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Abstract

Formal studies of decision threshold learning assume full feedback conditions, that is, no 
matter what the decision is (positive or negative), the feedback will be provided. 
However, in the real world feedback may be conditional on the decision made. For 
example, in college admissions decisions, there is no feedback available for the students 
who are not admitted. In this paper, we investigate how conditional feedback can result 
in biased decisions. First, based on signal detection theory, a dynamic model of threshold 
learning is proposed. Then the model is adjusted to examine effects of conditional 
feedback on learning and decision making. Finally, the model is used to replicate some 
empirical findings. The results suggest conditional feedback can be a barrier to learning. 
Further, this study warns about problems with the current assumption of full feedback 
condition in most dynamic decision-making studies.
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1. Introduction

In a dynamic decision making environment, there are many barriers to learning from 
feedback. In fact, not all feedback is clear and understandable. Complexity of the 
environment (Gonzalez 2005), misperception of delays (Rahmandad et al. 2007, 
Rahmandad 2008), feedback asymmetry (Denrell and March 2001), the existence of 
noise in feedback (Bereby-Meyer and Roth 2006), and problems of mental models 
(Senge 1996) make it very difficult to learn from feedback. As results, sometimes, people 
ignore feedback and sometimes they misperceive it (Sterman 1989a, Sterman 1989b).

Most studies on learning from feedback are founded on a common theme: a decision 
maker (individual, group, or organization) makes a decision and receives a payoff (with 
or without delay); then the question is whether or not the decision maker is capable of 
interpreting and learning from the information. While the formal assumption is that 
information on payoff always exists and is clear, i.e. full feedback condition (e.g. Erev 
1998), few studies have examined other assumptions about feedback.

Full feedback is not common in the real world. For example, a human resources
manager will know true performance of a candidate if he decides to recruit the applicant. 
A police officer, who decides to search a suspect, will know whether or not the suspect is 
a drug dealer; otherwise he will not be informed about the true status of the suspect. This 
is the same for the cases of admission decisions in universities, strategic decisions in 
companies, most medical decisions, etc. In all of these situations, and in many other real 
world conditions, there is dependency between one’s decision and whether or not he 
receives a clear feedback (Elwin et. al 2007). Usually for positive decisions (e.g. 
admitting a candidate, or deciding to search a suspect), we receive feedback, otherwise 
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we lack a clear feedback, or at least it is very difficult to interpret the results of negative 
decisions. This kind of feedback is referred as conditional (or selective) feedback.

Studying effects of conditionality of feedback can give a new explanation about 
barriers to learning in the real world. In one of the few studies about conditional 
feedback, Elwin et. al (2007) investigate empirically the effects of conditional feedback 
on decision making. While observing that people underestimate the base rate (the ratio of 
signals to total observations), they argue that people assume their negative decisions, for 
which they do not receive feedback, are true. While their results are very valuable and 
provocative, they have not studied the effects of base rate, accuracy of signal detection, 
and initial threshold on the final results.

In the current study, we focus on signal detection framework as a classical judgment 
and decision making framework, and expand the few studies of conditional feedback by 
building a simulation model and observing effects of different parameters on biases. We 
examine the dynamics of learning and the effects of conditional feedback on decision 
results. This new insight is crucial as it can warn about the underestimation of one of the 
common assumptions in dynamic decision making and learning studies. 

In following, based on a brief review of signal detection framework (section 2), we 
build a simulation model of full feedback (section 3) and conditional feedback systems 
and examine effects of different ways of coding negative decisions on learning optimal 
thresholds (section 4). Then, using data from a published empirical work in this area, we 
replicate the results for different scenarios by the developed model (section 5). Finally we 
discuss possible implications of simulation results (section 6).

2. Signal detection framework

From signal detection perspective (Green and Swets 1966; Swets 1991; Swets, Dawes 
and Monahan 2000, Arke and Mellers 2002), decision makers try to differentiate signals 
from noise (e.g. guilty from innocent persons, capable from incapable candidates). In 
order to do that, they make judgments based on different cues, and make decisions based 
on those judgments. A police officer judges how suspicious a suspect appears, and then 
decides if the person should be searched or not. A human resources manager judges how 
capable an applicant is, and then makes a decision about him. An admission committee 
judges a candidate based on their perception of the candidate’s capability, and then 
decides whether or not to offer admission. 

In the real world, making proper decisions is very difficult because evidence is often 
ambiguous, and there is uncertainty in the environment (Hammond 1996, Stewart 2000). 
This means we are not always able to differentiate signals from noise based on our 
judgment, and errors will be made. For example, the police officer may search some 
innocent people, and may let some guilty persons go.

Let’s focus on the police officer situation. The probability distribution in Fig. 1 shows 
what might occur over an infinite number of trials from signal detection perspective. The 
Y-axis is the chance that the value of the random variable x (officer’s judge) could arise 
from a distribution of innocents or a distribution of guilty persons. The distributions are 
normal, and guilty persons (signals) are, on average, more culpable than innocent persons 
(noise). As the figure shows, due to uncertainty, the distributions overlap. 
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Fig.1: Distribution of noise and signal and an example of decision threshold location

A common assumption is that decision makers use a threshold (cutoff) in making a 
decision based on their judgment. So, for any x more than their threshold they decide 
“yes” (e.g. search, recruit, …), and for any x less than their threshold, they make a “no” 
decision (e.g. not search, reject, …).

Therefore, in any yes-no decision making situation, there are four possible decision 
outcomes. You can say "yes" and be right or wrong or you can say "no" and be right or 
wrong. We can name these outcomes as true and false positives and true and false 
negatives. As Fig.2 shows, a police officer can decide to search a person (a positive 
decision) and the person maybe guilty (true positive) or innocent (false positive). The 
police officer can also decide not to search the person (a negative decision).  And again 
the person can be guilty (false negative) or innocent (false positive). Thus, there are two 
kinds of errors: false positives and false negatives.

Fig.2 : Four possible outcomes 

An important point is that different threshold locations impose different error rates, 
and as the probability of one error decreases, the probability of the other error increases 
(see figure 1). Unless the distributions can be moved further apart, it is impossible to 
simultaneously decrease both errors by changing the threshold. This means without 

State of the w
orld

Decision

NO
(innocent)

YES
(guilty)

NO
(not search)

False 
negative

YES
(search)

True 
negative

True positive

False 
positive

Judgment

P
ro

b
ab

ili
ty

 d
en

si
ty

Signal
 distribution

(e.g. guilty persons)

Noise 
distribution

(e.g. innocent persons) Threshold

Judgment

d'



4

increasing in d’ (the ability of the observer to discriminate signals from noise), changing 
the threshold does not decrease the uncertainty. 

In this framework, the ratio of positive decisions to total trials is called selection rate 
(e.g. if 50 percent of people are selected for searching, selection rate is 0.5). On the other 
hand, the ratio of number of “Yes” in the state of the world to the total number of trials is 
called base rate (e.g. if 50 percent of people are guilty, base rate is 0.5).

Obviously, there is an optimal location for threshold, which depends on decision 
makers’ value system. For each cell in Fig. 2, each decision maker can assign a different 
value, and the difference in the value systems results in different payoffs and, therefore, 
different optimal thresholds. 

3. Full Feedback Model 

In a dynamic decision making environment, we get more information as we make 
more decisions. The information may help us to learn more about the environment and to 
amend our decision rules. From a signal-detection perspective, we learn the optimal 
threshold. We can also learn about cues and cue weights. In this paper, we focus on the 
first part – threshold learning. 

Although, the optimal threshold for any normal distribution of signals and noise can 
be calculated, we may doubt if people can discover this threshold. People do not know 
about theories of decision sciences and are not always rational and coherent in decision 
making, but they learn through experiments. Thus, we can assume that a person may 
require many trials to learn a threshold. In each trial, he will receive information about 
his performance and will try to correct his threshold, in order to increase the performance.
For example, a human resources manager will find what are the minimum characteristics 
of an applicant, (e.g. education and experience) to be capable of doing their desired task. 
Fig. 3 shows a diagram of threshold learning, as well as its implication in a signal 
detection framework.

(a)                                                                                      (b)

Fig. 3: Threshold learning in a full feedback condition: a) a dynamic model 
b) in signal detection framework 
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As it is depicted in Fig.3, from signal detection perspective, there can be three main 
processes in threshold learning: decision making, perceiving the outcomes, and adjusting
(correcting) threshold. Actually, in this paper, we assume people use their current 
threshold as an anchor and adjust it to a new level using the new piece of information 
they have received (Tversky and Kahneman 1974). Psychologically, it means that we 
have an answer (a threshold) in our mind and we try to shift it toward the best answer 
through experiments. This assumption is consistent with many studies of decision science 
on anchoring and adjustment (e.g. Epley and Gilovich 2001), as well as many system 
dynamics models of decision making (e.g. Sterman 1989.b). In following, we model each 
of these three processes for a full feedback condition.

3.1. Decision Making Process
From signal detection perspective, an experimenter has a threshold and makes his 

decision by comparing his observation with the threshold. If the observation is greater 
than the threshold he judges it as a signal, otherwise as a noise. We assume the existence 
of a single threshold which can be formulated by an if-then-else decision rule:

d= 0  if  x<threshold 
d=1  if x≥ threshold (eq. 1)

whereby d represents a decision, and is 1 for positive decisions and zero for negative 
decisions. x is the subject’s judgment. Let us show the true state of the world by Q which 
will be either 1 or zero. By comparison of d and Q we can find the payoff. The following 
formula does the same: 

Payoff (Q,d) = (1-Q)*(1-d)*Vtn + Q*(1-d)*Vfn + (1-Q)*d*Vfp + Q*d*Vtp (eq. 2)

whereby payoff will be equal to Vtn, Vtp, Vfn and Vfp, called values, in true negative, false 
negative, true positive, and false positive decisions respectively. 

In this paper we assume Vtn= Vtp=1 and Vfn= Vfp=-1. This symmetry in values helps
us to examine simulation results much easier. As a result of symmetry in values, in base 
rate equal to 0.5, when threshold is equal to the optimal threshold, the selection rate is 
equal to the base rate. However, this simplification is, only, used to make the paper easier 
to follow.

3.2. Perceiving results
Different learning algorithms can be assumed in this stage. Basically, in most of the 

algorithms, we try to increase our payoff, by changing the threshold in different 
directions and interpreting the results. 

Here, we assume a more intuitive process of learning from results: as a subject gets 
information about the true value of the previous observation (Q), he can judge the payoff 
shortfall. Payoff shortfall is the difference between the maximum possible payoff for Q
and the current payoff. We can formulate the process as following:

Payoff shortfall= maximum possible payoff (Q) – payoff (Q, d) (eq. 3)
maximum possible payoff (Q)= Vtn+ Q*(Vtp-Vtn) (eq. 4)
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Maximum possible payoff is the maximum value that a person can receive from a 
decision, and as we assumed higher values for correct decisions it can be calculated by a 
linear function of Vtp and Vtn. 

3.3. Adjusting threshold
Knowing that we have made a wrong decision (payoff shortfall > 0), the model 

assumes that the decision threshold will be amended toward the observation. In the real 
world, one observation can not change the whole assumptions and the subject’s mental 
model, but, in fact, it takes time for a person to change his threshold. Considering such a 
process, we can say:

Change in threshold = (x-threshold)/τ         (if payoff shortfall > 0) (eq. 5)

where τ is the time to change threshold, which can depend on many factors, such as the 
personal characteristics of the decision maker and his confidence, and the latter can 
change dynamically in the system.

So far, in addition to the threshold adjustment loop (thresholdchange in threshold
threshold) we have introduced one simple loop that formulates a full feedback system
(thresholddecision payoffpayoff shortfallchange in thresholdthreshold). As it 
is clear from the formulation, the full feedback loop is a first order loop with only one 
stock, i.e. threshold. This feedback leads the subject toward the optimal threshold, 
without any need to learn about the theories of how to find optimal thresholds in the
signal-detection framework. We produce a set of random signals and noise, consistent 
with the signal detection condition (noise ~ N(0,1) and signal ~ N(d’,1)), and choose 
randomly from them with a ratio that creates the desired base rate.1

(a)                                                                                       (b)
Fig. 4. Moving average of selection rate in last 50 trials (a) and threshold (b) for base rate of 0.5

Now, we can examine simulation results of this simple full feedback system. In Fig.4-
a, we see how the model adjusts its selection rate to the base rate when the base rate is 

                                                
1 System dynamics suggests use of pink noise in modeling which is more similar to what happens in the 
real world (Sterman 2000). As one of our main goals in this paper is to test our model with data from a 
laboratory experiment, in which signals and noise are generated totally randomly, without any correlation 
among data points, we avoid pink noise generation, and use the simple normal random generator of 
Vensim. Also, this simplification makes the model easier to follow. 
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equal to 0.5. The figure illustrates average selection rate in last 50 trials, for 50<t<950. In 
this run d’ is 1. Fig.4-b shows how the model is able to find the optimal threshold which 
in the base rate of 0.5 is equal to d’/2, i.e. 0.5. The experiment starts from an initial 
threshold of -2. 

The speed of approaching depends on the time to change threshold (τ). Small changes 
in the selection rate graphs after t=450 relate to the randomness of experiments.2 The 
detailed formulation of this model is illustrated in Appendix 1.

4. Conditional Feedback Model 

As we discussed before, in the real world, whether you make a positive or negative 
decision can determine whether or not you receive (or at least perceive) a feedback. Back 
to our first examples, a police officer will know whether or not a suspect is a drug dealer,
only if he decides to investigate him. A human resources manager will know about the 
true performance of an applicant, only if he hires him, and the applicant will know how 
good the job offer is after accepting and experiencing it. Otherwise, feedback is not clear, 
and in many cases, impossible to interpret. This concern leads us to activate a causal link 
from our decision rule to our perception about payoff (Fig. 5). In a simple word, 
increasing threshold will decrease positive decision rates (selection rate) and therefore, an 
experimenter will receive less feedback about payoff. The new introduced loop can have 
a major effect on the final results. Here, for simplification, we assume an immediate 
payoff perception, and keep the conditional loop a first degree non-liner loop. The rest of 
the paper will investigate the effect of such a link in threshold learning and the relevance 
of the ignorance of that link in formal studies.         

Fig. 5: Threshold learning in a conditional feedback situation: a) a dynamic model b) in signal 
detection framework 

                                                
2 As initial threshold is lower than the optimal threshold the selection rate’s dynamics starts form 1, 
however, the model is not qualitatively sensitive to initial threshold. Further, our sensitivity analysis shows 
the model is not sensitive to random seeds, and it is able to find the optimal threshold.
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4.1. Constructivist Coding 
The important issue in modeling conditional feedback is about how people judge 

(code) the result of negative decisions. For the human resources manager, would he judge 
that all of his negative decisions about last year candidates were 100 percent correct? 
What about the police officer: will he believe that some portion of people who were not 
searched by him were actually drug dealers? 

Constructivist coding is defined as a coding that represents what one believes is true
(Elwin et al. 2007). We define p, proportion of coding absent feedback as signals, as a 
parameter to use for payoff estimation. So, when p is 0, the model assumes there is no 
wrong negative decision and when is equal to 1 the model assumes all of its negative 
decisions were wrong. Payoff estimation in conditional feedback can be calculated using 
eq.2. For positive decisions (d=1), we have

perceived payoff= payoff (Q,1)= (1-Q)*Vfp + Q*Vtp (eq. 6)
and for negative decisions (d=0):

 perceived payoff= payoff (p,0)=(1-p)*Vtn + p*Vfn. (eq.7)

We simulate the model for the base rate of 0.5, d’ of 1, and for a wide range of p      
(0 ≤ p ≤ 1). As we see in Fig. 6, the model is sensitive to the value of p, which means the 
way that people interpret their negative decisions can substantially influence their results. 
At two extremes, people who believe their negative decisions were always right or wrong
end up with a considerable bias. This raises the importance of investigating how people 
really judge their negative decisions’ performance.

(a)                                                                                  (b)
Fig. 6: Possible selection rates (a) and thresholds (b), for different strategies (different Ps) of 

constructivist coding

There are three points about why there is a possibility for different coding of absent 
feedback. First, different people have different personalities; some are more conservative, 
presumably, coding more false for their negative decisions. Second, there are some state 
variables, like confidence that can change dynamically through the process of judgment, 
and create a different p. Third, a second loop learning process, if it exists, can lead to a 
more realistic perception of false negatives. If a person does not limit his learning to the 
feedback he receives from current false positives, but also, sometimes, questions the
current threshold, and tests other areas to have some new experiences, he may be able to 
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learn more about the hidden area under his negative decisions.3 However, existence of 
second loop learning is an empirical question. 

Most empirical studies of conditional feedback suggest there is a tendency to 
underestimate the optimal selection rate or, in another word, to overestimate the threshold 
(Elwin et. al 2007, Stewart et. al 2007). Elwin and his colleagues argue that, in 
conditional feedback situations, people tend to code negative decisions, the ones they 
don’t receive feedback for, as totally correct ones. We call these individuals, confident 
constructivists. For this scenario, we have: p=0. 

Fig. 7 shows simulation results for the base rate of 0.5 for a confident constructivist.
This figure compares simulation results from full feedback condition with conditional 
feedback. Other parameters for conditional feedback are the same as full feedback 
condition (section 2). In Fig. 7-a, we see selection rate moves lower than the average base 
rate. Also, threshold moves higher than the optimal threshold, in Fig. 7-b.

(a)                                                                                       (b)
Fig. 7. Moving average of selection rate in last 50 trials (a) and threshold (b) for base rate of 0.5

But what do these simulation results really mean? Basically, in a full feedback
situation, false positive decisions increase the threshold, and false negative ones decrease 
it. As in conditional feedback, the confident constructivist assumes all negative decisions 
are correct, there is only one adjustment force, and that is from false positive results. 
Therefore, forces are always toward increasing the threshold (decreasing selection rate), 
and it continues until no noise is perceived.

So far, we have shown how relaxing the assumption of full feedback, in the lack of 
second loop learning, can influence the final results. Particularly, considering suggestions 
of Elwin et. al, (2007) and Stewart et. al (2007) we see how people can underestimate the 
optimal selection rate. But the question is what is the real value for p, or how do people 
really code their negative decisions? Don’t they learn any thing about the performance of 
their negative decisions? Later on, we use data from Elwin et al. (2007) and narrow the 
possible values of p to find more about people’s behavior.

                                                
3 In this paper, we do not attempt to model second loop learning, and leave it for further research; however, 
a non-zero p can be interpreted as a parameter to represent a person who may have tried to find more about 
the true performance of his negative decisions by some explorations.
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5- Replications of an empirical investigation

Elwin et al. (2007) conduct an experiment including binary and continuous decision 
making situations. Sixty four subjects performed a computerized task of predicting 
economic outcomes for companies varying on four continuous cues (e.g. number of 
staffs) with values ranging from 0 to 10. Outcome was an additive function of the values 
of the four cues, with assignment of the cue weights of 4, 3, 2, and 1 to different concrete 
cue labels. The base rate of profitable companies was 0.5. In the binary set of 
experiments the subjects were supposed to select the companies for which they predict a 
positive profit. 

The experiment had two major phases: First any subject had a series of training trials, 
and then entered the test phase. In the training part, a group of subjects performed 120 
trials of full feedback decision making, while the other group performed 240 trials of 
conditional feedback. In the test phase, 60 judgments were made without feedback. They 
find that the subjects, who had the conditional feedback training, ended up with much 
lower selection rate in the test phase (0.33) in comparison with the other group (0.52). 
The authors propose a model of constructivist individuals that code true for all negative 
decisions (absent feedback) in the training phase and their model fits the data. Table-1 
shows a summary of their experiment and results.

Full feedback training Conditional feedback training
Trials in training phase 120 240
Trials in test phase 60 60
Maximum d’ No maximum No maximum
Number of subjects 32 32
Base rate 0.5 0.5
Selection rate

95% CI
0.52

0.44-0.60
0.33

0.26-0.41

Result of constructivist coding 
95% CI

0.48
NA

0.34
Smaller than the interval of the 
selection rate. 

Table-1: Available data on Elwin et. al.’s work

Replicating the data by our model can be interesting for several reasons4. It can help 
us to learn more about the dynamics of Elwin et al.’s argument and check whether or not 
their results can be replicated. Further, we can test new possible explanations for the data, 
other than what is expressed by the original paper. 

Two of the important parameters in the model are the level of expertise (d’) and the 
level of confidence in coding absent feedback (1-p). To investigate the effect, we conduct 
a sensitivity analysis for these parameters.  Fig.10 shows the results. For each of the 
figures we have conducted 2000 simulation experiments to find the area that can replicate 
the reported data. Illustrated points in this figure represent the experiments that ended 
with the selection rate in the interval of [0.3, 0.36]. The first figure (8.a) is for τ=20 and 

                                                
4 Generally, calibration is the proper way of finding unknown parameters. But as the available data is 
limited to the final results of the test phase and does not include the dynamic behavior of subjects in the 
training phase, we believe calibration will suffer from an extensive number of possible solutions. This 
concern is consistent with one of the main concerns of Forrester (2007) in his talk at the 50th anniversary of 
system dynamics. 
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the second one (8.b) is for τ=100. In the figures, the areas that result in higher and lower 
selection rates are illustrated. 

(a) τ=20                                                                                (b) τ=100
Fig.8 the quantities of d’ and (1-p) that can replicate the data

Note: SR stands for selection rate. The blue area (replication area) is the area that replicates the data
(each point in the replication area represents one successful experiment.) The line SR=0.5 shows the 

combination of (1-p) and d’ that can result in no bias.

As we see, (1-p) is relatively high for the area of replication. This shows that people 
tend to underestimate false negatives in conditional feedback. Further, it shows even if a 
second loop learning exists, it is not effective enough as people are not able to find the 
correct p (shown by the line that represent selection rate (SR) equal to 0.5).

Furthermore, as we increase τ, the area moves upward resulting in a decline in bias. 
This comes from the fact that in a relatively higher τ, single noise detection will not cause 
a huge change in the threshold; therefore, the threshold stays in lower levels. 

Considering the possibility of having different τ, we can sum up the results for τ>10 
and offer Fig.9 as the possible set of d’ and (1-p) that can replicate data. For each of those 
points there is a limited interval for τ that can replicate data. Three examples are shown in 
this figure as scenarios A-C. In scenario A, we are assuming an expert (d’=1.5) with a 
high level of confidence (p=0, and τ=30) as the decision maker in our model, and as we 
go toward scenarios B and C, the level of expertise and confidence decreases.   
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Fig. 9 The total area in which the model can replicate the results, and the three examples 

Based on the represented figure, we can argue that the x-axis has an experience (or 
talent) component to it, as it is about the capability of interpreting data and judging. The 
y-axis has a personality component. So, we can say in a constant level of expertise, as 
confidence increases the selection rate falls. Also an increase in the level of expertise, 
which can be a result of learning about how to interpret cues, can result in an increase in 
selection rate. The interactive effect of these two parameters is very interesting for further 
studies.

As we see, our model is able to replicate Elwin et al.’s data for a considerable range 
of d’, p, and τ. However, in all of those, people underestimate p and are not able to learn 
the correct value of it. 

6. Discussion and Conclusion

System dynamics as a way of analyzing nonlinear systems helped us to develop a 
simple model for full feedback and conditional feedback systems. The model was 
developed in a specific way to enable us to communicate with the decision science 
literature using the known framework of signal detection. Although the model was 
developed on individual level with disaggregated decision making processes for binary 
tasks, it still belongs to the family of decision making models in system dynamics. It 
creates insights based on activating a forgotten loop, and takes a stock flow approach in 
formulating variables.   

The main contribution of our study is to give a new explanation for imperfectness of 
decision making in a series of tasks. While many scholars have intensified the negative 
effects of the complexity of tasks (Gonzalez 2005), misperception of delays (Sterman 
1989a, Sterman 1989b, Rahmandad 2008), and feedback asymmetry (Denrell and March 
2001) on learning, our work gives a different explanation for barriers to learning, that is 
conditionality of feedback. Our work does not reject other theories, but sheds more light 
from a new perspective on the problem of barriers to learning.

The simulation outcomes and the replication of data show that conditional feedback 
can result in bias and underestimation of the base rate. Basically, assuming people learn 

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5

C
onfidence in negative decisions (1- p)

Level of expertise (d') High 

High 

Low
Low

Area of 
replication Scenario A

p=0
d’=1.5
τ=30

Scenario B
p=0.1
d’=0.5
τ=20

Scenario C
p=0.15
d’=0.25

τ=10

Area of higher 
selection rates



13

from their false decisions, in conditional feedback, all (or most) of negative decisions are 
treated as correct ones. Therefore, the dominant adjustment force comes from false 
positive results, not from false negative ones. Thus, forces are always toward increasing 
threshold (decreasing selection rate). Our experiments with different d’ (level of 
expertise), and τ (time to adjust threshold) show that independent from these parameters, 
we will always face overconfidence, and bias in conditional feedback situations. This 
implies that in real world situations, conditionality of feedback for example for police 
officers, human resources management, university admission office, etc. can result in 
misperception of performance and overconfidence.  

Our simple model of anchoring and adjustment behavior without any second loop 
learning fits the data from Elwin et al. Some may argue that in the existence of second 
loop learning, people may try new thresholds, correct their perception of false negative 
results, and find the optimal threshold. Although we do not have second loop learning in 
our model, our empirical investigation shows that people do not find the optimal 
threshold. The average p (perception about the ratio of true negatives to total negative 
decisions) is always overconfidently higher than the actual ratio. (Fig.10). This simply 
shows that even if, in the real world, second loop learning exists, it works for a limited 
number of people, and the average person is not able to find the optimal p. All of these 
results show that conditionality of feedback can be considered as a barrier to learning as 
it makes it very difficult for people to learn the optimal threshold. 

Further, one of the most important implications of this study is its warning about 
overestimation of the relevance of full feedback assumptions in formal studies. As we see 
in our model, the results are very sensitive to how really people code their negative 
decisions’ results. And, as data shows, average people underestimate their false negative 
results. This finding warns about the relevance of full feedback assumption in other 
studies. 

There are some possible ways for extending this study. Discussing about how 
different p can be used to replicate the data, we find a wide range of possible p that can 
produce the data. This result comes from the fact that there is an interactive relation 
between the level of expertise (d’) and the optimal p. We may argue that, actually, none 
of d’ or p are constant for an individual in the real world, but they may change 
dynamically through the process. Although this is more an empirical question, but 
intuitively we can accept that there can be some endogenous changes in these two 
variables. While experiencing, people learn about cue weights and it increases d’. 
Further, dynamics of confidence can lead to a change in p. Studying effects of these 
additional loops can be very interesting. 

Also individuals can be different in how they interpret their negative decisions. This 
difference can be a personality trait issue. In further studies, individual level data can be 
gathered, and the model can be calibrated for each individual. Different parameters can 
then be compared. Testing a hypothesized relationship between some of the Big Five 
personality characteristics (like openness) and the way that people code negative 
decisions (p) is another possible and interesting way to extend this study.
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Appendix 1 
Formulas (the vensim file is uploaded as a complementary document.)

I. The loops:
chng in OT=effect of gap in changing threshold*(X-optimal threshold)/time to change OT
effect of gap in changing threshold=f(gap/Normal gap)*normal effect
f([(0,0)-(10,2)],(0,0),(1,1),(1.9,1.8),(2.5,2),(10,2))
feedback availability=(1-switch to conditional feedback)+switch to conditional feedback*Positive 

decision
gap=perceived desired payoff-perceived payoff
Initial threshold=-2
normal effect=1
Normal gap=1
optimal threshold= INTEG (chng in OT, Initial threshold)
perceived desired payoff=Vtn+"perceived Q(X)"*(Vtp-Vtn)
perceived payoff= (1-"perceived Q(X)")*(1-Positive decision)*Vtn+"perceived Q(X)"*(1-Positive 

decision)*Vfn+(1-"perceived Q(X)")*Positive decision*Vfp+"perceived Q(X)"*Positive 
decision*Vtp

"perceived Q(X)"=feedback availability*"Q(X)"+(1-feedback availability)*signal coding ratio for CF
Positive decision=IF THEN ELSE(X>optimal threshold, 1 , 0 )
"Q(X)"=IF THEN ELSE( RANDOM UNIFORM(1, 100 , NS1)>(100*(1-avrage base rate)), 1,0)
signal coding ratio for CF=0
switch to conditional feedback=0
time to change OT=50
Vfn=-1
Vfp=-1
Vtn=1
Vtp=1
X= IF THEN ELSE("Q(X)"=1, Xsignal , Xnoise )

II. The signal detection environment and additional functions
average selection rate= IF THEN ELSE(Time<T SR, total poistive decisions in last 50 decisions/(Time

+1e-005) , total poistive decisions in last 50 decisions/T SR )
avrage base rate=0.5
bias in selection rate= average selection rate-avrage base rate
d prime=1
dynamic base rate=true/(true+false)
false= INTEG (fi-fo,(1-avrage base rate)*100)
fi=1-"Q(X)"
fo=false/T SR
in=Positive decision
NS1=100
NS2=1
NS3=10
out=IF THEN ELSE(Time>T SR, total poistive decisions in last 50 decisions/T SR,0)
"Q(X)"=IF THEN ELSE( RANDOM UNIFORM(1, 100 , NS1)>(100*(1-avrage base rate)), 1,0)
T SR=50
ti="Q(X)"
to=true/T SR
total poistive decisions in last 50 decisions= INTEG (in-out,0)
true= INTEG (ti-to,avrage base rate*100)
X=IF THEN ELSE("Q(X)"=1, Xsignal , Xnoise )
Xnoise=RANDOM NORMAL(-10, 10 , 0 , 1 , NS2 )
Xsignal=RANDOM NORMAL(-10, 10 , d prime, 1 , NS3 )


