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ABSTRACT 

Increasingly, citizens and policymakers are faced with the results of 
computer models 8.nd must m3.ke judgments about the model's relevance and 
validity. How can such decisions be made in an intelligent and informed 
manner? Can modeling be made accessible to the ordinary person or will it 
remain the special magic of a technical priesthood? This paper offers 
tenbtive answers to these questions. It first highlights the 
characteristics and capabilities of computer models such as are used in 
foresight and policy analysis. The advantages and disadvantages, uses and 
misuses of formal models are presented. What are the fundamental 
assumptions of the major modeling techniques? How appropriate are these 
techniques for foresight activities? What are the crucial questions a 
model user or model consumer should ask when evaluating the appropriateness 
and Wl.lidi ty of 8. model? The paper is designed to help model consumers 
peek inside these computerized black boxes. 

But Mousie, thou art no thy lane, 
In proving fore sight may be vain; 
The best-laid schemes o' mice an' men 

Gang aft a-gley, 
An' lea'e us nought but grief an' pain, 

For promis'd joy! 

Robert Burns, "To a Mouse" 

1. The Inevitability of Using Models 

Computer modeling of social and economic systems is only about three 
decades old. Yet in that time, computer models have been used to analyze 
everything from inventory management in .corporations, to the optimal 
distribution of fire stations in New York City, to the performance of 
n.qtional economi,~s, to the interpl0.y of global population, resources, food, 
a.nd pollution. Computer modt'!ls have been front page news (8.s in the case 
of Limits to Growth [Meadows et al. 19721), have been the subject of 
numerous congr(~ssion:3.1 hearings, qnd have influenced the fate of 
legislation. Computer modeling has become an important industry, 
generating hundreds of millions of dollars of revenues annually. 
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As computers have become faster, cheaper, and more widely available, models 
have become commonpl3.ce in forecasting and public policy analysis, 
especially in economics, energy and resources, demographics, and other 
crucial ~reas. As computers continue to prolifer~te, more and more policy 
deb~tes will involve the results of models, both in government and the 
private sector. Though we are not all going to be model builders, we are 
all becoming the consumers of models, whether we know it or like it. The 
ability to understand and evaluate computer models is fast becoming a 
prerequisite for the policymaker, legislator, lobbyist, and citizen alike. 

Each of us will be faced with the results of models and will have to make 
judgments about their relevance and validity. How can such decisions be 
made in an intelligent and informed manner? Can modeling be made 
accessible to the ordinary person or will it remain the special magic of a 
technical priesthood? 

This paper offers tentative answers to these questions. It first 
highlights the characteristics and capabilities of computer models such as 
are used in foresight and policy an~lysis. (Models of physical systems 
such as the models NASA uses to test the space shuttle are not discussed.) 
The advantages and disadvantages, uses and misuses of formal models will be 
presented. What are the fundamental assumptions of the major modeling 
techniques? How appropriate are these techniques for foresight and policy 
analysis? What are the crucial questions a model user or model consumer 
should ask when evaluating the appropriateness and validity of a model? 
The paper is designed to help model consumers peek inside these 
computerized "black boxes." 

2. Mental and Computer Models 

Fortunately, everyone is already familiar with models. People use models 
every day--mental models. Our decisions and actions are based not on the 
true state of affairs, but on mental images of the state of the world, how 
the parts of the system are related, and how our actions will influence the 
system. 

Mental models have some powerful advantages. The mental model is flexible. 
It can take a wide range of information into account, not just numerical 
data. It can be adapted to new situations and modified as new information 
becomes available. The great systems of philosophy, politics, and 
literature are, in a sense, mental models. But mental models are not e­
asily examined by others. Assumptions are hard to pin down in debate or 
discussion. Interpretations differ. Ambiguities and contradictions can go 
unresolved • 

. Of more concern is the fact that people are not very good at interpreting 
the assumptions of their own mental models. Psychologists have shown that 
people can take only a few factors into account in making decisions 
(Hog3.rth 1980, Kahneman et al. 1982). People often make errors in deducing 
the consequences of their assumptions. Research on the behavior of people 
in organizations (e.g. families, businesses, the government) shows that 
decisions are not made by rational consideration of objectives, options, 
and consequences. Rather, decisions are often made by rote, using standard 
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operating procedures that evolve out of tradition and which adjust only 
slowly to changing conditions (Simon 1947, 1979). These decisionmaking 
rules often make sense given the role of the decisionmakers in the 
organization, the information available to them, and the limited time 
available to make decisions. The problem is that individual perspectives 
may be parochial, information incomplete, dated, or biased, and the time 
available to weigh alternatives insufficient. Decisions are strongly 
influenced by organizational context, authority relations, peer pressure, 
cultural perspective, and selfish motives. As a result many decisions turn 
out to be incorrect because the complicated puzzle of choosing the best 
course of action is too difficult. Psychologists and organizational 
observers have identified dozens of different biases that creep into human 
decisionmaking as a result of cognitive limitations and organizational 
pressures (Hogarth 1980, Kahneman et al. 1982). Hamlet exclaims (perhaps 
ironically) "What a piece of work is a m3.n, how noble in reason, how 
infinite in faculties ••• !" But it seems that people, like Hamlet himself, 
are simply not capable of making rational decisions without error and 
without being swayed by societal and emotional pressures. 

Enter the computer model. Computer models offer an improvement over mental 
models because: 

--They are explicit, and their assumptions are open to all 
for review. 

--They infallibly compute the logical consequences of the 
modeler's assumptions. 

--They are comprehensive, and able to interrelate many 
factors simultaneously. 

These are powerful advantages. However, in practice, many models are 

--So complex and poorly documented that no one can examine their 
assumptions. They become black boxes. 

--So complex the user has no confidence the assumptions are consistent 
or correct. 

--Unable to deal with relationships and factors which are difficult to 
quantify, or for which numerical data do not exist, or which are 
outside the expertise of the specialists who built the model. 

In part because of these problems, computer models have often been misused. 
Models have often been used to lend authority to an argument, to justify 
decisions already taken, or to provide a scapegoat when a forecast turns 
out wrong. 

How can a policymaker know what kind of model is appropriate for the 
problem at hand? How can a prospective model user decide whether a model 
is appropriate for the purpose at hand, whether its results are valid or 
useful? How can one guard against the misuses of models? No single or 
comprehensive answer can be given, but some useful guidelines can be given. 
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3. The Importance of Purpose 

A model must rave a clear purpose. The purpose should be to solve a 
particular problem. A cle~r purpose is the single most important 
ingredient for a successful modeling study. Beware the analyst who 
proposes to model an entire social or economic system rather than a 
problem. What is the difference? For example, a model designed to 
understand how to stabilize the business cycle is a model of a problem. A 
model designed to understand how the economy can make a smooth tr~nsition 
from oil to alternative energy sources is a model of a problem. A model 
that cl3.ims to be a comprehensive represenb.tion of the economy is a model 
of a system. Why does it rna tter? All models are simplifications of the 
real system. ~ truly comprehensive model would be as complex as the real 
system and just ~s inscrutable. 

The art of modelbuilding is knowing what to leave out. In this context, 
the purpose of a model is a logical knife. It provides a criterion for 
deciding what to cut out, leaving only the essential features necessary to 
fulfill the purpose. In the example above, the comprehensive model of the 
economy will likely be enormous. In order to answer all questions, it will 
include many factors irrelevant to the business cycle such as long-term 
population growth or resource depletion. And it will include factors 
irrelevant to understanding the energy transition such as short-term 
changes in unemployment, inventories, ~nd interest rates. Because of its 
size, it will be next to impossible to examine the assumptions. The model 
builders, not to mention the intended consumers of its output, are unlikely 
to understand its behavior, thus its validity will be largely a matter of 
faith. 

A model designed just to examine the business cycle or energy transition, 
on the other hand, can be much smaller. It can be limited to those factors 
thought to be important in understanding business cycles or energy. Its 
validity for its purpose can be assessed by asking how its assumptions 
relate to the most important theories of the business cycle or resource 
economics. Of course, a model with a clear purpose can still be incorrect, 
large, or difficult to understand. But a clear purpose allows model users 
to ask the questions that can reveal the utility of a model for solving the 
problem at hand. 

4· Two Kinds of Models 

There are many types of models and they can be classified in many ways. 
Models can be static or dynamic, mathematical or physic~l, stochastic or 
deterministic. One of the most useful classifications, however, is to 
divide models into those that optimize versus those that simulate. The 
distinction between optimization and simulation models is particularly 
important since these types of models are suited for fundamentally 
different purposes. 

4.1 Optimization The Oxford English Dictionary defines 'optimize' as "to 
make the best or most of; to develop to the utmost." The output of an 
optimization model is a statement of the best way in which to accomplish 
some goal. For example, a nutritionist would like to know how to design 
meals that fulfill certain dietary requirements but cost as little as 
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possible. A salesperson must visit a certain number of cities and would 
like to know how to make the trip as short as possible, taking into account 
the available transportation between cities. Instead of trial and error, 
an optimization model may be used to determine the best way. 

An optimization model typically consists of three parts. The objective 
function specifies the goal or objective. For the nutritionist, the 
objective is to minimize the cost of the meals. For the salesperson, it is 
to minimize the travel time or total mileage of the trip. The decision 
variables represent the choices to be made, for example the ~mount of 
potatoes in the diet or the order of cities to be visited. The optimal 
choices of the decision variables are the output of the optimization model. 
The constraints restrict the choices of the decision variables to those 
that are possible or acceptable. 1n the diet problem, the constraints 
would specify that consumption of each nutrient must exceed the minimum 
daily requirement. The constraints might also specify that you don't want 
potatoes more than three times a week. The constraints in the salesperson 
problem would specify that each city must be visited at least once, and 
would restrict the selection of routes to the available connections (e.g. 
if there were no direct flights from Boston to Cincinnati, the constraints 
would require you to pass through Cleveland or Pittsburgh or wherever on 
the way). 

Thus an optimization model takes as input the goals to be met, the choices 
to be made, and the constraints to be satisfied. It yields as output the 
best decision that can be made given the assumptions of the model. Because 
optimization models tell you what to do in order to make the best of the 
situation, they are normative or prescriptive models. The purpose of an 
optimization model is not to tell you what will happen in a certain 
situation, but what ought to be done to optimize the objective. 

Limitations of Optimization There are a variety of limitations and 
problems with optimization models which a potential user must' bear in mind. 

Whose Objectives? One obvious difficulty is the problem of specifying the 
objective function. It is clear that the dietician wants to minimize the 
cost of food, but what is the objective function of the mayor of New York 
City? ~ow is the optimal population of the world to be defined? How can 
intangibles like quality of life be measured and incorporated in an 
objective function? How should conflicting goals and the differing agendas 
of special interest groups be balanced? The objective function embodies 
the values and preferences held to be desirable. Whose values and 
preferences should be used? 

Because optimization is prescriptive, it always involves subjective value 
judgments. Users of optimization models should always scrutinize the 
objective function and constraints to examine the values they embody, both 
explicitly and by omission. For example, a water quality model may find 
the cheapest W"ly to place sewage treatment plants along a river so as to 
meet ~o~ater quality standards. The model user should ask how the model 
takes into account the impacts on fishing, recreation, wild species, and 
the development potential in the affected areas. Unless explicitly 
incorporated in the model, these considerations are implicitly held to be 
of no value. 
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Though difficult, the problem of choosing an objective function is not 
insurmountable. Intangibles like quality of life can often be quantified, 
at least roughly, by breaking them into measurable components. Quality of 
life in a city might be represented as depending on unemployment, housing 
adequacy, the crime rate, air qu'3.lity, etc. A variety of techniques have 
been developed to help extract preferences from interviews and other 
impressionistic data. The attempt to make values explicit may itself have 
enormous value for the clients of a modeling project, and is a worthwhile 
exercise in any study. 

Linearity: A more important problem relates to the verisimilitude of 
optimization models. Because a typical optimization problem is very 
complex, involving hundreds or thousands of variables and constraints, the 
mathematical problem of finding the optimum is extremely difficult. To 
render the optimization problem tractable, a number of simplifications are 
commonly introduced. One common simplification is to assume all the 
relationships in the system are linear. In fact the most popular 
optimization technique, linear programming, requires the objective function 
and all the constraints to be linear. 

Linearity is convenient mathematically but almost always unrealistic. For 
example, a model of a firm's inventory distribution policies may contain a 
relationship between inventory and shipments. If the inventory of goods in 
a warehouse is 10% below normal, shipments may be reduced by, say, 2% 
because certain items will be out of stock. If the model required the 
relationship to be linear, then a 20% shortfall would reduce shipments by 
4%, a 30% shortfall by 6%, and so on. But obviously, when the warehouse is 
empty (a 100% shortfall of inventory), no shipments are possible, while the 
linear relationship indicates shipments would be 80% of normal, an 
absurdity. 

This may seem like a trivial example, but consider the sorry fate of the 
passenger pigeon, ectopistes migratorius. Before the colonization of North 
America, passenger pigeons were extremely abundant. Huge flocks of the 
migrating birds would darken the skies for days. They often caused 
extensive damage to crops and were hunted both as a pest and for food. For 
years, hunting had little impact on the population. The prolific birds 
reproduced fast enough to offset most losses to hunters. But the fertility 
of the pigeons depended nonlinearly on their population density. In large 
flocks they could reproduce at high rates. But in small flocks fertility 
dropped precipitously. As hunting gradually reduced the population, 
fertility fell, accelerating the decline in population. Lower population 
levels further lowered the birth rate, in a vicious cycle. By 1914, the 
passenger pigeon was extinct. 

There are some techniques available to solve certain nonlinear optimization 
problems, and research is continuing. But in general, the nonlinearities 
th'3.t can be handled are limited, and the vast majority of optimization 
models assume the world is linear. 

Lack of Feedback: Complex systems are highly interconnected. There is a 
high degree of feedback between sectors. For example, a water quality 
model may assume the sewage load to be treated is fixed, and compute the 
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optimum size of treatment plants to be built. But if water quality 
improves as a result of treatment, the attractiveness of the river for 
development will increase, ultimqtely raising the sewage load. The results 
of the plant siting decisions feed back through the physical, economic, and 
social environment to alter the conditions that the policy was suited for. 

A model that ignores feedback effects is said to have a narrow boundary. 
Such models tend to rely on exogenous variables. There are two basic kinds 
of variables in a model: endogenous and exogenous variables. Endogenous 
variables are those that are calculated by the model. They are the 
variables explained by the structure of the model, the variables for which 
the modeler has an explicit theory. Exogenous variables influence other 
variables in the model but are not calculated by the model. They are given 
simply by a set of numerical values over time. The values of exogenous 
variables may come from other models but are most likely the product of an 
unexaminable mental model. 

Ignoring feedback can result in policies that are diluted, delayed, or 
defeated by the system, or which generate unanticipated side effects 
(Meadows 1982). An illustration is provided by the construction, in the 
1950s and '60s, of interstate highway networks and freeways to alleviate 
congestion around major cities. In Boston, for example, it used to take a 
half an hour to drive from the neighborhood of Dorchester to the downtown 
area, a journey of only a few miles. With the construction of a limited 
access highway network, travel time dropped substantially. But by reducing 
congestion, outlying communi ties were opened up. The population in the 
suburbs soared. Today the rush hour journey frqm Dorchester to downtown 
often takes half an hour or more. The center city has become more 
congested and polluted. Its population has declined. Many businesses 
moved to the suburbs or were squeezed out by shopping malls. In the 
suburbs, farmland was paved over or turned into housing developments. The 
point is not to condemn these changes but to illustrate how a policy aimed 
at reducing highway congestion generated a wide range of side effects and 
was eventually undone by feedback effects which were largely unanticipated. 

In theory, feedback can be incorporated in optimization models. But in 
practice, the resulting complexity and nonlinearity usually renders the 
optimization problem insoluble. As a result, many optimization models 
ignore most of the feedback effects. Model users should identify the 
degree to which important feedbacks are incorporated in the model and how 
excluded effects might alter the assumptions of the model and thus 
invalidate the results. 

Lack of Dynamics: Many optimization models are static. They determine the 
optimal solution for a particular moment in time without regard for how the 
optimal state is reached or for the future evolution of the system. For 
example, in the late 1970s, the U.S. Forest Service constructed a linear 
programming model to optimize the use of government lands. The model was 
enormous, with thousands of decision variables and tens of thousands of 
constraints. It required the full use of a large computer for hours or 
even days at a time to find the solution. Typographical errors in the 
model's huge database required months of debugging. Despite the effort 
required, the model produced the "optimal" use of forest resources for a 
single moment in time. It did not t.ake into account how harvesting a 
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particul~r area would ~ffect its future ecological development. It did not 
consider how land use needs or lumber prices might ch~nge in the future. 
It did not consider how long it would t~ke for new trees to grow to 
maturity in the h~rvested ~re~s, or the economic and recreational effects 
during this time. The model provided the optimal decisions for a single 
year even though those decisions would influence the development of forest 
resources for dec.~des. 

~ot all optimization models are st~tic. The MARKAL model, for example, is 
a large linear programming model designed to determine the optimal choice 
of energy technologies. Developed at the Brook~aven National Laboratory, 
the model produces as output the least-cost mix of coal, oil, gas, etc. in 
five-year intervals well into the next century. It requires exogenous 
inputs of future fuel prices, construction and operating costs for 
unconventional energy technologies, and energy demands. (Note that the 
model ignores feedb~cks from energy supply to prices and demand.) The 
model is dynamic in the sense that it provides a "snapshot" of the optimal 
state of the system at five-year intervals. But it does not explain how 
the system moves from one optimal state to another. For example, it does 
not incorporate construction delays for energy production f~cilities, 
delays which are often much longer than five years. The model implicitly 
assumes that people, seeing what the optimal mix is for, s~y, the year 
2010, would begin construction far enough in ~dvance to have the required 
pl~nts ready on time. 

Delays are pervasive. It takes time to acquire capital plant and 
equipment, to clean up ~ waste dump, to ~cquire information. Delays are a 
major source of instability in complex systems. Delays in carrying out or 
perceiving the effects of decisions may cause overreaction or prevent 
timely intervention. Acid rain provides .g_ typical example. M~ny 

scientists feel it will t~ke years to determine whether and how incipient 
damage to the forests of New England, the Appalachians, and Bavaria is 
caused by acid rain or by natural forces. Until scientific and th;m 
political consensus emerges, legislative action is not likely to be strong. 
Implementation of pollution control programs, once passed, will take years. 
The lifetimes of existing power plants ~nd other pollution sources is 
measured in decades. Settlement patterns ~nd lifestyles dependent on the 
automobile ch~nge over even longer periods. By the time sulfur and 
nitrogen oxide emissions are reduced sufficiently, it m~y be too late. 

Delays are crucial in determining the dynamic behavior of systems. But as 
with nonline~ri ty, it is difficult to incorporate delays in optimization 
models. When possible, delays are usually assumed to be of fixed length. 
The results of such models ~re of questionable value. Users o.f these 
optimiz~ tion models may find, like the city tourist on the b~ck ro~ds of 
Maine, that "you can't get there from here." 

When to use optimization Despite the limitations discussed above, 
optimization techniques can be extremely useful. But they must be used for 
the proper problems. Optimiz~tion models can substantially improve the 
quality of decisions in many are~s, including computer design, airline 
scheduling, the location of factories, and the operation of oil refineries. 
Whenever the problem to be solved is one of choosing the best from among a 
well-defined set of a.l ternatives, optimization should be considered. If 
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the meaning of "best" is also well-defined, and if the system to be 
optimized is relatively static and free of feedback, optimization may well 
be the best technique to use. Unfortunately, these latter:' conditions are 
r3.rely true for the social, economic, and ecological systems that are 
frequently of concern to decisionmakers. 

Beware, however, the optimization model which purports to forecA.st actu3.l 
behavior. The output of an optimization model is a statement of the best 
way to qccomplish a goal. To interpret the results as a forecast of likely 
::~ctual beh3.vior is to assume that people in the real system will in fact 
m3.ke the optim::~.l choices. It is one thing to say "to maximize profits the 
following decisions should be made" and quite 3.nother to say "people will 
succeed in m'3.ximizing profits, and therefore the following decisions will 
be made." The former is a prescriptive stat.~ment of wh3.t to do; the l'3.tter 
a descriptive statement of what will happen. The optimization model will 
only be valid for the latter purpose if people in fact optimize. It may 
seem reasonable to expect that people~ehave optimally--after all, it would 
be irrational to take second best when you could have the best. But the 
evidence on this score is conclusive: real people do not behave like 
optimization models. As discussed above, real people make decisions with 
simple and incomplete mental models, models that are often systematically 
incorrect, or that reflect goals and motives that are not captured in an 
optimization framework. Real people do not have the perfect information, 
foresight, and computational powers required to solve for the optimum 
solution. As Herbert Simon puts it, 

The cap3.city of the human mind for formulating and solving 
complex problems is very small compared with the size of the 
problem whose solution is required for objectively rational 
behavior in the real world or even for a reasonable approxi­
mation to such objective rationality (Simon 1957, 198). 

Optimization models augment the cqpacity of the human mind to solve the 
problem of finding the objectively rational course of action. ~everthe­

less, eV<"!n optimization models must make simplifying assumptions so as to 
be tractable--even with 3. computer the best we can hope for is a reasonable 
approximation to objectively rational behavior. But to model how people 
actually behave rather than how they ought to beh3.ve requires a different 
set of modeling techniques. 

4. 2 Simulation 

The latin verb simulare means to imitate or mimic. The purpose of a 
simulation model is to mimic the real system so that its behavior can be 
anticipated and studied. A. simub.tion model is a laboratory replica of the 
real system. By creqting a represent3.tion of the system in the laboratory, 
experiments can be performed which are either impossible, unethical, or 
prohibitively expensiv<"! in the real world. 

Simulations of physical systems are commonplace, ranging from simulations 
of weather patterns and the depletion of oil reservoirs to wind tunnel 
t~sts of aircraft designs. Similarly, economists and social scientists 
have used simulation to understand how cities evolve and respond to urban 
renewal polici.~s, how energy prices '1ffect the economy, how corporations 
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grow, how population growth interacts with food supply, resources, and the 
environment. There ~re many different simulation techniques, including 
stochastic modeling, system dynamics, discrete simulation, ~nd role-playing 
games. Despite the differences, all simulation techniques rely on a common 
approach to modeling. 

A simulation model has two main components. It must include a 
representation of the physical world relevant to the problem under study. 
For example, to understand why America's large cities have continued to 
decay despite massive amounts of aid and numerous renewal programs, a model 
would need to include a represent~tion of the physical components of the 
city: the size and quality of the housing stock, commercial structures, and 
other infrastructure; the size, skill mix, income, and other attributes of 
the population; the flows of people, money, etc., into and out of the city; 
and other factors which characterize the physical and institutional 
setting. The degree of detail needed depends on the specific problem to be 
addressed with the model. A model designed to understand why urban renewal 
programs have generally not worked in a variety of cities requires only an 
aggregate representation of the features common to such cities (Forrester 
1969). But a mode 1 designed to improve the location and deployment of 
firefighting resources in New York City had to include a detailed 
representation of the streets and traffic patterns (Greenberger et al. 
1976). . 

In addition to the physical structure of the system, a simulation model 
must portray the behavior of the actors in the system. Behavior in this 
context means the way in which people respond to different situations. The 
behavioral assumptions of a simulation model describe the way in which 
people make decisions. The decision rules are the input. The pattern of 
decisions is the output of the model. For example, in a pioneering 
simulation study of corporate behavior, Cyert and March (1963) found that 
department stores used a very simple decision rule to determine the floor 
price of goods. The rule was basically to mark up the wholesale cost of 
the items by a fixed percentage. When excess inventory piled up on the 
shelves, a sale was held and the rnqrkup was gradually reduced until the 
goods were sold. If sales goals were exceeded, prices were boosted. 
Prices were also adjusted towards those of competitors. The normal markup 
was determined by tradition--it adjusted very slowly towards the actual 
markup on the goods sold. Cyert and March found that when these rules for 
pricing were tested with actual store data, the model reproduced the 
pricing decisions of the floor managers quite well. 

Thus the inputs to a simulation model are assumptions about the physical 
structure of the system and the procedures people use to make decisions. 
The state of the system determines the nature and quality of the 
information available to decisionmakers. The model plays the role of the 
decisionmakers, using the available information to mimic their decisions. 
These decisions then feed back and alter the state of the system, giving 
rise to new information and new decisions. Simulation models are "what if" 
tools. They are descriptive models. The purpose of .a simulation model is 
not to tell a policymaker what should be done, but what would happen in a 
given situ:1tion. Often such "what if" information is more important than 
knowledge of the optimal decision. For:' example, during the 1978 debate 
over natural gas deregulation, President C~rter's original proposal was 
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modified dozens of times before a final compromise was passed. During the 
congressional debate, the Department of Energy used a system dynamics model 
to evaluate each version of the bill (DOE 1979). The model did not 
indicate what ought to be done to maximize the economic benefits of natural 
gas to the nation. Congress had its own ideas on that score. But by 
providing an assessment of how each proposal would affect gas prices, 
supplies, and demands, the model generated useful ammunition for the 
administration in lobbying for its proposals. 

Limitations of Simulation 

Like any model, a simulation model is only as good as its assumptions. 
Naturally, a good simulation model should have an adequate representation 
of the physical system it represents. Tn general, simulation models are 
quite flexible and can portray the physical environment with detail and 
accuracy sufficient for their purposes. Unlike optimization, simulation 
models can easily incorporate feedback effects, nonlinearity, and dynamics. 
The structure of simulation models is not rigidly determined by math­
ematical limitations as those of optimization models often are. Indeed, 
one of the main uses of simulation is to identify how nonlinearities, 
physical delays, and the limited information available to decisionmakers 
interact to produce the troubling dynamics that have persistently resisted 
solution (for examples, see Sterman 1985, Morecroft 1983, Forrester 1969). 

Accuracy of the decision rules A potential trouble spot is the accuracy of 
the decision rules portrayed in simulation models. Simulation models must 
represent human decisionmaking as it is, even if it is not optimal. The 
decisionmaking heuristics and strategies people use, including their 
limitations and errors, must be modeled. Only if a model mimics the 
response of decisionmakers to changing circumstances will it respond to 
policy interventions in the same way the real actors would. In principle 
there are few limitations on the accuracy of the decision rules portrayed 
in models. Tn practice, discovering those rules is often difficult. 
Decisionmaking rules cannot be determined from aggregate statistical data, 
but must be investigated first hand. Primary data on the behavior of the 
actors can be acquired through observation of decisionmaking in the field, 
that is, in the boardroom, on the factory floor, along the salesperson's 
route, in the household. The modeler must discover what information is 
available to each actor, examine its timeliness and accuracy, and infer how 
that information is processed to yield a decision. The skills of the 
anthropologist and ethnographer are often needed. Fortunately, 
psychologists, behavioral scientists, sociologists, and other social 
scientists hav8 developed an extensive body of primary data which describes 
how decisionmaking is made. The best simulation modeling draws on a wide 
variety of disciplines as well as first hand observation of the system to 
elicit the decision rules of the people in the system. 

Soft variables Because simulation models must portray decisionmaking as it 
is, they must often include variables which are difficult to quantify. It 
is frequently necessary to represent intangibles such as product quality, 
optimism, reputation, expectations, desires, and so on. Again, there is no 
limitation in principle to the inclusion of such soft variables, qnd many 
simulation models do. Unfortunately, some modelers limit the factors they 
include to those variables that are measurable, and often measurable by 
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numerical dat~. This practice is sometimes defended as more scientific 
than "making up" the values of parameters and relationships for which no 
numerical da~ are available. Without numerical da~, how can s~tistical 
tests be performed? How can parameter values be estimated? 

The overwhelming majority of all da~ is descriptive and quali~tive. And 
the majority of this da~ has never been written down. Yet they are 
crucial for unders~nding and modeling complex systems. Imagine trying to 
operate a school, factory, or economy solely on the basis of the available 
numerical information. Without the men~l, descriptive knowledge of 
operating procedures, political subtleties, organizational structure, and 
so on, the result would be chaos. To leave out of a model a relationship 
known to be impor~nt but for which no numerical da~ are available is just 
as much an unscientific value judgment as using judgment to estimate the 
relationship. Ignoring the relationship implies it has a value of 
zero--probably the only value known to be wrong! (Forrester 1980) 

Model Boundary A great strength of simulation models is the ability to 
capture the impor~nt feedback relationships that shape the behavior of the 
system and govern its response to policies. In practice, however, many 
models ignore f.~ctors outside the expertise of the modelbuilders or the 
mission of the sponsoring organization. 

The consequences of omitting feedback are often serious. For example, many 
energy models assume the economy is unaffected by the price of energy. The 
PIES model (Project Independence Evaluation System), used in the 1970s by 
the Federal Energy Administration, and later by the Department of Energy, 
provides a typical example. The PIES model assumed that economic growth, 
the costs of unconventional fuels, interest rates, inflation, and world oil 
prices were all unaffected by domestic energy prices, production, or 
policies. A full embargo of imported oil or doubling of oil price would 
have no impact on the economy, according to the model. Yet the FEA 
described the model's purpose in the following way: 

[Energy] strategies are evaluated in terms of their impact on: 

* Development of alternative energy sources 
* Vulnerability to import disruptions 
* Economic growth, inflation, and unemployment 
* Environmental effects 
* Regional and social impacts (FEA 1974, 1) 

By treating the economy exogenously, the PIES model was inherently 
contradictory. The model showed that the investment needs of the energy 
sector would rise subs~ntially as depletion raised the development costs 
of new sources of oil and as synthetic fuels were developed. But at the 
same time, the model assumed that the higher investment needs of the energy 
sector could be satisfied without reducing investment or consumption in the 
rest of the economy and without raising interest rates or inflation. In 
effect, the model let the economy have its pie and eat it too. In part 
because it ignored the feedbacks between the energy sector and the rest of 
the economy, the PIES model consistently proved to be overoptimistic. In 
1974 the PIES model projected that by 1985 the US would be well on the way 
to energy independence. Energy imports would be only 3.3 million barrels 
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per day, production of shale oil would be 250,000 barrels per day, all at 
an oil price of about $22 per barrel ( 1984 dollars) and with vigorous 
economic growth. In reality oil imports are about 5.5 million barrels per 
day. A shale oil industry remains a dream. .All this despite huge 
reductions in oil demand caused by oil prices that have exceeded $30 per 
barrel and the most serious recession since the Great Depression (see the 
appendix in Stobaugh and Yergin 1979 for a good discussion of the 
limitations of the PIES and other energy models). 

Narrow model boundaries are not limited to energy analysis. The Global 
2000 report (CEQ 1980) showed that most of the models used by government 
agencies rely significantly on exogenous variables. Population models 
assumed food production was exogenous. Agriculture models assumed that 
energy prices and other input prices were exogenous. Energy models assumed 
that economic growth and environmental conditions were exogenous. Economic 
models assumed that population and energy prices were exogenous. And so 
on. Because important intersectoral feedbacks were ignored, the models 
produced inconsistent results. 

A broad model boundary that includes important feedback effects is more 
important in a model than a great amount of detail in the specification of 
individual components. It is worth noting that the PIES model provided 
breakdowns of energy supply, demand, and price for dozens of fuels, each 
for different regions of the country. Yet its aggregate projections for 
1985 aren't even close. One can legitimately ask what purpose 1-ras served 
by the effort devoted to forecasting the demand for jet fuel or naphtha in 
the Pacific Northwest when the basic assumptions were so palpably 
inadequate and the main results so woefully erroneous. (In fairness, the 
PIES model is not unique in the magnitude of its errors. Nearly all energy 
models, of all types, have consistently been wrong about energy production, 
consumption, and prices. The evidence shows clearly that energy forecasts 
actually lag behind the available information, reflecting the past rather 
than anticipating the future [DOE 1983].) 

4.3 Econometrics 

Strictly speaking, econometrics is a simulation technique. But it deserves 
separate discussion for two reasons. First, econometrics evolved out of 
economics and statistics, while most other simulation techniques emerged 
from engineering or operations research. The difference in pedigree leads 
to large differences in purpose and practice. Second, econometrics is one 
of the most widely used formal modeling techniques. Pioneered by Nobel 
Prize winning economists Jan Tinbergen and Lawrence Klein, econometrics is 
taught in nearly all business and economics programs, and ready-to-use 
statistical routines for econometric modeling are now available for many 
personal computers. Econometric forecasts are regularly reported in the 
nation's media. 

Econometrics is literally the measurement of economic relations, and 
originally involved statistical analysis of economic data. As commonly 
practiced today, econometric modeling consists of three stages. These are 
specification, estimation, and forecasting. In the first step, the 
structure of the model is specified. Structure means the set of relations 
between variables, both those that characterize the physical setting and 
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those that describe behavior. For example, an econometric model of the 
macroeconomy will typically con~~in accounting relations that specify how 
GNP is composed of consumption, investment, government activity, and inter­
national trade. It also will include behavioral equations that describe 
how these quantities are determined. The Phillips curve is an example of 
such a behavioral relation. If the model cont~ins a Phillips curve, one of 
the equations will specify that the rate of inflation depends on the amount 
of unemployment. Presumably the modeler expects that high unemployment 
reduces inflation and vice-versa. An econometric model will typically 
consist of a set of such equations, with many interrelationships between 
the variables. For example, another equation may relate unemployment to 
the demand for goods, the wage level, worker productivity, etc. Still 
other equations may explain these in terms of other factors. A large 
econometric model may have hundreds or even thousands of equations. 

Not surprisingly, econometrics draws on economic theory to guide the 
specification of models. The validity of the models thus often depends on 
the validity of the underlying economic theory. Though there are many 
flavors of economic theory, a small set of basic assumptions about human 
behavior are common to most (especially modern neoclassical theory and the 
"rational expectations" school). These include: 

Optimization: People (economic agents, in the jargon) are assumed to be 
concerned with just one thing--maximizing their profits. Consumers are 
assumed to maximize the "utility" they derive from their resources. 
Decisions about how much to produce, what goods to purchase, whether to 
save or borrow, are assumed to be the result of optimization by individual 
decisionmakers. "Non-economic" considerations (defined as any behavior 
which diverges from profit or utility maximization) are ignored or treated 
as local aberrations and special cases. 

Perfect information: To optimize, economic agents need accurate 
information about the world. The information needed goes beyond the 
current state of affairs. Also needed is complete knowledge of the 
available options and their consequences. For example, to determine the 
optimal mix of labor, machines, energy, and other inputs in the production 
process, a firm must know not only the wages of workers and the prices of 
machines and other inputs, but also how much could be produced with 
different combinations of people and machines, even if those combinations 
have never been tried. Such knowledge is assumed to be freely and 
accurately known in most economic models. Many go further, assuming people 
know not only the current situation, but future prices, technologies, and 
possibilities as well, including the ability to perfectly anticipate the 
consequences of their own actions or those of competitors. 

Equilibrium: The pioneers of mathematical economics were primarily 
concerned with the net result of optimization by individuals and firms. 
The net result defines the equilibrium of the market or economy. The 
crucial questions of theory involved the nature of the equilibrium state 
for different situations. Given people's preferences and the technological 
possibilities for producing goods, at what prices will commodities be 
traded, and in what quanti ties? Wh3. t will wages be? What will profits be? 
How will a tax or monopoly power influence the equilibrium? These 
questions proved difficult enough without tackling the more difficult 
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problem of dynamics. Indeed, dynamic theory, including the recurrent 
fluctuations of the business cycle, of the growth and decline of industries 
and nations, of inflation, remained primarily descriptive and qualitative 
long after equilibrium theory was completely mathematized. Consequently, 
dynamic beh'3.vior in economics tends to be seen as a transition from one 
equilibrium to another. The transition is usually assumed to be stable. 

The rich heritage of static theory in economics left a legacy of 
equilibrium for econometrics. Many econometric models assume markets are 
in equilibrium at all times. When adjustment dynamics are modeled, 
variables are usually assumed to adjust in a smooth and stable manner 
toward the optimal, equilibrium value. The lags are nearly always fixed in 
length. For example, most macroeconometric models assume the capital 
stocks of firms in the economy adjust to the optimal, profit maximizing 
level with a fixed lag of several years. The lag is the same whether the 
industries that supply investment goods have the capacity to meet the 
demand or not (see, for example, Eckstein 1983 and Jorgenson 1963). Yet 
clearly, when the supplying industries have excess capacity, orders can be 
filled rapidly. When capacity is strained, customers must wait in line for 
delivery. Analysis shows that there are significant differences between a 
model that assumes a fixed investment lag regardless of the physical 
capability of the economy to fill the demand and one that explicitly models 
the determinants of the investment delay (Senge 1980). In general, models 
that explicitly portray delays and their determinants will yield different 
results from models that simply assume smooth adjustments from one optimal 
state to another. 

Economists acknowledge the idealization and abstraction of their 
assumptions about human behavior, information, and equilibrium, but point 
to the powerful results that have been derived from them. However, a 
growing number of prominent economists argue that these assumptions are not 
only abstract but false. In his Presidential address to the Royal 
Economics Society, E. H. Phelps-Brown said: 

The trouble here is not that the behaviour of these economic 
chessmen has been simplified, for simplification seems to be 
part of all understanding. The trouble is that the behaviour 
posited is not known to be what obtains in the actual economy. 
(Phelps-Brown 1972, 4) 

Nicholas Kaldor of Cambridge University is even more blunt: 

••• in my view, the prevailing theory of value--what I called, 
in a shorthand way, 'equilibrium economics'--is barren and 
irrelevant "l.S 3.n apparatus of thought •.•• (Kaldor 1972, 1237) 

As mentioned earlier, a vast body of empirical research in psychology and 
organizational studies h'3.s shown that people do not optimize or act as if 
they optimize, that they don't have the mental capabilities to optimize 
their decisions, that even if they had the computational powers necessary 
they lack the information needed to optimize. Instead, they try to satisfy 
a variety of personal and organization8.l goals, use standard operating 
procedures to routinize decisionmaking, and ignore much of the available 



-867-

D-3665 

information to reduce the complexity of the problems they face. Herbert 
Simon, in his acceptance speech for the 1978 Nobel Prize in economics, 
concludes: 

There can no longer be any doubt that the micro assumptions of 
the theory--the assumptions of perfect rationality--are 
contrary to fact. It is not a question of approximation; they 
do not even remotely describe the processes that human beings 
use for making decisions in complex situations. (Simon 1979, 
510) 

The second stage in econometric modeling is statistical estimation of the 
parameters of the model. The parameters determine the precise strengths of 
the relationships specified in the model structure. In the case of the 
Phillips curve, for example, having assumed in advance that unemployment 
affects inflation, the modeler would then use the past data on inflation 
and unemployment to estimate precisely how strong that relationship has 
been. Sophisticated statistical routines are used to estimate the 
parameters of the model. In essence, these routines, known generally as 
regression, are simply fancy curve-fitting techniques. They use the 
historical data to find the parameter values that best match the data 
itself, for example, matching the inflation rate in terms of the 
unemployment rate. 

The use of statistical procedures to derive the parameters of the model is 
the hallmark of econometrics, and distinguishes it from other forms of 
simulation. All modeling methods must specify the structure of the system 
and estimate parameters. But the focus in econometrics on statistical 
parameter estimation to the exclusion of other techniques imposes a strong 
discipline on the model builder. It gives econometricians an insatiable 
appetite for numerical data, for without numerical data the statistical 
procedures used to estimate the models are useless. It is no accident that 
the rise of econometrics went hand in hand with the quantification of 
economic life. For example, the development of the national income and 
product accounts by Simon Kuznets in the 1930s was a major advance in the 
codification of economic data, permitting consistent measures of economic 
activity at the national level for the first time. To this day all major 
macroeconometric models rely on the national accounts data, and indeed, 
macroeconomic theory itself has adapted to the national accounts framework. 

It is obvious that policy evaluation and foresight depend on an accurate 
knowledge of the state of the world and of its history. Econometrics has 
been a valuable stimulus to the development of much-needed data gathering 
and measurement by government and private companies alike. But at the same 
time, the relentless focus on numerical data blinds econometric modelers to 
less tangible but no less important factors. Econometric models portray 
the behavior of people. But aggregate statistical data measure only the 
result of the decisions made, not how or why those decisions were made. 
Statistical data do not reveal the nature and quality of the information 
people used to make decisions, and therefore models based on such data 
cannot be used to indicate how changes in that information would alter 
future decisions. 
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Reliance on statistical procedures to estimate the parameters forces 
econometricians to exclude from their models variables for which no 
numerical data exist such as soft variables ~nd unobservable concepts like 
desires, go!ils, perceptions, and so on. Potenti~lly observable quantities 
that haven't been measured must also be ignored or handled with proxy 
variables for which data do exist. For example, the literacy of a 
population may be proxied by education expenditures per capita, though the 
connection between the two may be tenuous. 

Another problem is the failure of econometric techniques to distinguish 
between causal relationships lind correlations. Simulation models must 
portray the causal relationships in the system if they are to mimic its 
behavior, especially in new situations or in response to new policies. But 
the statistical techniques used to estimate parameters in econometric 
models only reveal the degree of past correlation beh1een the variables. 
Statistical techniques can never tell the modeler whether a relationship is 
causal. The problem in using correlations is that the correlations may 
ch~nge or shift as the system evolves (Lucas 1976 makes the same point in a 
different context). Consider the Phillips curve as ~n example. The 
Phillips curve stopped working sometime in the early 1970s. Inflation rose 
and at the same time Qnemployment worsened. Many economists argued that 
structural change had occurred. By structural change they meant that the 
underlying causal structure of the system had changed. In fact, the 
Phillips curve was never a structural relationship at all--it never 
represented the causal forces that determine inflation or wage increases. 
Rather, the Phillips curve was nothing more than a way of restating the 
past behavior of the system. In the past, the curve said, low unemployment 
had tended to occur at the same time inflation was high, and vice-versa. 
Naturally, when the inflation of the 1970s swept prices to levels 
unprecedented in the industrial era and as people learned to expect 
continuing price increases, the historical correlation broke down. The 
behavior of the system h~d changed. But the underlying structure of causal 
relationships need not have changed. As inflation worsened, causal 
relationships that had been present all along but which were dormant in an 
era of low inflation gradually became active determinants of behavior. In 
p~rticular, the ability of people to adapt to continuing inflation existed 
all along but was not tested until inflation became high enough and 
persistent enough. (These causal relationships involved learning to deal 
with high inflation through indexing, COLAs, inflation-adjusted accounting, 
etc .--they were the result of an adaptive feedback process of learning). 
Because econometric models rely on historical correlations, a modeler's 
appeal to "structural change" usually means the inadequate structure of the 
model had to be altered bec!luse it failed to anticip3.te the behavior of the 
system. 

A related problem caused by the reliance on statistical estimation arises 
from the Hmited range of historical data usually available. Aggregate 
statistic3.l data do not provide a guide to behavior outside the historical 
range of experience or under a different set of policies or incentives. 
Historical relationships are assumed to remain valid in the future. 
Consequently, many econometric models are not robust--changes in policies 
or conditions that carry the system outside the range of historical data 
often cause the mod!~ls to break down. To illustrate, in 1979 the DRI model 
was used to test policies to eliminate oil imports. The model assumed that 
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the response of oil demand to the price of oil was rather weak--a ten 
percent increase in oil price caused a reduction of oil demand of only two 
percent, even in the long run. To reduce oil consumption by 50 percent 
(enough to cut imports to zero at the time), the model indicated that oil 
had to rise to $800 per barrel. Yet at that price, the annual oil bill for 
the remaining 50% would have exceeded the total GNP for that year (see 
Sterman 1981). Today, with the benefit of hindsight, economists 3.gree that 
oil demand is much more responsive to price than was earlier believed. But 
considering the behavior of the model in extreme conditions could hqve 
revealed the inconsistency of the original assumptions much earlier. 

The validation of ·::!Conometric models is also strongly influenced by the 
reliance on numerical da~. Because the micro-level data that describe how 
decisions are made are commonly ignored in econometrics, the criterion for 
the goodness of an equation or model becomes the degree to which it fits 
the data. (The model's predictive accuracy is also a criterion, but this 
is never known in advance--at best one knows how well a model predicted in 
the past.) The statistical routines used to estimate parameters indicate 
the degree of fit between the estimated and actual variables, and tell the 
modeler if the relationship between the variables is statistically 
significant. When a relationship fails to be significant, the modeler may 
try another specification for the equation, hoping for a better statistical 
fit. Without recourse to the descriptive, micro-level data, the resulting 
equations may be ad hoc and bear only slight resemblance to either economic 
theory or actual behavior. Alternatively, the discrepancy between the 
model and data may be explained by faulty data, exogenous influences, or 
other factors. The Phillips curve again provides an example. When the 
Phillips curve broke down, numerous revisions of the equations used to 
predict inflation were made, with limited success. Some analysts pointed 
to the oil price shock, Russian wheat deal, or other one-of-a-kind events 
as the explanation for the change. Still others argued that there had been 
structural change which caused the Phillips curve to shift out to higher 
levels of unemployment for any given inflation rate. Others argued that 
the Phillips "curve" was really a vertical line--that in the long run, the 
rate of inflation was solely dependent on monetary policy and had no 
relationship to unemployment at all. 

Econometrics texts teach that the statistical significance of an equation 
is 3.n indicator of the correctness of the relationship (e.g. Pindyck and 
Rubinfeld 1976). But this is a mistaken view. Statistical significance 
does not mean a relationship is q correct or true characterization of the 
way the world works, but simply indicates how well the equation fits the 
observed data. A statistically significant relationship indicates the 
variables in the equation are highly correlated--and that the apparent 
correlation is not likely to have been the result of mere chance. But it 
does not indicate that the relationship is causally correct or even that it 
is caus8.l at all. While the criterion of statistical significance as a 
yardstick for judging models seems plausible, failure to find a 
statistically significant relationship may simply indicate that there 
aren't enough da~a, or that the data don't contain enough information to 
allow the statistical procedures to discriminate between competing 
hypotheses. Or there may be statistical limitations. The regression 
procedures used to estimate parameters only yield unbiased estimates under 
certain conditions. These conditions are known as maintained hypotheses 
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because they are assumptions which must be made in order to 
statistical technique. The maintained hypotheses can never 
even in principle, but must be taken as a rna tter of faith. 

use the 
be verified, 
In the most 

common regression technique, ordinary least squares, the ma.intained 
hypotheses include the unlikely assumptions that the variables are all 
measured perfectly, that the model being estimated corresponds perfectly to 
the real world, and that the random errors in the variables from one time 
period to another are completely independent. More sophistic3.ted 
techinques do not impose such restrictive assumptions. But they always 
invoke other hypotheses, shifting the locus of the inevitable .q priori, but 
never eliminating it. 

The restrictive assumptions and mixed results of econometrics have 
generated serious criticism from within the economics profession. Phelps­
Brown notes that because controlled experiments are generally impossible in 
economics, "running regressions between time series is only likely to 
deceive" (Phelps-Brown 1972, 6). Lester Thurow notes that econometrics has 
failed as a method for testing theories and is now used primarily as "a 
showc3.se for exhibiting theories." But as a device for advocacy, 
econometrics imposes few constraints on the prejudices of the modeler. 
Thurow concludes 

By simple random search, the analyst looks for the set of ••• 
variables and functional forms that give the 'best' equations. 
In this context the 'best' equation is going to depend heavily 
upon the prior beliefs of the analyst. If the analyst believes 
that interest rates do not affect the velocity of money, he 
finds a 'best' equation that validates his particular prior 
belief. If the analyst believes that interest r3.tes do affect 
the velocity of money, he finds a 'best' equation that 
validates this prior belief. (Thurow 1983, 107-8) 

But the harshest assessment of all comes from Nobel laureate Wassily 
Leontief: 

Year after year economic theorists continue to produce scores 
of mathematical models and to explore in great detail their 
formal properties; and the econometricians fit algebraic 
functions of all possible shapes to essentially the same sets 
of data without being able to advance, in any perceptible way, 
a systematic understanding of the structure and the operations 
of a real economic system. (Leontief 1982, 107; see also 
Leontief 1971 ) 

But surely such theoretical problems matter little if the econometric 
models provide 3.ccurate predictions. Unfortunately, econometrics fails on 
this score as well. The pcedictive power of econometric models, even over 
the short-term (one to four ye3.rs) is poor and virtually indistinguishable 
from that of other forecasting methods. Thee;':) are several reasons for the 
failure to predict accurately. 

To forecast, the modeler must provide estimates of the future values of the 
exogenous vari3.bles, that is, those variables which influence the other 
V'J.r.iables in the model but whieh are not in turn influenced by the model. 
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An econometric model may have dozens of exogenous variables. Each must be 
forecast before the model can be used to predict. The source of the 
forecasts for these variables may be other models, but is usually the 
intuition and judgment of the modeler. Ensuring consistency, much less 
correct forecasts for the exogenous variables, is difficult. 

Often the forecasts produced by the models don't square with the modeler's 
intuition. rJiany modelers, including those at the "big three" econometric 
forecasting firms, Dat-3. Resources, Inc., Chase Econometrics, and H'harton 
Econometric Forecasting Associates, routinely adjust their forecasts 
whenever they feel the model output is wrong. This fudging, or 
11 3.dd-factoring," as they call it, is extensive: the late Otto Eckstein of 
Data Resources admitted that their forecasts were "60% model and 40% 
judgment" (Wall Street Journal, 17 February 1983). "'There is no way of 
telling where the Wha.rton model leaves off and [model developer] Larry 
Klein t::J.kes over'" according to g_nother economist (Business Week, 30 l"larch 
1981). Worse, the adjustments are often colored by the personalities of 
the modelers: 

"Mr. Eckstein concedes that sometimes his forecasts reflect an 
optimistic view. Data resources, ••• 'is the most influential 
forecasting firm in the country,' he declares. 'If it were in 
the hands of a doom-and-gloomer, it would be bad for the 
country.'" (Wall Street Journal, 17 Februg_ry 1983) 

Add-factoring has been attacked by other economists as unscientific. The 
mental models used to add-factor, though they are the mental models of 
seasoned experts, are subject to the same cognitive limitations other 
people face. And whether good or bad, the assumptions behind add-factoring 
are unexaminable. 

In a shocking experiment, the .Joint Economic Committee of Congress (through 
the politically neutral General Accounting Office) asked the three leading 
econometric forecasting firms (DRI, Chase, and Wharton) to make a series of 
simulations with their models. One set ·of forec3.sts 1-ms "managed" or 
g_dd-factored by the forecasters at each firm. The other set consisted of 
pure forec3.sts, made by the GAO, to examine the untainted results of the 
models. The models were run under different assumptions about monetary 
policy. As an illustration of the inconsistencies revealed by the 
experiment, consider the following: H'hen the money supply was assumed to 
be fixed, the DRI model forecast that after ten years, the interest rate 
would be 34 percent, a result totally contrary to both economic theory and 
historical experience. The forecast was then add-factored down to a more 
reasonable 7 percent. The other models fared little better, revealing both 
the in"lbili ty of the pure models to yield meaningful results and the 
extensive ad-hoc adjustments made by the forecasters to render the results 
p.8.latable (JEC 1982). 

The failures of econometric models have not gone unnoticed. A 
representative sampling of recent articles in the business press on 
economics and forecasting includes the following headlines: 
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"1980: The year the forecasters really blew it" 
(Business Week, 14 July 1980) 

"Where the big econometric models go wrong" 
(Business Week, 30 March 1981) 

"More or less oil will go up or down or maybe it won't: 
Energy experts are gun-shy after forecasts, 

for years, haven't turned out well" 
(Wall Street Journal, 5 May 1982) 

"Where have all the answers gone? 
Economists seem bankrupt just when their ideas are needed most" 

(Time, 17 January 1983) 

"Economists, too, find themselves in disarray" 
(US News & World Report, 7 Feb. 1983) 

''Forecasters overhaul models of economy in wake of 1982 errors" 
(wall Street Journal, 17 Feb. 1983) 

"Business forecasters find demand is weak in their own business 
B3.d predictions are factor" 

(W3.ll Street Journal, 7 Sept. 1984) 

"Economists missing the mark: more tools, bigger errors" 
(The New York Times, 12 Dec. 1984) 

The result of these failures has been to erode the credibility of all 
computer models no ma.tter what their purpose, not just econometric models 
designed for prediction. This is unfortunate, for foresight does not 
depend on the ability to predict the future. In fact, there is substantial 
agreement among modelers of global problems that exact, point prediction of 
the future is neither possible nor necessary (Meadows et al. 1982, 279): 

••• at present we are far from being able to predict social­
system behavior, except perhaps for carefully selected 
system.s in the very short term. Effort spent on attempts at 
precise prediction is almost surely wasted, and results that 
purport to be such predictions are certainly misleading. On 
the other hand, much can be learned from models in the form 
of broad, qualitative, conditional understanding--and this 
kind of understanding is useful (and typically the only 
basis) for policy formulation •.•• If your doctor tells you 
that you will have a heart attack if you do not stop smoking, 
this advice is helpful, even if it does not tell you exactly 
when a heart attack 1-1ill occur or how bad it will be. 

When to use econometrics: Econometric models do not seem to be well­
suited to the types of problems of concern in poicy analysis and foresight. 
The prime purpose of econometric models is short-t,3rm prediction of the 
exact future state of the economy, Host of the attributes of econometrics 
have evolved in response to this need, including the reliance on regression 
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techniques to pick the "best" pa.rameters from the available numerical data, 
the extensive reliance on exogenous variables, and add-factoring. Though 
in practice econometric models do not predict very well, they are about as 
good as anything else for that purpose. 

Though econometric models purport to simulate human behavior, they in fact 
rely on unrealistic 9.Ssumptions 9.bout the motivations of real people and 
the information 9.vailable to make decisions. Though they must represent 
the physical world, they commonly ignore dynamic processes, disequilibrium, 
and the physical basis for delays between actions and results. Though they 
may incorporate hundreds of variables, they ignore soft variables and 
unmeasured quantities. Foresight is most often concerned with longer time 
horizons than are common in econometrics. The feedback relationships 
between environmental, social, and demographic factors are usually as 
important as economic influences. Often the numerical data needed to model 
these effects are not available. The need to consider the long term means 
the system is likely to leave the historical region of behavior, making 
historical correlations an unreliable basis for analysis. 

5. Checklist for the Model Consumer 

The preceeding discussion has focused on the limitations of V"lrious 
modeling approaches in order to provide potential model consumers with a 
sense of what to look out for when choosing a model. Despite the 
limitations of the various modeling techniques, there is no doubt that 
computer models can be and have been extremely useful foresight tools. 
Well-built models offer significant advantages over the often faulty mental 
models currently in use • · 

To further assist the model consumer, the following checklist presents key 
questions a model user should ask to help evaluate the appropriateness of a 
model for a particular purpose. 

--What is the purpose of the study? What problem does the model 
address? 

--What is the boundary of the model? What factors are 
endogenous? Exogenous? Excluded? Are soft variables 
included? Are feedback effects properly taken into account? 
Does the .model capture possible side effects, both harmful and 
beneficia 1? 

--What is the time horizon relevant to the problem? Does the 
model include as endogenous components factors that may change 
significantly over the time horizon? 

--Are people assumed to act rationally and to optimize their 
performance? Does the model t9.ke non-economic behavior into 
account (organizational realities, non-economic motives, 
political factors, cognitive limitations)? 

--Does the model assume people have perfect information about the 
future and about the way the system works, or does it take into 
account the limitations, delays, and errors in acquiring 
information that plague decisionmakers in the real world? 
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--Are appropriate time delays, constraints, ~nd possible 
bottlenecks taken into account? 

--Is the model robust in the f:=J.ce of extreme v3.riations in input 
assumptions? 

--Are the policy recommendatiot1s derived from the model sensitive 
to plausible variations in its assumptions? 

--Are the results of the model reproducible? Or are they 
adjusted ( "add-f~ctored") by the model builder? 

--Is the model documented, ~nd is the documentation publicly 
available? 

6. Conclusions 

The arguments above have crucia 1 impl ic~tions for the design of 
governmental and private foresight ~nd policy analysis c9.pabilities. 
Foresight requires the intelligent use of different models designed for 
specific purposes, not a single, comprehensive model of the world. 
Foresight is not a well-intentioned way to back into an Orwellian world of 
centralized control. To repeat ~ dictum offered above, "Beware the analyst 
who proposes to model an entire social or economic system rather than a 
problem." It is simply not possible to build a single, integrated model of 
the world, into which mathematical inputs can be inserted and out of which 
will flow a coherent and useful understanding of world trends. To be used 
responsibly, models must be subjected to review and debate. To foster that 
process, a cross-disciplinary approach is needed. Models designed by 
experts in different fields and for different purposes must be compared, 
contrasted, and criticized. The foresight process should foster such 
review. 

The history of global modeling provides a good example of such a process. 
The initial global modeling efforts, published in World Dynamics (Forrester 
1971) and The Limits to Growth (Meadows et al. 1972) provoked a storm of 
controversy. A number of critiques appeared, and soon after, other global 
models were developed. Over ten years, the International Institute for 
Applied Systems Analysis (IIASA), near Vienna, conducted a program of 
analysis and critical review designed to bring the modelers together. Six 
major symposia were held. Eight major global models were examined and 
discussed. The models had different purposes, used a range of modeling 
techniques, and were built by persons with widely varying backgrounds. 
There remain large areas of methodological and substantive disA.greement. 
Yet despite the enormous differences in perspective, consensus has emerged 
on a number of crucial issues. These include: 

(1) The physical and technical resources exist to satisfy the basic 
needs of -111 the world's people into the foresee:~.ble future. 

(2) Population .:~.nd material growth cannot continue forever on a finite 
planet. 
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(3) Continuing "business as usual" policies in the next decades will 
not result in a desirable future, or even the satisfaction of 
basic human needs. 

(4) Technical solutions alone are not sufficient to satisfy basic 
needs or create a desirable future. (Paraphrased from Groping in 
the Dark, Meadows et al. 1982) 

The IIASA program on global modeling represents the most comprehensive 
effort to date to use computer models as a way to bootstrap human 
understanding. It has created agreement on crucial issues where none 
existed. It has guided research and sped progress. It offers a model for 
the effective conduct of foresight in both the public and private sectors. 

The primary function of modelbuilding should b~ educational rather than 
predictive. No one should make decisions on the basis of a computer model 
whose results are simply presented, take 'em or leave 'em. 

Towards that end, the role of modeling should be redefined as a process 
rather than as a technology for producing an answer. The common mode of 
computer-based analysis, in which a study is commissioned by a client who 
then waits for the final report, largely ignorant of the methods, 
assumptions, and bi"lses that go into the conclusions, virtually guarantees 
f"lilure. Such a procedure places the policymaker in the role of a 
supplicant before the oracle, awaiting the prophecy. Like King Croesus 
before the Oracle at Delphi, there is a nearly overwhelming temptation for 
policymakers to interpret such pronouncements in accordance with their 
preconceptions, or easier still, to simply ignore unfavorable results. 

Worse, the model-as-oracle attitude so prevalent today rightfully "llarms 
many who see blind acceptance of models as an abdication to the computer of 
the responsibility for judgments that should be human (Weizenbaum 1976)., 
Models should not be used as a substitute for critical thought, but as a 
tool for improving judgment and intuition. 

Yet for all the pitfalls of formal modelbuilding, it must be remembered 
that the alternative is continued reliance on the mental models that have 
failed to resolve the pressing problems with which public policy is 
concerned. While far from perfect, the computer model is often superior to 
the alternative mental models currently in use. 

Indeed much of the v:1lue of formal models derives from the difference 
between the results of the formal model and those of the mental model. By 
exploring the reasons for the differences between the results of the mental 
and formal models, both can be improved. Improving the mental models upon 
which decisions are ultimately based is the proper goal of computer 
modeling. The success of such a dialectic, however, depends on the ability 
to understand the :lssumptions of the computer model. Foresight must foster 
that dialectic and stimul'lte education, F.tided by the computer, but 
ultimately relying on informed hum3.n judgment, not computer printouts. 
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