 6: By Euler’s formula (Spivak 1967) we know that ; thus replacing this 
formula in the expression (40) and simplifying:  
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§§§§ Sets {H-H1} and H2 point the same eigenvalues; thus, the cardinality of {H-H1} is twice the cardinality of H2



If we make  
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After some simplifications the proof of the theorem is achieved. 


