
Adaptive Policymaking under Deep Uncertainty: 
Optimal Preparedness for the next pandemic 

Caner Hamarat, Jan Kwakkel, Erik Pruyt 
Delft University of Technology 

Faculty of Technology, Policy and Management 
Jaffalaan 5, 2628 BX, Delft, The Netherlands 

+31 15 2788080 
c.hamarat@tudelft.nl  

 

Abstract 

The recent flu pandemic in 2009 caused a panic about the possible consequences due to deep 
uncertainty about an unknown virus. Overstock of vaccines or unnecessary social measures to be 
taken were all due to uncertainty. However, what should be the necessary actions to take in such 
deeply uncertain situation where there is no or very little information available? For uncertain 
and complex future, adaptivity and flexibility should be the main aim for designing robust 
policies. Here, we propose an iterative approach for designing adaptive and robust policies in 
the presence of deep uncertainty. A crucial part of this approach is the use of monitoring systems 
that provide the adaptivity and flexibility of the policy design. In the monitoring system, signposts 
to track specific information are defined. Specific values of these signposts are called triggers 
and they are triggered when pre-specified conditions occur in the system. The specification of 
trigger values is crucial for the policy performance but has not been studied in depth. Here, we 
use robust optimization to optimize the trigger values. This paper shows that our proposed 
approach with robust optimization improves policy design in deeply uncertain and complex 
situations where very little information is available.  

Keywords: adaptive policymaking, robust optimization, influenza, Exploratory Modeling and 
Analysis, deep uncertainty.  

1. Introduction 

With the first reports of a new flu virus in March-April 2009, the panic started to spread all 
around the world. The very little amount of what was known about this new flu variant caused 
the panic to grow more. Most European governments ordered vaccines double the amount of the 
total population. For instance, Netherlands with 35 million doses ordered for a population of 
approximately 16 million people (NRC 2009). Such extremely cautious actions were caused by 
the deep uncertainty of the Mexican Flu. In the initial stages of the pandemic, the information 
was very limited and even not available sometimes. Therefore, there was a need for policies that 
could help overcome the deep uncertainty and be ready for surprises in the future.   



Adaptive Policymaking 

Uncertainty is quite impossible to avoid in policymaking. It is possible to face unforeseen events 
caused by uncertainty. Therefore, uncertainty should be taken into account in the policy design. 
An approach in policymaking is to aim for a static policy  based on a best estimate future, which 
is doomed to perform poorly in an uncertain and complex future (Walker, Marchau, and Swanson 
2010). For an uncertain and complex future, adaptivity and flexibility should be the main aim for 
designing robust policies (Neufville and Scholtes 2011; Lempert, Popper, and Bankes 2003; 
Neufville and Odoni 2003; Swanson et al. 2010; Walker, Rahman, and Cave 2001; Schwartz and 
Trigeorgis 2004).  

There have been various studies for designing adaptive policies. An early study by Dewey (1927) 
puts forth an argument proposing that policies be treated as experiments, with the aim of 
promoting continual learning and adaptation in response to experience over time (Busenberg 
2001). Policies are designed from the outset to test clearly formulated hypotheses about the 
behavior of an ecosystem being changed by human use (Lee 1993). A similar attitude is also 
advocated by Collingridge (1980) with respect to the development of new technologies. Given 
ignorance about the possible side effects of technologies under development, he argues that one 
should strive for correctability of decisions, extensive monitoring of effects, and flexibility. In a 
recent study by Walker et al. (2001), a structured, stepwise approach for dynamic adaptation is 
proposed. In this approach, plans should be adaptive, where only those actions that are non-regret 
and time-urgent are taken and others are postponed to a later stage. This part of the plan is called 
the basic policy. The postponed actions are taken with the help of a monitoring system and pre-
specification of responses when specific trigger values are reached and this part is called as the 
contingency planning. The aim is to achieve a robust plan that is flexible and adaptive to 
plausible futures.  

A common characteristic of these approaches is the combination of time urgent actions to be 
taken immediately with pre-specified action taken in response to how the future unfolds. In order 
to achieve a robust and adaptive policy design, it is important to correctly specify when to 
respond with these pre-specified actions. To this purpose, signposts to track specific information 
can be defined for monitoring the system. Specific values of these signposts are called triggers 
and they are triggered when pre-specified conditions occur in the system (Kwakkel, Walker, and 
Marchau 2010). However, the literature remains silent on the monitoring system and the 
specification of trigger values. A common approach is to consult for expert opinions or to 
estimate values based on historical trends. These approaches are open to surprises caused by 
uncertainty and can lead to poor policy performances. To this purpose, trigger specification 
should be done by using more intelligent and robust methods. A solution approach can be to use 
optimization. 

 



Robust Optimization 

Optimization is very popular in almost every aspect of decision making and also used in 
policymaking. Optimization can be defined as trying to find the optimum solution among a set of 
possible alternatives without violating certain constraints. It is mostly employed for predictive 
purposes, where the aim is for a single best estimate solution. However, under deep uncertainty, 
this predictive approach might be misleading for policymaking, where often an optimum single 
goal is not the main aim (Bankes 2011). Robust optimization aims to overcome this difficulty of 
uncertainty. Robust optimization methods aim at finding optimal outcomes in the presence of 
uncertainty about input parameters (Ben-Tal and Nemirovski 1998, 2000; Bertsimas and Sim 
2004). To this purpose, robust optimization methods can be of great use for adaptive 
policymaking under uncertainty.  

There is an enormous variety of different techniques and methods in the optimization literature. 
Among various optimization techniques, Genetic Algorithm (GA) is a commonly used heuristic 
method. GA is flexible and efficient in complex and irregular solution spaces. It mimics the 
evolution process and tries to find the fittest survivor. In GA, a candidate solution is represented 
as a chromosome where each allele of the chromosome is a decision variable. Each trigger value 
can be considered as a decision variable that these trigger values form a candidate policy. So, 
Genetic Algorithm can be used for the specification of trigger values in adaptive policymaking.   

Organization of the paper 

The rest of the paper is organized as follows: Section 2 introduces Exploratory Modeling and 
Analysis, our proposed iterative adaptive policymaking approach and Genetic Algorithm. In 
Section 3, the flu model is explained. Section 4 illustrates the results and Section 5 contains a 
discussion of the results and conclusions.  

2. Methodology 

Exploratory Modeling and Analysis 

Exploratory Modeling and Analysis (EMA) is a research methodology that uses computational 
experiments to analyze complex and uncertain systems and support long-term strategic decision 
making under deep uncertainty (Agusdinata 2008; Bankes 1993). EMA can be contrasted with 
the use of models to predict system behavior, where models are built by consolidating known 
facts into a single package (Hodges and Dewar 1992). In predictive modeling, a single best 
estimate model is used as a surrogate for the actual system. Where applicable, this consolidative 
methodology is a powerful technique for understanding the behavior of complex systems. 
Unfortunately, for many systems of interest, the construction of a model that may be validly used 
as surrogate is simply not a possibility (Campbell et al. 1985; Hodges and Dewar 1992). For 
many systems, a methodology based on consolidating all known information into a single model 
and using it to make best estimate predictions can be highly misleading. However, models can be 



constructed that are consistent with the available information, but such models are not unique. 
Rather than specifying a single model and falsely treating it as a reliable image of the system of 
interest, the available information is consistent with a set of models, whose implications for 
potential decisions may be quite diverse. A single model run drawn from this potentially infinite 
set of plausible models is not a “prediction”; rather, it provides a computational experiment that 
reveals how the world would behave if the various guesses made in any particular model about 
the various unresolvable uncertainties were correct. By conducting many such experiments, EMA 
provides insights and understanding about the system functions and effectiveness/robustness of 
policies despite the presence of deep uncertainty. EMA is not a modeling technique by itself, but 
it is a methodology for building and using models under deep uncertainty. 

Computer Aided Dynamic Adaptive Policy Design 

EMA could be used to develop dynamic adaptive policies. EMA allows for the explicit 
representation and exploration of a multiplicity of plausible futures under deep uncertainty. Thus, 
EMA can be used to identify the vulnerabilities and opportunities that this ensemble of futures 
holds, paving the way for designing targeted policies that address vulnerabilities or seize 
opportunities. The efficacy of these policy designs can then be tested against the ensemble of 
futures. Moreover, EMA can be used to identify conditions under which changes in a policy are 
required. That is, it can help in developing the monitoring system and its associated actions. It 
thus appears that EMA can be of use in all the steps of the design phase of a dynamic adaptive 
policy. 

An iterative approach that is called as Computer Aided Dynamic Adaptive Policy Design 
(CADAPD) has been proposed (Hamarat, Kwakkel, and Pruyt Forthcoming):  

1. conceptualization of the problem,  
2. identification of the uncertainties,  
3. development of an ensemble of models for exploring the uncertainties, 
4. running the computer model(s) without introducing any policies in order to generate the 

ensemble of futures, 
5. analysis of the results obtained from Step 4 in order to identify the vulnerabilities and 

opportunities, 
6. design of candidate policies for addressing vulnerabilities and seizing opportunities, 
7. testing of candidate policies across the ensemble of futures, 
8. iteration through Steps 5-7 until a satisfying policy emerges.  

Identification of vulnerabilities and opportunities is done by using the Patient Rule Induction 
Method (PRIM) (Friedman and Fisher 1999; Lempert et al. 2006; Groves and Lempert 2007). 
PRIM can be used for data analytic questions where the analyst tries to find combinations of 
values for input variables that result in similar characteristic values for the outcome variables. 
Specifically, one seeks a set of subspaces of the input variable space within which the values of 
output variables are considerably different from the average value over the entire output domain. 



In addition, it is usually desired that these regions can be described in the form of easily 
interpretable rules. In the context of this paper, the input space is the uncertainty space. Thus, we 
use PRIM to identify the combinations of the uncertainties in the global uncertainty space that 
result in highly desirable or undesirable outcomes of interest. 

Genetic Algorithm 

Genetic Algorithms (GA) are optimization methods based on natural selection as can be observed 
in biological systems (Fraser and Burnell 1970; Holland 1975). This approach requires 
constructing an initial population composed of chromosomes, where each chromosome represents 
a candidate solution. Next, the fitness of each population member is assessed using a user 
specified objective function. In light of the fitness scores of the current population members, the 
next generation is created. For creating the next generation, the new members are reproduced 
from those selected through evolutionary processes such as crossover and mutation. Once the 
next generation is created, the fitness calculations are computed again for the new population 
members. This process of fitness evaluation and reproduction of new generation is repeated until 
a pre-specified termination criterion is met. Possible termination criteria include reaching a 
desired solution, a fixed number of iterations, and convergence of the fitness scores.  

GA are commonly used for solving decision making problems due to their flexibility and 
efficiency in complex and irregular solution spaces (Chambers 1999). We argue that GA can be 
efficiently used in CADAPD for optimizing trigger values. The chromosome structure for 
representing a candidate solution can be easily used for representing a set of trigger values as a 
candidate policy setting. In this case, each genome of a chromosome will be a trigger value and 
each chromosome will represent is a complete representation of the monitoring system. So, GA 
can be employed for optimizing the set of trigger values.  

The trigger values for the various actions in a monitoring system should be robust across the 
ensemble of plausible futures. The criterion used for performance calculation in robust 
optimization is quite important. There are different criteria such as minimizing the maximum 
regret (minimax), maximizing the minimum gain (maximin) or maximizing the maximum gain 
(maximax) (Winston & Goldberg, 2004). GA is often used for robust optimization (Herrmann, 
1999; Li et al., 2005; Maruyama & Igarashi, 2008). In this study, a cardinality criterion, which is 
the number of cases above a certain threshold, is utilized. We start by generating a population of 
trigger values. Each population member is a set of trigger values for the actions in the monitoring 
system. The performance of each population member is evaluated according to the cardinality 
criterion over a fixed number of plausible futures. 

 



3. The Flu Model 

In this study, an exploratory System Dynamics model (Pruyt and Hamarat 2010) about the recent 
flu pandemic, which is known as the Mexican Flu or A(H1N1)v. The modeled world is divided in 
three regions: the Western World, the densely populated Developing World, and the scarcely 
populated Developing World. Only the two first regions are included in the model because it is 
assumed that the scarcely populated regions are causally less important for dynamics of flu 
pandemics. The basic stock-flow structure of one of the two regional sub-models of the ESD 
simulation model is displayed in Figure 1.  

 

Figure 1: The stock-flow diagram of the region 1. 

The figure represents only the Western World but the stock-flow diagram of the region 2 is very 
similar to the region 1, with some minor differences. For instance, less average normal contact 
rate, higher infection rate are assumed for region 2. The link between two regions is provided via 
the interregional contact rate. A more detailed information about the model and its specifications 
can be found in (Pruyt and Hamarat 2010).  

 



4. Analysis 

In this study, an exploratory System Dynamics model about the recent flu pandemic is used for 
illustrating how our proposed approach can be effectively used for adaptive policymaking. It is a 
small, high-level and simplistic model. However, it is still quite useful for explorative purposes. 
The model includes a variety of uncertainties to be explored over about the flu pandemic (See 
Table 1). The main outcomes of interest are the number of deceased people in region 1 and the 
fraction of infected people over the total population in region 1. The model is executed over a 
time horizon of 48 months. The details about a quick exploration of basic behaviors and a 
sensitivity analysis of important variables can be found in (Pruyt and Hamarat 2010). 

Table 1: Uncertainties and their upper and lower limits to be explored 

Parameter Lower Limit Upper Limit

additional seasonal immune population fraction region 1 0.0 0.5 

additional seasonal immune population fraction region 2 0.0 0.5 

fatality ratio region 1 0.0001 0.1 

fatality ratio region 2 0.0001 0.1 

initial immune fraction of the population of region 1 0.0 0.5 

initial immune fraction of the population of region 2 0.0 0.5 

normal interregional contact rate 0.0 0.9 

vaccination decision action delay 4 9 

permanent immune population fraction region 1 0.0 0.5 

permanent immune population fraction region 2 0.0 0.5 

recovery time region 1 0.2 0.8 

recovery time region 2 0.2 0.8 

root contact rate region 1 1.0 10.0 

root contact rate region 2 1.0 10.0 

infection ratio region 1 0.0 0.1 

infection ratio region 2 0.0 0.1 

normal contact rate region 1 10 200 

normal contact rate region 2 10 200 

 



No Policy 

The initial analysis starts without introducing any policy to see the behavior of the system 
without any external influence. Exploring over the uncertainty space, 10,000 simulations are 
executed. Figure 2 shows the behavior of the following outcomes: the number of deceased people 
in region 1 and the fraction of infected people over the total population in region 1. Due to the 
illustrative constraints, only 1,000 randomly selected simulations out of 10,000 are visualized. 
The blue shaded areas show the upper limits of the outcomes over 10,000 simulations. The 
number of deceased people has an upper limit around 50 million deaths. However, only few cases 
have such catastrophic results. More than half of the simulations result in a casualty number of 
less than one million people. For the infected fraction of region 1, the observed behavior is a 
sharp early peak followed by a mild peak and afterwards gradually decreasing. The maximum 
peak observed is around a level of 40-45%, which means 40-45% of the population of region 1 is 
infected. Similarly, such catastrophic cases are very unlikely but still plausible.   

 

Figure 2: Deceased population and infected fraction for region 1 without any policy 

Since such catastrophic cases where dramatic number of deaths and high levels of infection 
happen are not very likely but plausible, it is necessary to understand the underlying reasons 
behind such behaviors. If the underlying mechanisms can be revealed, it can be possible to design 
action(s) to prevent the system to face catastrophe. To this purpose, PRIM is used for finding the 
combination of uncertainties that has common characteristics. We looked for the cases where the 
number of deceased people is above one million. We classified those cases as 1 and others as 0 
and PRIM is applied to find subspaces in the uncertainty space where the average of the cases in 
a subspace is above 0.9. PRIM results show four different subspaces, where each colored line in 



Figure 3 represents a different subspace. The uncertainties shown on the figure are the relevant 
uncertainties for the classification criterion used for PRIM. Gray shaded area ranges between 0 
and 1 where each uncertainty range is also normalized correspondingly. For instance, the red line 
shows that a combination of higher recovery time for region 1, lower root contact rate for region 
1, higher infection rate and normal contact rate for region 1 result in cases where the number of 
deceased people is higher than one million. The other colored lines can be interpreted in a similar 
manner. A common observation for each of the PRIM subspaces is that higher infection rate and 
normal contact rate for region 1 cause undesirable behaviors.  

 

Figure 3: PRIM Results for without any policy 

 

Basic Policy 

In the light of PRIM results, a basic policy is designed to overcome the undesirable results 
focusing on reducing the infection and social contact. The basic policy consists of two actions. 
The first action is to vaccinate 40% of the region 1 against the influenza to reduce the infection 
level. The second action of the basic policy is for the reduction of social contact. An orchestrated 



contact rate reduction is applied by monitoring the infection level. An S-shaped lookup function 
that monitors the infected fraction is designed to reduce the normal contact rate accordingly. This 
lookup function connects the following points:  

[(0,0),(0.05,0.05),(0.1,0.2),(0.2,0.75),(0.3,0.85),(0.4,0.9),(1,1)] 

 

 

 

Figure 4: Comparison of No Policy and Basic Policy 

This basic policy again tested by exploring the uncertainty space with 10,000 simulations. In 
order to illustrate the effectiveness of the basic policy, the results for no policy and basic policy 
are compared in Figure 4. The blue envelope showing the upper and lower limits over 10,000 
simulations belongs to the no policy and the green envelope is for the basic policy. As can be 
seen both in terms of the deceased population and infected fraction, there is a reasonable 
reduction with the introduction of the basic policy. The maximum infected fraction peak is 



reduced from 40-45% to a level around 20%. Similarly, the maximum casualty level decreased 
from 50 million to 45 million people. Although there is a considerable improvement with the 
basic policy, it is still plausible to face dramatic undesirable results.  

 

Figure 5: PRIM Results for Basic Policy 

In order to find the vulnerabilities of our basic policy, we applied PRIM with the same criterion 
used before on the results of the basic policy. Figure 5 shows the relevant uncertainties which are 
the recovery time, the infection rate, the normal contact rate and the fatality ratio of region 1. The 
most obvious observation, again, is that it is still needed to reduce the social contact and the 
infection level.  

Adaptive Policy 

Under deep uncertainty, adaptivity should be the main aim for a robust policy design. To this 
purpose, we modified our basic policy in the light of PRIM results and adaptive policymaking 
design. First of all, the vaccination action is revised to make it more adaptive and flexible. 40% 
minimum level of vaccination is kept but in addition to that, vaccinated level is increased 
gradually according to the observed case fatality ratio. For an observed case fatality ratio (cfr) of 
0.1%, the vaccination level is increased to 60%. If the observed cfr is 1%, then vaccination level 
is 80% and for cfr of 10%, vaccination level is at the maximum 100% level. The aim of this 
action is to be effective for reducing the infection level. Another crucial issue is the reduction in 
the social contact. For that, we designed an alert activation monitoring system. This system 
checks on a weekly basis whether the rate of increase in the infected fraction level is positive or 
not. If the rate of increase for the infected fraction is positive for three consecutive weeks, then 
the alert is activated and an extra 50% emergency contact rate reduction is applied. For this 



action, alert is triggered if the rate is positive for three consecutive weeks, which is our trigger 
value. These two actions that are added on our basic policy forms our adaptive policy design. The 
adaptive policy is tested for 10,000 simulations for exploring the uncertainty space and a 
comparison of the results of the basic and the adaptive policy is shown on Figure 6.  

 

Figure 6: Comparison of Basic Policy and Adaptive Policy 

The results illustrate that there is only a little improvement with the introduction of the adaptive 
policy. The upper limit of the number of deceased people is reduced to a level around 40 million 
deaths. In terms of infected fraction, the maximum peak of the infection is around the same level 
of 0.20 but the adaptive policy seems to be effective for preventing the later smaller peaks. In our 
adaptive policy design, two triggers are used for designing the alert activation system: one of the 
triggers is the check period and the other is the number of consecutive positive checks. The 
specification of the trigger values is done based on experience and estimates. However, by using 
robust optimization, it is possible to specify these triggers more intelligently.  



Optimized Adaptive Policy 

In order to optimize the triggers used in the adaptive policy, we use Genetic Algorithm (GA) in 
our robust optimization. A set of these two triggers is a candidate solution and for calculating the 
fitness of a candidate solution, we utilize a cardinality based criterion. Each candidate solution is 
executed over 200 cases and the fraction of the number of cases that are below 600,000 deceased 
people over 200 cases is used as the fitness score. The reason for using the threshold of 600,000 
is that it is 0.1% (Guidance 2007) of 600 million which is the total population of region 1. With a 
population size of 50 and over 50 generations, robust optimization is executed by using GA with 
a crossover rate of 0.7 and a mutation rate of 0.01. The optimized values of the triggers are as 
follows: 0.4057 month for check period and 1.013 for the number of consecutive checks. This 
means that the optimized policy for the alert activation system should be to check every 12 days 
and if the rate of increase in the infected fraction level is positive for 12 days, then the alert 
should be activated. Current alert design only activates an extra social contact reduction but it 
does not do anything about vaccination. To this purpose, the optimized policy is redesigned to 
start additional vaccination when the alert is activated. The comparison of the resulting optimized 
policy with the other policies can be found in Figure 7.  

 

Figure 7: Comparison of Basic Policy, Adaptive Policy and Optimized Policy 



The figure above shows that the optimized policy is effective both in terms of reducing the upper 
limit of the deceased population and the maximum peak of the infected fraction. By the 
optimized policy, the upper limit of the deceased population is at a level around 35 million and 
the maximum peak of infected fraction is around 15%. Additionally, the later smaller peaks are 
almost gone with the introduction of the optimized policy.  

In order to illustrate the performances of the policies more clearly, Figure 8 represents the 
comparison of the policies. In this figure, each graph includes 10,000 blue dots where each blue 
dot represents a single simulation. Each single dot shows the corresponding numbers of the 
deceased population and the maximum level of infected fraction reached for the associated 
simulation. For the basic policy, there are more cases where the number of deceased population 
and the maximum infected fraction level is high. Adaptive policy helps to reduce the number of 
these catastrophic cases. Furthermore, the optimized policy is more effective because most of the 
cases are kept at very low levels of deaths and infection.   

 

Figure 8: Comparison of the policies according to the maximum peak and the number of deceased people 

In our analysis, each policy was executed over 10,000 simulations. Table 2 shows the number of 
cases where the number of deceased population is above 100,000 and 1,000,000 for each policy. 
It is observed that at each step, there is a clear decrease in the number of deaths. This shows that 
our iterative approach is effective for designing policies that are robust and adaptive under deep 
uncertainty. 



Table 2: Number of cases above certain number of deceased population for each policy 

 

5. Discussion & Conclusions 

The flu pandemic of 2009 has shown us that when the information is very limited or even not 
available, it is quite difficult to design a robust strategy. Under deep uncertainty, adaptivity and 
flexibility should be aimed in order to be ready for surprises and unforeseen events. This study 
illustrates that our proposed approach can be effectively used for developing robust, adaptive and 
flexible policy under conditions of deep uncertainty. 

In this study, an iterative model-based approach for adaptive policymaking under uncertainty and 
the use of robust optimization in policymaking have been illustrated through a case about the 
2009 flu pandemic. Starting without introducing any policy, we identified the vulnerabilities of 
the model and designed a basic policy according to the PRIM analysis. The results of the basic 
policy showed that there was still room for improvement in the number of deaths and infection 
levels. To this purpose, an adaptive policy was designed in the light of the PRIM analysis of the 
basic policy. Since the triggers used for adaptive design were based on estimates, new values 
were specified for these triggers by using robust optimization.  

Robust optimization is an optimization methodology where robustness is aimed in the presence of 
uncertainty. A crucial concept in robust optimization is the choice of robustness calculation. In 
this study, we also employ a robust optimization method for calculating the fitness of a candidate 
solution according to a cardinality criterion. However, there are other criteria such as minimax, 
maximax or maximin. Maximin is a common approach used in robust optimization where we 
look for the worst cases for each candidate solution and try to minimize the worst cases. Since the 
choice of optimization criterion can have a great importance on the solution, other possible 
criteria should also be considered and tested. 
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