Mosekilde, Erik with Steen Rasmussen and Torben Smith Sørensen, "Self-Organization and Stochastic Re-Causalization in System Dynamics Models", 1983

ua435

Self-organization denotes a class of instabilities in which a system spontaneously generates structure, diversity and/or specialization. From a thermodynamic point of view, transitions of this kind, which proceed against the general tendency for relaxation towards an unstructured equilibrium, can occur in energetically open systems and under far-from-equilibrium conditions. The exergy required to build up and maintain a non-equilibrium (so-called dissipative) structure can here be extracted from the continuous supply of energy (and/or resources). The interest of self-organizing systems originates in the work on irreversible thermodynamics performed primarily by the so-called Brussels school. According to this school, developments in biological, ecological, and social systems which involve qualitative change, diversification or increased complexity are also to be viewed as self-organizing processes. This applies for instance to the build-up of genetic information, the appearance of new species in an ecological system, the introduction of new techniques in a social system, the adoption of new scientific paradigms, and the penetration of new products. In the present paper we analyse the basic ideas of self-organization in terms of concepts familiar to System Dynamics practitioners. Through a series of relatively simple models it is shown how System Dynamics can be used as an efficient tool for modeling self-organizing systems. As a particular example we consider the evolution of cooperative structures (RNA molecules with their associated enzymes) in a prebiotic system.

This is the whole item.

Date created
  • 1983
Type
Processing Activity License

ITEM CONTEXT

Part of

b0aa2a699b54f0d19f6a9d93bdbcfa18

Scope and Contents
Part of

cf82ceba47eedd73f41b00918de16477

Scope and Contents
Part of

23d738ba88f8333bc39725f9cb5bd0b8

Scope and Contents
Collection

System Dynamic Society Records

Scope and Contents
Collecting area

Elementos