Ozgun, Onur with Yaman Barlas, "Systemic Complexity of a Growth Management Game: Comparative Analysis of Decision Heuristics and Experimental Results", 2012 July 22-2012 July 26

Downloadable Content

Download PDF
ua435

ABOUT THIS ITEM

In this study, using different versions of a growth management game involving two different complexity factors, we compare performances of heuristic rules with experimental results. We present a method for obtaining a statistical distribution of scores resulting from a given simulated decision heuristic, which can be used to compare against and assess experimental gaming results. The method is based on the idea of generating vast number of scores by stochastically simulating a given decision rule and obtaining the resulting score distribution. We use this method to compare scores from different game versions whose scores are essentially not comparable, and to see how the score distributions change from one game version to another. In simulations, we first use a simple random "decision rule" and then develop a more intelligent hill-climbing heuristic. The results show that when the games involve delay, human subjects do not perform better than the random heuristic —a primitive rule composed of a sequence of random decisions. On the other hand, in nonlinear games, subjects outperform the random heuristic and their scores fit better the score distribution of the hill-climbing heuristic. We also demonstrate how the score distribution from random heuristic can be used as a reference performance measure.

This is the whole item.

Date created
  • 2012 July 22-2012 July 26
Type
Processing Activity License

ITEM CONTEXT

Part of

ab062956a014e30aaf02b44e9d33088e

Scope and Contents
Part of

23d738ba88f8333bc39725f9cb5bd0b8

Scope and Contents
Part of

b90fd81032b7dbf0c9f90f3dc3a33f1c

Scope and Contents
Collection
Collecting area

Items