The Dana Meadows Award was established in 2001 to honor the late Dana Meadows and encourage the next generation of students in the field of system dynamics. The award is given annually for the best paper by a student presented at the annual System Dynamics Conference. The winner receives a cash award, a conference registration and an allowance for travel
expenses. The Society awarded its 2012 Dana Meadows Award to David Keith at the Massachusetts Institute of Technology, and András K?vári at Delft University of Technology. David Keith received the award for the paper "Understanding Spatiotemporal Patterns of Hybrid-Electric Vehicle Adoption in the United States." András K?vári received the
award for the paper "Prostitution and Human Trafficking: A model-based exploration and policy analysis." The award was presented by R. Joel Rahn.
To help modelers increase the transparency of their models through enhanced documentation, scientists at Argonne National Laboratory (ANL), building on model documentation work by Oliva (2001), developed the System Dynamics Model Documentation and Assessment Tool (SDM-Doc) that enables modelers to create practical, efficient, HTML-based model documentation and provide customizable model assessments. The model documentation created by the SDM-Doc tool allows modelers to navigate through model equations and model views in an efficient and practical way creating documentation of the model sorted by variable name, type of variable, group, view, module, module/group/name, and variable of interest. Additionally, model tests are performed allowing modelers and reviewers of models to gain confidence in fundamental characteristics of model structure. The tool, its use, and the different model assessments included in it will be presented and explained. Participants are encouraged to bring their laptops to be able to use the tool during the workshop. A copy of the software will be distributed to participants at the workshop (the tool is accessible at http://tools.systemdynamics.org/sdm-doc/).
The purpose of this study is to build an experimental platform for scenario and policy analyses of social security institutions that deploy pay-as-you-go schemes as the financing method. To realize this aim, system dynamics methodology is utilized and a generic dynamic simulation model is constructed. Afterwards, the financial sustainability of the social security institution in Turkey, as a susceptible country for its aging population, is investigated via scenario and policy analyses. The results show that (i) irrespective of scenarios and policies, aging phenomenon is quite dominant and a serious threat to financial sustainability, (ii) informal sector plays a crucial role in the financial sustainability of social security systems, and (iii) a hybrid policy combining increase in retirement age, premiums and decrease in informal sector ratio seems to be the most promising one among the other policies. Future research involves modeling the fully funded scheme complementing this study to enable the public policy makers to compare and contrast the two financing methods comprehensively.
This paper presents a soft landing model and an experimental platform. The aim of the modeling effort is to transparently represent the process of landing a spacecraft on the surface of a celestial body. The process of landing is a challenging task because there are two main contradictory performance criteria to be met simultaneously; the landing duration should be as short as possible, but at the same time crashing the spacecraft to the surface should be avoided. If the only criterion was to prevent crashing the spacecraft, that would not be difficult to achieve by slowing down the landing process. However, long landing duration necessitates extensive use of fuel, which should also be avoided. As a summary, the main goal in the soft landing problem is to land the spacecraft as gently and as fast as possible. The model and the modeling process presented in this paper will serve as a modeling case to be used in teaching. Based on the soft landing model presented in this paper, we also developed a platform for simulation experiments. Our simulation-based discovery learning environment can be used to introduce dynamic complexity. It can also be used as an introductory control design tool for physics, engineering, and interested social sciences students.